
Haskell for the Cloud

Andrew P. Black

Joint work with Jeff Epstein & Simon Peyton Jones

Cloud Haskell in a Nutshell
• A DSL for Cloud Computing implemented

as a Haskell library
- From Erlang:

‣ Processes with message-passing parallelism

‣ Failure and recovery model

- From Haskell:
‣ Types: purity and monads

‣ Typed Channels

‣ Shared-memory concurrency within a process

7

What's a Cloud?

8

What's a Cloud?

8

What's a Cloud?

8

many separate processors

What's a Cloud?

8

many separate processors connected by a network

What's a Cloud?

8

many separate processors connected by a network

independent failure modes

This Talk:

1. Erlang-style concurrency in Haskell
- Processes, messages & failures

2. Typed Channels
3. Serialization of function closures
4. Assessment
- Example applications

9

Erlang in Haskell

• Processes & Messages

• Linking Processes

• Selective Receive of Messages

10

Processes & Messages
• Process: a concurrent activity that has the

ability to send and receive messages

11

• Processes cannot share memory

Process A Process B

12

instance Monad ProcessM
instance MonadIO ProcessM
send :: Serializable a ⇒ ProcessId → a →ProcessM ()
expect :: Serializable a ⇒ ProcessM a

• Ping pong:

13

data Ping = Ping ProcessId
data Pong = Pong ProcessId
— omitted: Serializable instance for Ping and Pong

ping :: ProcessM ()
ping = do { self ← getSelfPid
 ; Pong partner ← expect
 ; send partner (Ping self)
 ; ping }

instance Monad ProcessM
instance MonadIO ProcessM
send :: Serializable a ⇒ ProcessId → a →ProcessM ()
expect :: Serializable a ⇒ ProcessM a

• Compare with the Erlang version:

14

data Ping = Ping ProcessId
data Pong = Pong ProcessId
— omitted: Serializable instance for Ping and Pong

ping :: ProcessM ()
ping = do { self ← getSelfPid
 ; Pong partner ← expect
 ; send partner (Ping self)
 ; ping }

ping() → receive
 {pong, Partner} → Partner ! {ping, self()}
 end,
 ping().

instance Monad ProcessM
instance MonadIO ProcessM
send :: Serializable a ⇒ ProcessId → a →ProcessM ()
expect :: Serializable a ⇒ ProcessM a

• Key idea: only Serializable values can be sent
in messages.

• Certain values are deliberately not serializable

- MVars, IVars and TVars, in particular

15

instance Monad ProcessM
instance MonadIO ProcessM
send :: Serializable a ⇒ ProcessId → a →ProcessM ()
expect :: Serializable a ⇒ ProcessM a

16

Process A Process B

• Consequently:

Consequently:

17

Process A Process B

Consequently:

17

Process A Process B

Processes can be moved from one computer to
another without invalidating the programming
model

Consequently:

18

Process A Process B

Thread 1
Thread 2

Thread 3 Thread 1
Thread 2

Consequently:

18

Process A Process B

Concurrent Haskell’s threads, MVars, STM, etc.,
can all be used inside a single Process

Thread 1
Thread 2

Thread 3 Thread 1
Thread 2

19

Why?

• Would it be possible to serialize MVars?

19

Why?

• Would it be possible to serialize MVars?
= Is it possible to simulate shared memory in a

distributed memory environment?

19

Why?

• Would it be possible to serialize MVars?
= Is it possible to simulate shared memory in a

distributed memory environment?

- Yes!

19

Why?

• Would it be possible to serialize MVars?
= Is it possible to simulate shared memory in a

distributed memory environment?

- Yes!

• Would it be a good idea to serialize MVars?

19

Why?

• Would it be possible to serialize MVars?
= Is it possible to simulate shared memory in a

distributed memory environment?

- Yes!

• Would it be a good idea to serialize MVars?
- We don’t think so.

19

Why?

• Would it be possible to serialize MVars?
= Is it possible to simulate shared memory in a

distributed memory environment?

- Yes!

• Would it be a good idea to serialize MVars?
- We don’t think so.

- Glasgow Distributed Haskell disagrees!

19

Why?

Starting & Positioning Processes

• A Node (address space, or virtual computer)
is identified by a NodeId

• Processes are created by spawn
- First try:

20

— wrong
spawn :: NodeId → ProcessM () → ProcessM ProcessId
do { pingProc ← spawn someNode ping
 ; pongProc ← spawn otherNode pong
 ; send pingProc (Pong pongProc) }

Actual type of Spawn

21

— wrong
spawn :: NodeId → ProcessM () → ProcessM ProcessId
do { pingProc ← spawn someNode ping
 ; pongProc ← spawn otherNode pong
 ; send pingProc (Pong pongProc) }

— right
spawn :: NodeId → Closure (ProcessM ())
 → ProcessM ProcessId

Actual type of Spawn

21

— wrong
spawn :: NodeId → ProcessM () → ProcessM ProcessId
do { pingProc ← spawn someNode ping
 ; pongProc ← spawn otherNode pong
 ; send pingProc (Pong pongProc) }

— right
spawn :: NodeId → Closure (ProcessM ())
 → ProcessM ProcessId

Actual type of Spawn

21

— wrong
spawn :: NodeId → ProcessM () → ProcessM ProcessId
do { pingProc ← spawn someNode ping
 ; pongProc ← spawn otherNode pong
 ; send pingProc (Pong pongProc) }

— right
spawn :: NodeId → Closure (ProcessM ())
 → ProcessM ProcessId

More about Closures later

Selective Receive
• Erlang provides selective receive by pattern-

matching on atoms.

22

math() →
 receive
 {add, Pid, Num1, Num2} →
 Pid ! Num1 + Num2;
 {divide, Pid, Num1, Num2} when Num2 ≠ 0 →
 Pid ! Num1 / Num2;
 {divide, Pid, _, _} →
 Pid ! div_by_zero
 end,
 math().

• Haskell programmers would use type
constructors instead of atoms:

23

data MathOp = Add ProcessId Double Double
 | Divide ProcessId Double double
 | Answer Double
 | DivByZero

• However, this breaks modularity, e.g, it forces
servers to respond to Answer and clients to
respond to Add.

• It’s better to use several independent types:

24

data Add = Add ProcessId Double Double
data Divide = Divide ProcessId Double Double
data DivByZero = DivByZero

• However, now we need something more than
expect, because we don’t know which message
will arrive first.

match & receiveWait

25

math :: ProcessM ()
math =
 receiveWait
 [match (λ(Add pid num1 num2) →
 send pid (num1 + num2)),
 matchIf (λ(Divide _ _ num2) → num2 ≠ 0)
 (λ(Divide pid num1 num2) →
 send pid (num1 / num2)),
 match (λ(Divide pid _ _) →
 send pid DivByZero)]
 ≫ math

match & receiveWait

25

math :: ProcessM ()
math =
 receiveWait
 [match (λ(Add pid num1 num2) →
 send pid (num1 + num2)),
 matchIf (λ(Divide _ _ num2) → num2 ≠ 0)
 (λ(Divide pid num1 num2) →
 send pid (num1 / num2)),
 match (λ(Divide pid _ _) →
 send pid DivByZero)]
 ≫ math

match :: Serializable a ⇒
(a → ProcessM q) → MatchM q ()

match & receiveWait

25

math :: ProcessM ()
math =
 receiveWait
 [match (λ(Add pid num1 num2) →
 send pid (num1 + num2)),
 matchIf (λ(Divide _ _ num2) → num2 ≠ 0)
 (λ(Divide pid num1 num2) →
 send pid (num1 / num2)),
 match (λ(Divide pid _ _) →
 send pid DivByZero)]
 ≫ math

match :: Serializable a ⇒
(a → ProcessM q) → MatchM q ()

receiveWait ::
 [MatchM q ()] → ProcessM q

match & receiveWait

25

math :: ProcessM ()
math =
 receiveWait
 [match (λ(Add pid num1 num2) →
 send pid (num1 + num2)),
 matchIf (λ(Divide _ _ num2) → num2 ≠ 0)
 (λ(Divide pid num1 num2) →
 send pid (num1 / num2)),
 match (λ(Divide pid _ _) →
 send pid DivByZero)]
 ≫ math

match :: Serializable a ⇒
(a → ProcessM q) → MatchM q ()

receiveWait ::
 [MatchM q ()] → ProcessM q

matchIf :: Serializable a ⇒
(a → Bool) → (a →
ProcessM q) → MatchM q ()

Also: receiveTimeout and matchUnkown

26

instance Monad MatchM
receiveWait :: [MatchM q ()] → ProcessM q
receiveTimeout :: Int → [MatchM q ()]
 → ProcessM (Maybe q)
match :: Serializable a ⇒ (a → ProcessM q)
 → MatchM q ()
matchIf :: Serializable a ⇒ (a → Bool)
 → (a → ProcessM q) → MatchM q ()
matchUnknown :: ProcessM q → MatchM q ()

Typed Channels

• We can use types to ensure that processes
are prepared to accept the messages that are
sent to them

• Instead of sending a message to a process,
we send it on a channel, specialized for a
single type
- A channel is a pair of ports: a send port and a

receive port

27

Channel Interface

28

newChan :: Serializable a ⇒
 ProcessM (SendPort a, ReceivePort a)
sendChan :: Serializable a ⇒
 SendPort a → a → ProcessM ()
receiveChan :: Serializable a ⇒
 ReceivePort a → ProcessM a
mergePortsBiased :: Serializable a ⇒
 [ReceivePort a]→ ProcessM (ReceivePort a)
mergePortsRR :: Serializable a ⇒
 [ReceivePort a] → ProcessM (ReceivePort a)

SendPort a is serializable; ReceivePort a is not serializable

Ping-Pong: once more, with Channels

29

ping2 :: SendPort Ping → ReceivePort Pong →
 ProcessM ()
ping2 pingout pongin =
 do { (Pong partnersPort) ← receiveChan pongin
 ; sendChan partnersPort (Ping pongin)
 ; ping2 pingout pongin }

Combing Ports
• Suppose that we have several

communication partners,
- e.g., messages arrive from the hardware that

we are monitoring, and from other control
processes in the network.

• We want to receive from one of several
ports.

30

MergePortsBiased CombinePortsBiased
MergePortsRR CombinePortsRR

Serializing function closures
• Sending a function to a remote address space

involves serializing not only its code, but also
its free variables:

31

— wrong
sendFunc :: SendPort (Int→Int) → Int → ProcessM ()
sendFunc p x = sendChan p (λy → x + y + 1)

• The function being sent is (λy → x + y + 1),
which captures the variable x.

Key insight

• Whether a function is serializable or not has
nothing to do with its type.
- It depends on whether it has free variables,

- whether those free variables are serializable

which are not extensional properties of the
function

32

Prior Solutions

• Make the runtime responsible for serializing
anything and everything
- But some things should be serialized specially

- And others should not be serialized at all

• Java does essentially this

• Yet: de-serialization must still be built-in
- this requires runtime reflection

33

More modest magic
• Some functions are easy to serialize
- those with no free variables

- How? Serialize the code address
‣ assuming the same code is running at both ends

• We need a way of charactering such
definitions as a type:

34

instance Serializable (Static a)

• Intuition: values of type (Static a) are always
serializable, regardless what a is!

• Two new terms: static exp and unstatic exp

- intuition: static exp is well-typed iff exp can be
serialized.

• Top-level bindings are tagged S; all others
are tagged D

• A term static exp has type τ iff exp :: τ and
all the free variables in exp are S-bound

35

Static and non-Static types

36

Γ ::= x :δ σ

δ ::= S | D

Γ ↓ = {x :s σ | x :s σ ∈ Γ}

Γ ↓ � e : τ

Γ � static e : Static τ
(Static intro)

Γ � e : Static τ

Γ � unstatic e : τ
(Static elim)

Examples:

37

Examples:

37

id :: a → a
id x = x

id is S-bound, but has a
non-static type.
id :S a → a

Examples:

37

id :: a → a
id x = x

id is S-bound, but has a
non-static type.
id :S a → a

f :: Static a → (Static a, Int)
f x = (x, 3)

x is D-bound, but has a
static type
x :D Static a

Examples:

37

id :: a → a
id x = x

id is S-bound, but has a
non-static type.
id :S a → a

f :: Static a → (Static a, Int)
f x = (x, 3)

x is D-bound, but has a
static type
x :D Static a

static (length o filter id) Free variables of a static term
need not have static types

• So what? We need to serialize functions
that do have free variables.

• Static values make it possible to do closure
conversion

• Let’s try:

• This makes the environment explicit:
- env is the (existentially quantified) type of the

environment of our function

38

— wrong
data Closure a where
 MkClosure :: Static (env → a) → env → Closure a

• Slight snag: env is not serializable

• OK: let’s make it so!

• Now serialization is easy:

• But what about de-serialization?

39

— still wrong
data Closure a where
 MkClosure :: Serialzable env ⇒
 Static (env → a) → env → Closure a
 deriving Typeable

instance Binary (Closure a) where
 put (MkClosure f env) = put f ≫ put env

• Deserialization is a problem because, at the
receiving end, we don’t know what env is.
- Can we send a representation of its type?

- And then what?
‣ Do a run-time type-class lookup?

- Send a representation of the de-serialization
function?
‣ This would require us to serialize closures …

• Simple and (in hindsight!) obvious solution:
- get rid of the existential!

40

• Isn’t this awfully restrictive?
No! Any env that is serializable is equipped
with encode and decode functions that convert
it to and from a ByteString!

• The (de)-serialization is now done at closure-
construction time

41

The solution
— finally right
data Closure a where
 MkClosure :: Static (ByteString → a) → ByteString →
 Closure a

Examples

42

sendFunc :: SendPort (Closure (Int → Int)) → Int → ProcessM ()
sendFunc p x = sendChan p clo
 where clo = MkClosure (static sfun) (encode x)

sfun :: ByteString → Int → Int
sfun = λbs → let x = decode bs
 in λy → x + y + 1

Add newWorker example

Examples

42

sendFunc :: SendPort (Closure (Int → Int)) → Int → ProcessM ()
sendFunc p x = sendChan p clo
 where clo = MkClosure (static sfun) (encode x)

sfun :: ByteString → Int → Int
sfun = λbs → let x = decode bs
 in λy → x + y + 1

p is a SendPort that expects a
(Closure (Int→Int))

Add newWorker example

Examples

42

sendFunc :: SendPort (Closure (Int → Int)) → Int → ProcessM ()
sendFunc p x = sendChan p clo
 where clo = MkClosure (static sfun) (encode x)

sfun :: ByteString → Int → Int
sfun = λbs → let x = decode bs
 in λy → x + y + 1

p is a SendPort that expects a
(Closure (Int→Int))

In the Closure
we put a pre-
serialized
version of the
free variable x

Add newWorker example

Examples

42

sendFunc :: SendPort (Closure (Int → Int)) → Int → ProcessM ()
sendFunc p x = sendChan p clo
 where clo = MkClosure (static sfun) (encode x)

sfun :: ByteString → Int → Int
sfun = λbs → let x = decode bs
 in λy → x + y + 1

p is a SendPort that expects a
(Closure (Int→Int))

In the Closure
we put a pre-
serialized
version of the
free variable xsfun de-serializes its

own argument

Add newWorker example

Summary
• New type constructor Static, with built-in

serialization.

• A new term form (static e)

• A new primitive function unstatic :: Static a → a

• These primitives let us construct closures
manually and control when and how they are
serialized.
- This looks tiresome, and programmers will probably

want some syntactic support: future work

43

Faking it

• Static is not yet implemented in GHC

• We use Template Haskel workarounds

44

• Programmer is still doing closure-conversion
- by defining add1 as a top-level function whose

first argument is an explicit environment (Int)

- mkClosure operates on the names of functions:

‣ mkClosure :: Name → Q Exp

45

sendFunc :: SendPort (Closure (Int → Int)) → Int → ProcessM ()
sendFunc p x = sendChan p ($(mkClosure ’add1) x)
add1 :: Int → Int → Int
add1 x y = x + y + 1

$(remotable [’add1])

Assessment

• Limited experience so far

• Small examples on local networks, and k-
means on an Amazon EC2 cluster.

46

k-means

Data clustering algorithm:
1. Guess at centroids of k clusters

2. Put each point in nearest cluster

3. Compute the centroids of these cluster of
points

4. Use the computed centroids as the next guess

5. Continue until convergence

47

k-means

48

.%'/$,

.%00$,(1

.%00$,(2

.%00$,(3

.%00$,(!

4$567$,(1

4$567$,("

.%04$567$

7*&+$,8$59

4$'6:/

k-means results

49

k-means results

49

k-means results

50

k-means results

50

51

!"

!#$"

%"

%#$"

&"

&#$"

!"

%!!!"

&!!!"

'!!!"

(!!!"

$!!!"

)!!!"

*!!!"

+!!!"

,!!!"

!" %!" &!" '!" (!" $!")!" *!" +!" ,!" %!!"

-./0"12"

3450"1"/267%"

nodes:
m1.small (1
core, 1.7 GB)

1 million
100-D points

one reducer

5 iterations

k-means
results

Related Work

• Inspired by Erlang
- Also by Ciel execution engine and the

Skywriting language [Murray et al]

• MPI from the HPC community
- language independent

• RPC and RMI mechanisms
- Birrell & Nelson, Emerald, CORBA, Java RMI,

SOAP, …

52

• Distributed functional languages: GDH
(distributed shared memory), Concurrent ML,
paraML
- Acute [Sewell et al.]: uses runtime representations

of datatypes

- HashCaml: does support serialization of function
values, also with explicit type-passing

- Alice [Rossberg’s Thesis]

- Clean: type-safe pickling, including function
closures

• Our design point: serialization of closures is
not built-in

53

Future Work

• Low level: implement Static in GHC

• Restartable task level
- inspired by Skywriting project

- tasks: idempotent, restartable computations

- system tracks data dependencies between tasks

- allocates tasks to processors

- recovers from failure

54

Summary

• Cloud Haskell: a starting point for building
distributed applications

• Contributions:
- Typed version of Erlang’s process & messaging

interfaces

- Typed channels; receive port is not Serializable

- Serialization of function closures

- It works (on 90 Amazon EC2 nodes)

55

