Proof of a recursive program: Quicksort

M. Foley and C. A. R. Hoare

Department of Computer Science, Queen’s University, Belfast

This paper gives the proof of a useful and non-trivial program, Quicksort (Hoare, 1961). First the
general algorithm is described informally; next a rigorous but informal proof of correctness of the
coded program is given; finally some formal methods are introduced. Conclusions are drawn on the
possibility of enlisting mechanical aid in the proof process.

(Received January 1971)

1. Introduction

It has been suggested (Hoare, 1971a, 1969, 1971b) that the
advancement of the art of proving programs may lead to a
reduction of the nuisance of programming error in the develop-
ment and use of computer programs. We attempt here to show
how a realistic program which incorporates recursion may be
proved.

We also attempt to illustrate how the proof of a program can
take advantage of a previously published proof; in particular,
the proof of any procedure which it calls. This gives grounds for
hope that the labour of program proving may eventually be
reduced in the same way as that of mathematical theorem
proving, by building up on the work of others rather than
starting from scratch on each occasion.

A third objective has been to illustrate a method of annotating
a program by comments in such a way that a keen and experi-
enced reader may verify the correctness of the program by
inspection and study rather than by poring over tedious and
often trivial proofs.

Fourthly, an attempt is made to illustrate the adequacy of the
formal rules of inference described by Hoare (1971b) by
applying them to Quicksort. Finally, it is suggested that the
formalisation of proof methods is a possible basis on which a
computer can be programmed to assist in the construction and
verification of proofs.

2. Description of Quicksort

2.1. Criterion of correctness

The purpose of the program Quicksort is to sort the elements
A[m] to A[n] of an array into ascending order, while leaving
untouched those below A[m] and above A[n]. The desired
result of the program is described by two terms. The first
states that the elements from A[m] to A[n] are in ascending
order

Vp,q(m < p < q < n> A[p] < Alq))
This may be abbreviated as Sorted (4, m, n). The second term
states that the sorted array is equal to the original array for
elements below m and above n; and between m and » it has the
same elements as the original array but not necessarily in the
same order. If 4, is the initial value of the array, this may be
expressed ‘4 is an m — n permutation of A4,’, or more briefly:
Perm (A4, Ay, m, n).

Note that if n < m, Perm (4, Ay, m, n) is taken to assert that
A is identical to 4,. Our proof will rely on a knowledge of the
elementary properties of permutations; and there is therefore

no need to define the concept of an m — n permutation in
greater detail.

*Except possibly in certain ‘critical regions’.

Volume 14 Number 4

2.2. Outline of method

Quicksort (4, m, n) works as follows. The elements between
A[m] and A[n] are rearranged into two partitions such that
those in the lower partition, A[m], . . ., A[i — 1] are less than
or equal to those in the upper partition, A[j + 1], ..., A[n],
where j < i

A[j + 11, . . ., A[n]

I I
I I I I
m J i n
| |
A[m], ..., A[i — 1]

The first rearrangement of elements between m and n is
achieved by a call of a procedure Partition which has parameters
A, i, j, m and n. Noting that elements between j and i are
already in their correctly sorted positions it is fairly obvious
that the entire array will be sorted if the elements between m
and j and those between i and n are sorted. This is achieved by
two recursive calls of Quicksort with parameters (m,j) and
(i, n) respectively. Provided that a partition containing less than
two elements is recognised as already sorted, and neither
partition is ever as large as the original area to be sorted, this
recursion will successfully terminate.

3. The procedure partition

3.1. Description
3.1.1. Criterion of correctness
The procedure Partition rearranges the elements A[m] to A[n]

of an array into two parts, one of smaller and one of larger |

elements as described in Section 2. The criterion of correctness
consists of two terms. The first states the necessary ordering
relation
j<i&Vp,qm<p<i&j<qg<n>A[p]<Alq)
This is abbreviated as Partd (4, i, j, m, n). The second is
Perm (A4, Ay, m, n)

which states that the partitioned array must be an m —n
permutation of the original array A,.

3.1.2. Outline of method

The division into smaller and larger elements is done by select-
ing an arbitrary element, say r, and placing elements smaller
than it in the lower partition and elements larger than it in the
upper partition. i is initially set to m and j to n. Then i is stepped
up for as long as A[i] < r, since these elements belong to the

391

TTOZ ‘€2 JoqUNON U0 AISIBAIUN SIRIS puelIod Te /610'sjeulno [pioxor jufwooy/:dny wou) pspeojumoq

http://comjnl.oxfordjournals.org/

lower partition and may be left in position. When an A[i] is
encountered which is not less than r and hence out of place, the
stepping up of i is interrupted. The value of j is then stepped
down while r < A[j], and this stepping down is interrupted
when an A[j] not greater than r is met. The current A[i] and
A[j] are now both in the wrong partitions, which situation is
corrected by exchanging them. If i < j, i is stepped up and j
stepped down by one, and i search and j search is continued
until the next out of place pair is found. If j < i the lower and
upper parts overlap and the partition is complete. It may be
seen that these final values ofi and;j are not specified in advance
but are set by the procedure.

3.2. Informal proof

The correctness of the body of the procedure Partition has been
informally established by Hoare (1971a). However the version
used in Quicksort is slightly different as it is written as a

m+n].

procedure and the arbitrary element r is taken as A4 [

Also Perm (4, Ay, m, n) was not directly proved by Hoare
(1971a). Hence some additions will be necessary to complete
the proof.

An annotated version of Partition may be written as

comment Let A, be the initial value of an array 4. The pro-

cedure rearranges the elements between m and n so
that

J<i&Vp,gqm<p<i&j<gqg<no>A[p] < Alq))
& Perm (4, Ay, m,)
provided that m < n on entry.
Partition (4, i, j):(m, n) proc
begin new r, f
comment Perm (4, 4y, m, n)
&m<f<n Jf—invariant
&m<i&Vpm<p<i> A[p] <r)
i—invariant
&j<n&Vq(j<qg<no>r<Algl):
Jj—invariant;

A—invariant

f:=m2+ Y= ALY = myj = n
while i < j do
begin while A[i] < rdoi:=i+ 1;
while r < A[j]doj:=j — 1;
comment A[j] < r < A[{];
if i < j then
begin new w; w := A[i]; A[i] := A[j];
A[j] :=w;
comment A[i] < r < A[j];
ir=i+1;j:=j—-1;
end
end

end

The annotations for a program include the criterion of correct-
ness and propositions at certain points which are true each time
control reaches that point. A proposition expressing the pur-
pose of a variable is known as an invariant and is intended to
remain true throughout the execution* of the program even
when the value of the variable concerned is changed by assign-
ment.

In the second comment invariants corresponding to the vari-
ables 4, f, i and j are given. The proof that those for i and j are
invariant over the main loop of Partition is given in lemmas
8,9, 10 and 11 by Hoare (1971a) with m substituted for 1 and n
for N. The f-invariant is unchanged by the loop since f is not
reassigned within it. It remains to show the following three
results:

(@) Perm (4, Ay, m, n) is invariant over the main loop.

392

The.o.nly assignments to array members are in the group in the
conditional ‘if 7/ < j then...’. Hence only these assignments
could cause Perm (4, 4,, m, n) to become untrue. If 4’ is the
value of A after these assignments then, as given by Hoare
(1971a)

A [= A[j]
A'[j1= AL
Vs(s#i&s#j> A [s]=A[s])
Since at this point m < i < j < n it is obvious that A’ is an
m~—n permutation of 4 and hence the truth of Perm (4, 4,, m, n)

is preserved. (The composition of two permutations is a
permutation.)

(b) The initial values of the variables satisfy the invariants i.e.
G) m < m+n

and

<n

(i) m<Sm&Vpm<p<m>A[p] <r)
(i) n<n&Vgn <g<no>sr< Alq))

(i) follows from the precondition m < n. (ii) and (iii) are
obviously true since the antecedents of the implications are
false.

(¢) The criterion of correctness is true after execution.
On exit from the main loop of Partition, j < i and the invari-
ants are still true. Hence it is required to prove that

Jj<i&m<f<n&m<i&Vpm<p<ioA[p] <r)
&ji<n&V9(j<qg<no>r< Alq]) & Perm (4, Ay, m, n)
Sj<i&Vpgqm<p<i&j<qg<n>A[p] < Alq))
& Perm (A4, Ay, m, n)
which is an obvious result, following from the transitivity of
<: hence if 4 = 4, and m < n before a call of Partition
(4, i,j):(m, n), Partd (4, i, j, m, n) and Perm (4, 4,, m, n) will
be true after execution.

4. Informal proof of Quicksort

An annotated version of Quicksort is as follows.

Comment Let 4, be the initial value of an array 4. Quicksort
(A, m, n) rearranges the elements between m and n
so that

Sorted (4, m, n) & Perm (4, Ay, m, n)

Quicksort (4): (m, n) proc

if m < n then

begin new i, j;
comment m < n: and let A = A, here;
call Partition (4, i,j):(m, n);
comment let 4 = A4, here:
Partd (4, i,j,m,n) &
Perm (Al’ AO’ m, n)’
call Quicksort (4): (m,j);
comment let 4 = A4, here:
Sorted (A4,, m,j) & Perm (A4,, A, m, j);
call Quicksort (4): (i, n);
comment Sorted (4, i, n) & Perm (4, A4,, i, n);
end

The annotations following the recursive calls require some
explanation. In order to prove a recursive program it is
necessary to assume that the recursive calls work, and then
prove that the program body works based on these assumptions.
Such an assumption means that (a suitably modified version of)
the criterion of correctness is true after each recursive call.
Thus Sorted (4,, m,j) & Perm (4,, A;, m,) is assumed to be
true after the first call of Quicksort and Sorted (4, i,n) &
Perm (4, A,, i, n) after the second.

The first requirement is to prove that the criterion of correct-
ness is true when the body of the main conditional is not
executed at all, i.e. when n < m. In this case, the truth of
Perm (4, Ay, m, n) follows from 4 = A4, by the definition of
Perm. The truth of

The Computer Journal

TT0Z ‘€2 JoqUIBAON U0 A1SIBAIUN 31RIS pUe|liod e /HIo'sfeuinopioxo’ jufwos//:dny wouy pepeojumoq

http://comjnl.oxfordjournals.org/

Vp,qum < p < g <n>A[p] < Alq))
follows directly from the unsatisfiability of the antecedent.

Next we note that the variables 4, and 4, denote ‘snapshots’
of the specific values of A at certain points. These values are
fixed at the time of the snapshot so that the propositions
containing them remain true independently of subsequent
actions of the program. Hence these propositions are still
true at the end of the program, and it must be proved that their
conjunction implies

(i) Sorted(A4, m, n) and

(i) Perm(4, Ay, m, n)

The proof of (ii) is given by
m<i&j<n&Perm (4, Ay, m,n) & Perm (4,, A{, m, j)

& Perm (A, A,, i, n) o Perm (4, Ay, m, n)
This follows from the fact that an m — j or i — n permutation
is also an m —n permutation for m < i and j < n; and that
the composition of three m — n permutations is itself an m —n
permutation. To prove (i) it will first be established that (a)
the partitioning of the array is not disturbed by the subsequent
sorts and (b) the sorting between m and j is not disturbed by
the second sort.

(a) Partd (4, i, j, m, n) & Perm (A4,, A;, m,)

& Perm (A, A,, i, n) > Partd (4, i, j, m, n)

Consider an element A[k] for k < j and an element A[/] for
i < I. We need to prove that A[k] < A[]].

Since 4 is an i—n permutation of A4, and k <j <,
A[k] = A,[k]; and there is an I’, (i <!’ < n) such that
A[I1 = A,[I']. Since A4, is an m —j permutation of 4, and
j<i<lI,A,[I'1 = A,[I']; and thereis a k'(m < k' < j) such
that 4,[k] = A,[k’]. Since A, is partitioned, and m < k' <
i<iandj < i <!l < n, it follows that:

A[k] = A,[K'] < A,[I] = A[1]

(b) j < i & Sorted (A4,, m,j) & Perm (A, A,, i, n) > Sorted
(A’ m1])

A is an i — n permutation of 4, and thus is equal to A4, for
elements below i. Since j < i 4 is equal to 4, for elements
between m and j. Thus Sorted (4, m, j) follows from sorted
(A23 m,])

It now remains to prove that Partd (4, i, j, m, n) & Sorted
(4, m,j) & Sorted (4, i, n) > Sorted (4, m, n). The proof of
this will be given in greater detail since all the terms may be
expanded. On expansion the lemma becomes

@j<i

(i) &Vp,qim <p <i&j<g<n> A[p] < Algl)

(i) & Vp,q(m <p <qg<j> A[pl <[q))

(iv) &Vp,qi < p < q<n> Alp] < Alq))

> Vp,gm < p <q<n>A[p]<Alq)
A proof by cases is now given. The following is a simple but
tedious theorem of ordering.
j<i&m<p<qg<nom<p<i&j<qg<n

Vm<p<qg<j
ViKp<g<n

In each of the three cases of the consequent of this theorem,

either (ii), (iii), or (iv) state that A[p] < A[q].

The body of Quicksort has been proved correct based on the
assumption that the recursive calls work. Hence Quicksort is
correct and if A = A, initially, Sorted (4, m,n) & Perm
(A, Ao, m, n) will be true after execution.

5. Formal proof

In formalising the proof given in the previous section, we are
not interested in giving a formal proof of the lemmas of the
previous section; that may be done (if desired) by the familiar
apparatus of mathematical logic. However, it does seem worth-

Volume 14 Number 4

while to formalise the relationship between the lemmas proven
in the domain of mathematics, and the program itself, written
to be executed on a computer. This will both help to reassure
us that the formulation of the lemmas validly reflects the
correctness of the program; it will also illustrate the adequacy
of the proof techniques described by Hoare (1971b) for
treating a realistic program. The formal proof is given in
Appendix 1; the notations it uses are explained by Hoare (1969)
and the full set of inference rules required is reproduced in
Appendix 2.

As with the informal approach it is necessary to assume that
the recursive calls are correct and then on this basis prove that
the program body is correct; thus the theorem to be proved is
used as a hypothesis in the proof of the program body. This
hypothesis is line 3 of the proof of Quicksort. Using it the
program body is proved correct (line 12), and the desired
result (line 13), follows by the rule of recursion. The theorem
of line 1 gives the result established informally for the pro-
cedure partition.

6. The lemma generator

Formal proofs such as those of Appendix 1 are tedious to
write and check. Their only purpose is to expose the lemmasg
on which the proof of correctness depends, e.g. line 11 in thex
proof of Quicksort. Hence it would be useful to have a mech-8
anical means of generating these lemmas from the text of the=;
program. Such a mechanical procedure is possible providedS
that certain comment information is given in addition to thez
program text as in Section 3.2. This information includes theZ
criterion of correctness of the program as a whole, and a8
sufficiently powerful invariant for each loop of the program. If5
the correctness of the program depends on an initial precon-2
dition (e.g. m < n in the case of Partition) this must be given,3
and if the program contains a procedure call the theoremg
expressing the correctness of this procedure must also be3
supplied. 2
The lemma generator works as follows. For each command<
type there is a rule of inference permitting the mechanical®
construction of the ‘weakest’ proposition which is ‘provably’s
true before execution of the command if a certain proposition§
is true after it. Consider assignment, for example. The rule fory
assignment is 5

0d

Rx{x:= e} R

If the proposition R is true after the assignment x := e then
with e substituted for x must have been true before it.

The criterion of correctness specified by the programmers
must be true at the end of a program. Using the relevant rule of§
inference a machine can construct a proposition true before3
execution of the last command. This proposition can then beg
‘moved back’ through the penultimate command and so on for3
each command of the program in turn. Eventually the weakest
proposition true before execution of the first command will be=
produced. Call it ‘Precondition’. If ‘Initial’ is required to be
true before execution one of the basic lemmas produced by the
machine will be

Al!S%A!une

Initial o Precondition

The machine will also produce lemmas for each loop of the
program in accordance with the Rule of Iteration.

It is fairly obvious how the basic lemma (line 11) in the proof
of Quicksort could be generated, given lines 1 and 13. The
Rule of Adaptation is used to generate the weakest proposition
true before the recursive and non-recursive procedure calls.
Thus the lemma generator would begin with line 7, using this
rule to move the criterion of correctness back through the
second recursive call to give the proposition L7. This applic-
ation of the rule uses line 6, which may be derived mechanically
by substitution from line 3. The parameters of the recursive
call are substituted in the hypothesis for the formal parameters

393

http://comjnl.oxfordjournals.org/

of the program, and the variables to be existentially quantified
are given different names if they clash with any variables in the
proposition to be moved back through the recursive call. For
example A, occurs on the right of line 7 and hence must be
replaced by a different variable (i.e., 4,) in the substituted
version of the hypothesis.

L7 would then be moved back through the first recursive call
to give L5 and L5 moved through the call of Partition to give
L2. L2 moved back through the conditional would give the
‘Precondition’, L10. Since for Quicksort ‘Initial’is ‘4 = A’ the
lemma produced would be (line 11):

A = Ay, o if m < n then L2 else Sorted (4, m, n) &
Perm (A4, Ay, m, n)

N.B. Note that this ‘Initial’ does not impose necessary con-
straints on the initial values of the program variables. It is
merely a ‘snapshot’ necessary to define the A, used in the
criterion of correctness. Only one lemma would be generated
for Quicksort since it contains no loops.

Written in full this lemma is

A = Ay o if m < n then
d4,(A = Ay & m < n & VA, i, j(Partd (4, i, j, m,n) &
Perm (4, Ay, m, n) o
JA4,(4 = A, & VA(Sorted(4, m,j) &
Perm (4, A,, m,j) >
JA,(A = A, & VA(Sorted (4,i,n) &
Perm (4, A,, i,n) o
Sorted (4, m, n) & Perm (4, 4y, m, n)))))))
else Sorted (4, m, n) & Perm (4, Ay, m, n)

By eliminating quantifiers and performing other obvious
simplifications this becomes

(a) Tm < n > Sorted (4, m, n) & Perm (4, 4y, m, n)

(b) m < n & Partd (4, i, j, m, n) & Perm (4, Ay, m, n)
& Sorted (4,, m,j) & Perm (4,, A{, m,j)
& Sorted (4, i, n) & Perm (4, A4,, i, n)
> Sorted (4, m, n) & Perm (4, Ay, m, n)

which is the same as the lemma derived informally from the
annotated program.

7. Conclusion

The lemmas on which proof depends may be generated by
machine as has been indicated. However this can be regarded
as merely isolating the problem, as for complex programs the
proof of the lemmas will be the major part of the proof of
correctness. This suggests that mechanical aids in proving the
lemmas should therefore also be sought.

The obvious first suggestion is an automatic theorem prover.
King (1969) has successfully proved small programs using such
an aid, but general purpose theorem provers are not powerful
enough to handle complex lemmas. Another possibility is the
use of proof checking rather than proof generation. The
machine is supplied with an abbreviated proof of a lemma and
then fills in the gaps and checks the complete proof. Such an
approach has been implemented by Abrahams (1963) but again
is so far satisfactory only for simple examples. Finally there is
the possibility of constructing proofs by some form of man-
machine co-operation. This seems a promising approach.
Good (1970) suggests that the answer lies in combining
simplification methods, special purpose automatic theorem
provers (preferably decision procedures) and man-machine
interaction. Burstall (1970) has used such interaction to guide a
resolution-based theorem prover, but reports that the process
was rather laborious.

Acknowledgement

This work was carried out with the aid of a grant from the
Ministry of Education, Northern Ireland.

394

Appendix 2
R¥{x:=¢e} R Assignment
P{Q}S P+ S
—SF R —S{Q}R Consequence
P{Q}R P{Q}R
}MQZ_}R Composition
P{Q,; Q23R
P o if B then P, else R, P,{Q}P Iteration
P{while Bdo Q}R
P{O}R Condition
if B then P else R{if B then Q}R
p(x): (V) proc Q0
P{call p(x):(V)}R + P{Q}R Recursion
P{call p(x):(V)}R
Peall p(x): GV}R Substituﬁon
P{czsz;’e callp(a): (e)} RE:3Y
Pfcall p(a):(€)} R Adaptation
IK'(P & Ya(R o S)){call p(a):(e)}S
P{Q;}R (where y is not in Q unless Declaration
P{new x; O}R 7 and x are the same)
Explanation
P,P,,P,, R, S stand for propositional formulae
0,0, 0, stand for program statements
X,y stand for variable names
(y not free in P or R)
e stands for an expression
B stands for a Boolean expression
P stands for a procedure name
X stands for a list of non-local variables 9f (0]
which are subject to change in Q
v stands for a list of other non-local variables
of O
stands for a list of distinct variables
e stands for a list of expressions, not containing
any of the variables a
k stands for a list of variables not free in X, v
k' stands for a list of variables not free in a, e, S
P{Q}R stands for if Pis true of the program variables
before executing the first statement
of the program Q, and if Q ter-
minates, then R will be true of the
program variables after execution
of Q is complete
S* stands for the result of replacing all free
occurrences of x in S by e. If e is
not free for x in S, a preliminar_y
systematic change of bound vari-
ables is assumed to be made
P, R stands for a rule of inference which states
S that if P and R have been proved,
then S may be deduced
R
Pyt P, stands for a rule of inference which permits

S deduction of S if R and P, are
proved; however, it also permits
P, to be assumed as a hypothesis in
the proof of P,. The deduction of
P, from P, is known as a sub-
sidiary deduction.

The Computer Journal

TTOZ ‘€2 JoqUNON U0 AISIBAIUN SIRIS puelIod Te /610'sjeulno [pioxor jufwooy/:dny wou) pspeojumoq

http://comjnl.oxfordjournals.org/

APPENDIX 1

Line No. Proof Justification
1 A=A, & m < n {call Part (4, i,j):(m,n)} Partd (4, i,j, m,n) & Perm (4, Ay, m, n) | Already Proved
JA(A = A &m < n&V,Ai,j
2 (Partd (4, i, j, m, n) & {call Part (4, i,j):(m,n)} LS Adaptation (1)
Perm (A, Ay, m, n) > L5))
3 A = A, {call Quicksort (4):(m, n)} Sorted (4, m, n) & Perm (A4, Ay, m, n) Hypothesis
4 A = A, {call Quicksort (4):(m,j)} Sorted (4, m,j) & Perm (A, A,, m, n) Substitution (3)
JA4,(4 = A, & YA(Sorted(4, m, j)
5 & Perm (A, Ay, m,j) > LT7)) {call Quicksort (4):(m,j)} L7 Adaptation (4)
6 A = A, {call Quicksort (4):(i, n)} Sorted (4, i, n) & Perm (4, A4, i, n) Substitution (3)
JA,(A = A, & VA(Sorted (A4, i, n) &
7| Perm (A, A,, i, n) @ Sorted (4, m, n) {call Quicksort (4):(i,)} Sorted (4, m, n) & Perm (4, A,, m, n) Adaptation (6)
& Perm (A4, Ay, m, n)))
L2(call Part (4, i, j):(m, n); call Quicksort (4):(m, j);
8 call Quicksort (4):(i, n)} Sorted (4, m, n) & Perm (4, Ay, m, n) Composition
2,57
9 L2{new i, j; call Part (4, i,j):(m, n); call Quicksort (4):(m,j);
call Quicksort (4):(i, n)} Sorted (4, m, n) & Perm (A4, Ay, m, n) Declaration (8)
10 if m < n then L2 else Sorted (A4, m, n) & Perm (A4, Ay, m, n){Q} Sorted (4, m, n) & Perm (A4, A,, m, n) Condition (9)
11 A= A,> L10 Lemma
12 A= A4, {0} Sorted (4, m, n) & Perm (A, Ay, m, n) Consequence
(11, 10)
13 A = A, {call Quicksort (A4):(m, n)} Sorted (4, m, n) & Perm (4, Ay, m, n) Recursion (3-12)

The justification column gives the rule of inference and previous line(s) used in the derivation Q is an abbreviation for the body of Quick

sort. L2 stands for the proposition on the left hand side of line 2, L5 for that on the left of line 5 and so on.

References

ABRAHAMS, P. W. (1963).

HoARE, C. A. R. (1961). Algorithm 64, CACM, Vol. 4, No. 7, p. 321.

HoARE, C. A. R. (1969).
HoArg, C. A. R. (1971a).
HoArg, C. A. R. (1971b).

KingG, J. C. (1969).
Lonpon, R. L. (1970).

Volume 14 Number 4

Machine Verification of Mathematical Proof, Ph.D. thesis, Massachusetts Institute of Technology.
BURSTALL, R. M. (1970). Formal Description of Program Structure and Semantics in First Order Logic, Machine Intelligence, Vol. 5
University of Edinburgh.
FLoyp, R. W. (1967). Assigning Meanings to Programs, Mathematical Aspects of Computer Science (ed. J. T. Schwartz), American Mathe-
matical Society.
Goop, D. C. (1970). Towards a Man-Machine system for Proving Program Correctness, Ph.D. thesis, University of Wisconsin.
An Axiomatic Approach to Computer Programming, CACM, Vol. 12, No. 10, pp. 576-580.
Proof of a Program: Find, CACM, Vol. 13, No. 12.
Procedures and Parameters: An Axiomatic Approach, Symposium on the Semantics of Algorithmic Language.
(ed. E. Engeler), Springer Verlag. Lecture Notes in Mathematics 188, 1971.
A Program Verifier, Ph.D. thesis, Carnegie-Mellon University.
Certification of Treesort, CACM, Vol. 13, No. 6, pp- 371-373.

395

S1elINOo[p.JoJx0" U flod;/:dNy Wo.) pepeoumod

)

/Bio

9elS puejliod e

TT0Z ‘€2 SqWBAON O A1sieAiun

http://comjnl.oxfordjournals.org/

