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Lower Bounds
! Lower bound: an estimate of the minimum 

amount of work needed to solve a given problem
! Examples:

❖ number of comparisons needed to find the largest 
element in a set of n numbers

❖ number of comparisons needed to sort an array of 
size n

❖ number of comparisons necessary for searching in a 
sorted array of size n

❖ number of multiplications needed to multiply two n×n 
matrices 
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Lower Bounds (cont.)
! Lower bound can be

❖ an exact count 
❖ an efficiency class (Ω)

! Lower bound is tight ≜ there exists an algorithm with the efficiency 
of the lower bound

    Problem          Lower bound  Tight?
     sorting                   Ω(n log n)            yes
     searching in a sorted array             Ω(log n)               yes
     element uniqueness                       Ω(n log n)            yes
     n-digit integer multiplication           Ω(n)                 unknown
     multiplication of n x n matrices       Ω(n2)                unknown
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Methods for Establishing Lower Bounds
! trivial lower bounds

❖ based on data input & output
! information-theoretic arguments 

❖ e.g., decision trees

! adversary arguments

! problem reduction
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Trivial Lower Bounds
based on counting the number of items that must be 
processed in input and generated as output
Examples:

❖ finding max element
❖ polynomial evaluation
❖ sorting
❖ element uniqueness
❖ Hamiltonian circuit existence

Conclusions 
❖ may or may not be useful!
❖ be careful deciding how many elements must be processed
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Decision Trees
! A model for algorithms (that involve 

comparisons) in which:
❖ internal nodes represent comparisons
❖ leaves represent outcomes 
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Minimum of three numbers
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a < c ∧ a < b c ≤ a < b c ≤ b ≤ ab ≤ a ∧ b < c



Median of three numbers
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Median of three numbers
! Draw the decision tree (using 2-way 

comparisons) for finding the median of three 
numbers
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Median of three numbers
! Draw the decision tree (using 2-way 

comparisons) for finding the median of three 
numbers

! What’s the information-theoretic lower bound 
on the number of 2-way comparisons needed 
to find the median of three numbers?

A. 1
B. 2
C. 3
D. None of the above
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Median of three numbers
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Median of three numbers?
! Is the number of comparisons (in the worst 

case) in your decision-tree greater than the 
lower bound?

A. Yes, it’s greater than the lower bound

B. No, it’s equal to the lower bound

C. No, it’s less than the lower bound
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Median of three numbers
! Can you prove that no better algorithm 

exists?
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Median of three numbers
! Can you prove that no better algorithm 

exists?

! Issue: more leaves (6) than outcomes (3)

! Can you find a tree with lesser height  
(= fewer comparisons) ?
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Decision tree for 3-element insertion sort:
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Decision tree for 3-element insertion sort:

! Average number of comparisons?
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Decision tree for 3-element insertion sort:

! Average number of comparisons?
assume results are equiprobable
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Decision tree for 3-element insertion sort:

! Average number of comparisons?
assume results are equiprobable
(2 + 3 + 3 + 2 + 3 + 3) / 6 = 16/6 = 8/3 = 2 2/3
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Decision Trees and Sorting Algorithms
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Decision Trees and Sorting Algorithms
! Any comparison-based sorting algorithm can be 

represented by a decision tree
! Number of leaves (outcomes) =  n!
! Height of binary tree with n! leaves  ≥ ⎡lg n!⎤
! Minimum number of comparisons in the worst case 
≥⎡lg n!⎤ for any comparison-based algorithm

!⎡lg n!⎤ ∈ Ω(n lg n)      (Why?)

! Is this lower bound tight?        A:  Yes     B: No
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Jigsaw puzzle
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Jigsaw puzzle
! A jigsaw puzzle contains n pieces.  A 

“section” of the puzzle is a set of one or 
more pieces that have been connected to 
each other.  A “move” consists of 
connecting two sections. What algorithm 
will minimize the number of moves 
required to complete the puzzle?
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Jigsaw puzzle
! A jigsaw puzzle contains n pieces.  A 

“section” of the puzzle is a set of one or 
more pieces that have been connected to 
each other.  A “move” consists of 
connecting two sections. What algorithm 
will minimize the number of moves 
required to complete the puzzle?

! Hint: use a lower bound argument
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Adversary Arguments
Adversary argument: a method of proving a lower 
bound by playing a “game” in which your opponent 
(the adversary) makes the algorithm work as hard as 
possible by adjusting the input 

Example 1:  “Guessing” a number between 1 and n 
with yes/no questions
Adversary:  Puts the number in the larger of the two 
subsets generated by last question

Simulates the worst case
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Example 2:  Merging two sorted lists of size n
 a1 < a2 < … < an  and  b1 < b2 < … < bn 
Adversary: ai < bj  iff  i < j
Output b1 < a1 < b2 < a2 < … < bn < an 
requires 2n-1 comparisons of adjacent  
elements
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Example 2:  Merging two sorted lists of size n
 a1 < a2 < … < an  and  b1 < b2 < … < bn 
Adversary: ai < bj  iff  i < j
Output b1 < a1 < b2 < a2 < … < bn < an 
requires 2n-1 comparisons of adjacent  
elements

b1 to a1,  a1 to  b2,   b2  to  a2, etc.
Suppose that one of these comparisons is 
not made …
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Lower Bounds by Problem Reduction
Idea: If problem P is “at least as hard” as problem Q, 
then a lower bound for Q is also a lower bound for P.           

Hence: find problem Q with a known lower bound 
that can be reduced to problem P.

Example:
•You need a lower bound for P:  finding minimum 

spanning tree for n points in Cartesian plane

•Q is element uniqueness problem — known to be in 
Ω(n log n).

•Reduce Q to P (note direction: known → unknown)
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Problem
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b. Write a pseudocode of the method that incorporates this improve-

ment.

c. Prove that the worst-case efficiency of the improved version is quadratic.

10. Is bubble sort stable?

11. Alternating disks You have a row of 2n disks of two colors, n dark and

n light. They alternate: dark, light, dark, light, and so on. You want to

get all the dark disks to the right-hand end, and all the light disks to the

left-hand end. The only moves you are allowed to make are those which

interchange the positions of two neighboring disks.

Design an algorithm for solving this puzzle and determine the number of

moves it makes. [Gar99], p.75

2



Problem
! Prove that any algorithm solving the 

alternating disk puzzle must make at least  
n(n+1)/2 moves to solve it
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Problem
! Prove that any algorithm solving the 

alternating disk puzzle must make at least  
n(n+1)/2 moves to solve it

! Is this lower bound tight?   A:  Yes     B:  No

!22

b. Write a pseudocode of the method that incorporates this improve-

ment.

c. Prove that the worst-case efficiency of the improved version is quadratic.

10. Is bubble sort stable?

11. Alternating disks You have a row of 2n disks of two colors, n dark and

n light. They alternate: dark, light, dark, light, and so on. You want to

get all the dark disks to the right-hand end, and all the light disks to the

left-hand end. The only moves you are allowed to make are those which

interchange the positions of two neighboring disks.

Design an algorithm for solving this puzzle and determine the number of

moves it makes. [Gar99], p.75

2



Problem
! Find a trivial lower-bound for the following 

problem.  Is this bound tight?
❖ find the largest element in an n-element array

A. Ω(1)
B. Ω(n)
C. Ω(n lg n)
D. None of the above
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Problem
! Find a trivial lower-bound for the following  

problem.  Is this bound tight?
❖ is a graph with n vertices (represented by an  

n × n adjacency matrix) complete?

A. Ω(n2)
B. Ω(n3)
C. Ω(n lg n)
D. None of the above
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Problem
! Find a trivial lower-bound for the following  

problem.  Is this bound tight?

❖ generate all subsets of an n-element set

A. Ω(n2)
B. Ω(n3)
C. Ω(nn)
D. Ω(2n)
E. None of the above
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Problem
! Find a trivial lower-bound for the following  

problem.  Is this bound tight?

❖ are all the members of a set of n real numbers 
distinct?

A. Ω(n)
B. Ω(n2)
C. Ω(n lg n)
D. None of the above
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Fake-coin Problem
You have n > 2 identical-looking coins and a 
two-pan balance with no weights. One of the 
coins is a fake, but you do not know whether 
it is lighter or heavier than the genuine coins, 
which all weigh the same. 

What is the information-theoretic lower bound 
on the number of 3-way weighings required to 
determine if the fake coin is light or heavy?

A.   Ω(1)   B.   Ω(n)   C.   Ω(lg n)   D.  

!27

something  
else



Problem
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Problem
! What do information-theoretic arguments tell 

us about Fake-coins problem?
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⎡log2 n ⎤ weighings?
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Problem
! What do information-theoretic arguments tell 

us about Fake-coins problem?

! Suppose we wish to discover which coin is fake

! Can we deduce that we will need at least 
⎡log2 n ⎤ weighings?

! If n=12, what is ⎡log2 n ⎤?

! Can you solve the problem with < 4 
weighings?

!28



12 Coins
! If one out of 12 coins is too light:

❖ 12 possible outcomes
! If we don’t know whether the fake is heavy or 

light:
❖ 24 possible outcomes

! 1 weighing:  3 outcomes
! 3 weighings: 33 = 27 outcomes
! Therefore:  there is enough information in three 

weighings to distinguish between the 24 
possibilities

!29



Lower-bounds by reduction

!30

392 Limitations of Algorithm Power

TABLE 11.1 Problems often used for establishing lower bounds
by problem reduction

Problem Lower bound Tightness

sorting !(n log n) yes
searching in a sorted array !(log n) yes
element uniqueness problem !(n log n) yes
multiplication of n-digit integers !(n) unknown
multiplication of n × n matrices !(n2) unknown

We will establish the lower bounds for sorting and searching in the next sec-
tion. The element uniqueness problem asks whether there are duplicates among n

given numbers. (We encountered this problem in Sections 2.3 and 6.1.) The proof
of the lower bound for this seemingly simple problem is based on a very sophisti-
cated mathematical analysis that is well beyond the scope of this book (see, e.g.,
[Pre85] for a rather elementary exposition). As to the last two algebraic prob-
lems in Table 11.1, the lower bounds quoted are trivial, but whether they can be
improved remains unknown.

As an example of establishing a lower bound by reduction, let us consider
the Euclidean minimum spanning tree problem: given n points in the Cartesian
plane, construct a tree of minimum total length whose vertices are the given
points. As a problem with a known lower bound, we use the element uniqueness
problem. We can transform any set x1, x2, . . . , xn of n real numbers into a set
of n points in the Cartesian plane by simply adding 0 as the points’ y coordinate:
(x1, 0), (x2, 0), . . . , (xn, 0). Let T be a minimum spanning tree found for this set of
points. Since T must contain a shortest edge, checking whether T contains a zero-
length edge will answer the question about uniqueness of the given numbers. This
reduction implies that !(n log n) is a lower bound for the Euclidean minimum
spanning tree problem, too.

Since the final results about the complexity of many problems are not known,
the reduction technique is often used to compare the relative complexity of prob-
lems. For example, the formulas

x . y = (x + y)2 − (x − y)2

4
and x2 = x . x

show that the problems of computing the product of two n-digit integers and
squaring an n-digit integer belong to the same complexity class, despite the latter
being seemingly simpler than the former.

There are several similar results for matrix operations. For example, multi-
plying two symmetric matrices turns out to be in the same complexity class as
multiplying two arbitrary square matrices. This result is based on the observation
that not only is the former problem a special case of the latter one, but also that



Lower-bounds by reduction
! Find a tight lower bound for the problem 

of finding the two closest numbers in a set 
of n real numbers.
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Lower-bounds by reduction
! Find a tight lower bound for the problem 

of finding the two closest numbers in a set 
of n real numbers.

! Hint: use a reduction from the element 
uniqueness problem.

!30
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Classifying Problem 
Complexity
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Tractability
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Tractability
! Is the problem tractable, i.e., is there  a 

polynomial-time (O(p(n)) algorithm that 
solves it?
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Tractability
! Is the problem tractable, i.e., is there  a 

polynomial-time (O(p(n)) algorithm that 
solves it?

! Possible answers:
❖ yes (give examples)
❖ no

‣ because it’s been proved that no algorithm exists at all 
‣ because it’s been proved that any algorithm takes 

exponential time (or worse)
❖ unknown
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Problem Types
! Optimization problem: find a solution that 

maximizes or minimizes some objective function
! Decision problem: answer yes/no to a question
! Many problems have decision and optimization 

versions.
❖ e.g.: traveling salesman problem

optimization: find Hamiltonian cycle of minimum length
decision: find Hamiltonian cycle of length ≤ m

! Decision problems are more convenient for 
formal investigation of their complexity.
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Class P
! The class of decision problems that are 

solvable in O(p(n)) time, where p(n) is a 
polynomial in problem’s input size n

! Examples:
❖ searching
❖ element uniqueness
❖ graph connectivity 
❖ graph acyclicity
❖ primality testing (AKS Primality test, 2002)
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Class NP
! NP (nondeterministic polynomial): class of decision problems 

whose proposed solutions can be verified in polynomial time 
= solvable  by a nondeterministic polynomial algorithm

! A nondeterministic polynomial algorithm is an abstract two-
stage procedure that:

1. generates a random string purported to solve the problem
2. checks whether this solution is correct in polynomial time

By definition, it solves the problem if it’s capable of generating 
and verifying a solution on one of its tries  

! Why this definition?
❖ led to development of the rich theory called “computational 

complexity”
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Example: CNF satisfiability
Problem: is a boolean expression in its conjunctive normal form 
(CNF) satisfiable, i.e., are there values of its variables that makes it 
true?

This problem is in NP.  Nondeterministic algorithm:
1. Guess truth assignment
2. Substitute the values into the CNF formula to see if it evaluates to true

Example: (A ⋁ ¬B ⋁ ¬C) ⋀ (A ⋁ B) ⋀ (¬B ⋁ ¬D ⋁ E) ⋀ (¬D ⋁ ¬E)

Checking phase: O(n)

!37

A B C D E
0 0 0 0 0

…
1 1 1 1 1



What problems are in NP?
! Hamiltonian circuit existence 
! Partition problem: is it possible to partition a set of n 

integers into two disjoint subsets with the same sum?
! Decision versions of TSP, knapsack problem, graph coloring, 

and many other combinatorial optimization problems.  
(Few exceptions including MST, shortest paths)

! All the problems in P can also be solved in this manner 
(but no guessing is necessary), so we have:

P ⊆ NP 

! Big question:  P = NP ?
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NP-Complete Problems
! A decision problem D is NP-complete if it is as hard as any 

problem in NP, i.e.,
1. D is in NP
2. every problem in NP is polynomial-time reducible to D

! Cook’s theorem (1971): CNF-sat is NP-complete
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NP-Complete Problems
! A decision problem D is NP-complete if it is as hard as any 

problem in NP, i.e.,
1. D is in NP
2. every problem in NP is polynomial-time reducible to D

! Cook’s theorem (1971): CNF-sat is NP-complete

!39
(Also know as Cook-Levin Theorem)



NP-Complete Problems (cont.)
! Other NP-complete problems obtained through 

polynomial-time reductions from a known NP-complete 
problem

! Examples:  TSP,  knapsack, partition, graph-coloring and 
hundreds of other problems of combinatorial nature

!40



Knapsack?
! Didn’t we solve this by Dynamic 

Programming?
! For a knapsack of capacity W, and n items, 

how big is the table?       n × W
! What’s the efficiency of the Dynamic 

Programming Algorithm?

!41

A. O(n)
B. O(W)
C. O(nW)

D. O(Wn)
E. None of 

the above
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Knapsack?
! Complexity of Dynamic Programming 

algorithm is in O(nW)
! So why is Knapsack in NP?

!

!42

DEFINITION 1 We say that an algorithm solves a 
problem in polynomial time if its worst-case time 
efficiency belongs to O(p(n)) where p(n) is a polynomial 
of the problem’s input size n.  [Levitin, p. 401]
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P  = NP ?
! P  = NP would imply that every problem in NP, including all NP-

complete problems, could be solved in polynomial time
! If a polynomial-time algorithm for just one NP-complete problem 

is discovered, then every problem in NP can be solved in 
polynomial time, i.e., P  = NP  

! Most (but not all) researchers believe that P ≠ NP , i.e., P is a 
proper subset of NP
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The Status of the P Versus NP Problem
It's one of the fundamental mathematical problems of 
our time, and its importance grows with the rise of 
powerful computers. 
Lance Fortnow 

Communications of the ACM  
Vol. 52 No. 9, Pages 78-86  

November 2009
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The second week of August was an exciting week. On Friday,
August 6, Vinay Deolalikar announced a claimed proof that P
# NP. Slashdotted blogs broke the news on August 7 and 8,
and suddenly the whole world was paying attention. Richard
Lipton's August 15 blog entry at blog@CACM was viewed by
about 10,000 readers within a week. Hundreds of computer
scientists and mathematicians, in a massive Web-enabled
collaborative effort, dissected the proof in an intense attempt
to verify its validity. By the time the New York Times
published an article on the topic on August 16, major gaps had

been identified, and the excitement was starting to subside. The P vs. NP problem withstood
another challenge and remained wide open.

During and following that exciting week many people have asked me to explain the problem and
why it is so important to computer science. "If everyone believes that P is different than NP," I
was asked, "why it is so important to prove the claim?" The answer, of course, is that believing is
not the same as knowing. The conventional "wisdom" can be wrong. While our intuition does tell
us that finding solutions ought to be more difficult than checking solutions, which is what the P vs.
NP problem is about, intuition can be a poor guide to the truth. Case in point: modern physics.

While the P vs. NP quandary is a central problem in computer science, we must remember that a
resolution of the problem may have limited practical impact. It is conceivable that P = NP, but the

Home » Magazine Archive » 2010 » No. 11 » On P, NP, and Computational Complexity » Full Text

≠
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Problem
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Problem
A certain problem can be solved by an 
algorithm whose running time is in O(n lg n). 
Which of the following assertions is true?

A.   The problem is tractable.
B.   The problem is intractable.
C.  It’s impossible to tell. 
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Problem
A certain problem can be solved by an 
algorithm whose running time is in O(n lg n). 
Which of the following assertions is true?

A.   The problem is tractable.
B.   The problem is intractable.
C.  It’s impossible to tell. 

Hint: First, decide whether n lg n is polynomial
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Problem
! Give examples of the following graphs or explain 

why such examples cannot exist:
(a) graph with a Hamiltonian circuit but without an 

Eulerian circuit 
(b) graph with an Eulerian circuit but without a 

Hamiltonian circuit 
(c) graph with both a Hamiltonian circuit and an Eulerian 

circuit 
(d) graph with a cycle that includes all the vertices but with 

neither a Hamiltonian circuit nor an Eulerian circuit  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Unsolvable (by computer) Problem
! Suppose that you could write a program

boolean halts(Program p, Input i); 

   that returns true if p halts on input i, and false if it 
doesn’t. 

! Then I can write 
boolean loopIfHalts(Program p, Input i) { 
    if (halts(p,i)) 
        while (true) ; 
    else 
        return true; 
} 

which loops if p halts on input i, and true if it doesn’t
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! And I can write
boolean testSelf(Program p) {  
    return loopIfHalts(p,p);  
} 

which loops if p halts on p, and answers true 
if p loops.

! What does testSelf(testSelf)do?
➡ suppose that it returns true?  
➡ suppose that it loops?

!49
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! And I can write
boolean testSelf(Program p) {  
    return loopIfHalts(p,p);  
} 

which loops if p halts on p, and answers true 
if p loops.

! What does testSelf(testSelf)do?
➡ suppose that it returns true?  
➡ suppose that it loops?

!49

A contradiction!
Therefore, no program halts can exist.


