Lecture 14: Greedy Algorithms
(slides based on those of Mark Jones)

Andrew P. Black

Department of Computer Science
Portland State University
Greedy Algorithms

✧ Solves an optimization problem by breaking it into a sequence of steps, and making the best choice at each step.

✧ Key idea: a series of locally-optimal choices yields a globally-optimal choice.

✧ Not all problems can be solved by Greedy Algorithms; if the problem forms a matroid, then it can be so solved.
Example: making change
Example: making change

What is the smallest number of US coins (denominations 1¢, 5¢, 10¢ and 25¢) that can be used to make up 41¢?
Example: making change

- What is the smallest number of US coins (denominations 1¢, 5¢, 10¢ and 25¢) that can be used to make up 41¢?
 - Solve the problem using a Greedy Algorithm
Example: making change

✦ What is the smallest number of US coins (denominations 1¢, 5¢, 10¢ and 25¢) that can be used to make up 41¢?
 ✦ Solve the problem using a Greedy Algorithm
 ✦ Numeric answer
Example: making change

- What is the smallest number of US coins (denominations 1¢, 5¢, 10¢ and 25¢) that can be used to make up 41¢?
 - Solve the problem using a Greedy Algorithm
 - Numeric answer

- Now suppose that the US had a 20¢ coin (as does the UK, for example). Can you still solve the problem using a Greedy Algorithm?
Example: making change

✧ What is the smallest number of US coins (denominations 1¢, 5¢, 10¢ and 25¢) that can be used to make up 41¢?
 ✧ Solve the problem using a Greedy Algorithm
 ✧ Numeric answer

✧ Now suppose that the US had a 20¢ coin (as does the UK, for example). Can you still solve the problem using a Greedy Algorithm?

A. Yes
Example: making change

✧ What is the smallest number of US coins (denominations 1¢, 5¢, 10¢ and 25¢) that can be used to make up 41¢?
 ✧ Solve the problem using a Greedy Algorithm
 ✧ Numeric answer

✧ Now suppose that the US had a 20¢ coin (as does the UK, for example). Can you still solve the problem using a Greedy Algorithm?

A. Yes
B. No
Example: Knapsack problem

<table>
<thead>
<tr>
<th>item</th>
<th>weight</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>$25</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>$20</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>$15</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>$40</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>$50</td>
</tr>
</tbody>
</table>

, capacity $W = 6$.

Exercises 8.4

1. a. Apply the bottom-up dynamic programming algorithm to the following instance of the knapsack problem:

2. a. Write a pseudocode of the bottom-up dynamic programming algorithm for the knapsack problem.

3. For the bottom-up dynamic programming algorithm for the knapsack problem, prove that

4. a. True or false: A sequence of values in a row of the dynamic programming table for an instance of the knapsack problem is always nondecreasing.

b. True or false: A sequence of values in a column of the dynamic programming table for an instance of the knapsack problem is always nondecreasing?

5. Apply the memory function method to the instance of the knapsack problem given in Problem 1. Indicate the entries of the dynamic programming table that are:

 (i) never computed by the memory function method on this instance;

 (ii) retrieved without a recomputation.

29

4
Example: Knapsack problem

This is the instance of the Knapsack problem that we solved previously:

<table>
<thead>
<tr>
<th>item</th>
<th>weight</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>$25</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>$20</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>$15</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>$40</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>$50</td>
</tr>
</tbody>
</table>

, capacity $W = 6$.
Example: Knapsack problem

✧ This is the instance of the Knapsack problem that we solved previously:

<table>
<thead>
<tr>
<th>item</th>
<th>weight</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>$25</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>$20</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>$15</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>$40</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>$50</td>
</tr>
</tbody>
</table>

, capacity $W = 6$.

✧ What is the “greedy solution”?

A. Item 5
B. Items 3 & 5
C. Items 2 & 4
D. Items 1 & 5
E. None of the above
Example: Knapsack problem

This is the instance of the Knapsack problem that we solved previously:

<table>
<thead>
<tr>
<th>item</th>
<th>weight</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>$25</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>$20</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>$15</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>$40</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>$50</td>
</tr>
</tbody>
</table>

, capacity $W = 6$.

What is the “greedy solution”

Is this optimal?

A. Yes

B. No
Example: Knapsack problem

- This is the instance of the Knapsack problem that we solved previously:

<table>
<thead>
<tr>
<th>item</th>
<th>weight</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>$25</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>$20</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>$15</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>$40</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>$50</td>
</tr>
</tbody>
</table>

- What is the “greedy solution”
- Is this optimal?
- Will a greedy algorithm always work?
 - Suppose that $W = 5? W = 3?$

Suppose that $W = 5? W = 3?$
Example: Knapsack problem

This is the instance of the Knapsack problem that we solved previously:

<table>
<thead>
<tr>
<th>item</th>
<th>weight</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>$25</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>$20</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>$15</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>$40</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>$50</td>
</tr>
</tbody>
</table>

, capacity $W = 6$.

- What is the “greedy solution”
- Is this optimal?
- Will a greedy algorithm always work?
 - Suppose that $W = 5$? $W = 3$?

A. Yes B. No
Example: Knapsack problem

✦ This is the instance of the Knapsack problem that we solved previously:

<table>
<thead>
<tr>
<th>item</th>
<th>weight</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>$25</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>$20</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>$15</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>$40</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>$50</td>
</tr>
</tbody>
</table>

Suppose that $W = 5$? $W = 3$?

✦ What is the “greedy solution”
✦ Is this optimal?
✦ Will a greedy algorithm always work?

Exercises 8.4

1. a. Apply the bottom-up dynamic programming algorithm to the following instance of the knapsack problem:

<table>
<thead>
<tr>
<th>item</th>
<th>weight</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>$25</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>$20</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>$15</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>$40</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>$50</td>
</tr>
</tbody>
</table>

, capacity $W = 6$.

b. How many different optimal subsets does the instance of part (a) have?

c. In general, how can we use the table generated by the dynamic programming algorithm to tell whether there is more than one optimal subset for the knapsack problem’s instance?

2. a. Write a pseudocode of the bottom-up dynamic programming algorithm for the knapsack problem.

b. Write a pseudocode of the algorithm that finds the composition of an optimal subset from the table generated by the bottom-up dynamic programming algorithm for the knapsack problem.

3. For the bottom-up dynamic programming algorithm for the knapsack problem, prove that

a. its time efficiency is in $\Theta(nW)$.

b. its space efficiency is in $\Theta(nW)$.

c. the time needed to find the composition of an optimal subset from a filled dynamic programming table is in $O(n + W)$.

4. a. True or false: A sequence of values in a row of the dynamic programming table for an instance of the knapsack problem is always nondecreasing.

b. True or false: A sequence of values in a column of the dynamic programming table for an instance of the knapsack problem is always nondecreasing?

5. Apply the memory function method to the instance of the knapsack problem given in Problem 1. Indicate the entries of the dynamic programming table that are: (i) never computed by the memory function method on this instance; (ii) retrieved without a recomputation.
Huffman Coding
The Coding Problem:

✦ A data file contains 100,000 “characters” each of which is either an a, b, c, d, e, or f

✦ Using three bits for each character takes:

\[3 \times 100,000 = 300,000 \] bits

✦ How could we do better?
The Coding Problem:

✦ A data file contains 100,000 “characters” each of which is either an a, b, c, d, e, or f

✦ Using three bits for each character takes:

$$3 \times 100,000 = 300,000$$ bits

✦ How could we do better?

<table>
<thead>
<tr>
<th>Letter</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>000</td>
</tr>
<tr>
<td>b</td>
<td>001</td>
</tr>
<tr>
<td>c</td>
<td>010</td>
</tr>
<tr>
<td>d</td>
<td>011</td>
</tr>
<tr>
<td>e</td>
<td>100</td>
</tr>
<tr>
<td>f</td>
<td>101</td>
</tr>
</tbody>
</table>
Using Frequency Information:

- **Variable length coding** gives shorter codes to more frequent letters.

- **Encoded size:**
 \[
 (45 \times 1 + (13+12+16+9) \times 2 + 5 \times 3) \times 1,000
 = 160,000
 \]

- A saving of over 46%

- Is there a flaw?
Using Frequency Information:

- **Variable length coding** gives shorter codes to more frequent letters.

- Encoded size:
 \[(45 \times 1 + (13+12+16+9) \times 2 + 5 \times 3) \times 1,000\]
 \[= 160,000\]

- A saving of over 46%

- Is there a flaw?
 A. Yes
 B. No
Unique Decoding:

✦ What string does the code 10000011010 represent?

✦ One reading:
 100 0 00 11 01 0
 f a d e b a

✦ Another reading:
 10 00 0 01 10 10
 c d a b c c

✦ Oh dear: we’ve lost too much of the information that was in the original!

<table>
<thead>
<tr>
<th>Letter</th>
<th>Frequency</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>45,000</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>13,000</td>
<td>01</td>
</tr>
<tr>
<td>c</td>
<td>12,000</td>
<td>10</td>
</tr>
<tr>
<td>d</td>
<td>16,000</td>
<td>00</td>
</tr>
<tr>
<td>e</td>
<td>9,000</td>
<td>11</td>
</tr>
<tr>
<td>f</td>
<td>5,000</td>
<td>100</td>
</tr>
</tbody>
</table>
Use a Prefix-free Code

- Prefix(-free) property:
 no codeword is a prefix of another codeword

- Encoded size:
 \[
 (45 \times 1 \\
 + (13+12+16) \times 3 \\
 + (9 + 5) \times 4) \times 1,000 \\
 = 224,000
 \]

- Still reduce size by \(~25\%\)

- And this time, it can be decoded!
Use a Prefix-free Code

- Prefix(-free) property: no codeword is a prefix of another codeword

- Encoded size:
 \[
 (45 \times 1 + (13+12+16) \times 3 + (9 + 5) \times 4) \times 1,000 = 224,000
 \]

- Still reduce size by ~25%

- And this time, it can be decoded!

<table>
<thead>
<tr>
<th>Letter</th>
<th>Frequency</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>45,000</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>13,000</td>
<td>101</td>
</tr>
<tr>
<td>c</td>
<td>12,000</td>
<td>100</td>
</tr>
<tr>
<td>d</td>
<td>16,000</td>
<td>111</td>
</tr>
<tr>
<td>e</td>
<td>9,000</td>
<td>1101</td>
</tr>
<tr>
<td>f</td>
<td>5,000</td>
<td>1100</td>
</tr>
</tbody>
</table>
Prefix Coding & Decoding:

- A *prefix code* can achieve compression that is optimal among any character code

- Code can be represented by a tree:
Prefix Coding & Decoding:

* A prefix code can achieve compression that is optimal among any character code

* Code can be represented by a tree:

<table>
<thead>
<tr>
<th>Letter</th>
<th>Frequency</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>45,000</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>13,000</td>
<td>101</td>
</tr>
<tr>
<td>c</td>
<td>12,000</td>
<td>100</td>
</tr>
<tr>
<td>d</td>
<td>16,000</td>
<td>111</td>
</tr>
<tr>
<td>e</td>
<td>9,000</td>
<td>1101</td>
</tr>
<tr>
<td>f</td>
<td>5,000</td>
<td>1100</td>
</tr>
</tbody>
</table>
For any given coding tree T, the number of bits required to code a message is:

$$
cost(T) = \sum_{c \in C} freq(c) \cdot depth_T(c)
$$

<table>
<thead>
<tr>
<th>Letter</th>
<th>Frequency</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>45,000</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>13,000</td>
<td>101</td>
</tr>
<tr>
<td>c</td>
<td>12,000</td>
<td>100</td>
</tr>
<tr>
<td>d</td>
<td>16,000</td>
<td>111</td>
</tr>
<tr>
<td>e</td>
<td>9,000</td>
<td>1101</td>
</tr>
<tr>
<td>f</td>
<td>5,000</td>
<td>1100</td>
</tr>
</tbody>
</table>
Building a Huffman Coding Tree

- We can use a table to avoid doing a calculation more than once:

 initialize an empty priority queue, Q
 add a leaf node to Q for each character

 while (|Q| > 1) do
 l = extractMin(Q)
 r = extractMin(Q)
 t = new tree node
 with left=l, right=r, freq=l.freq+r.freq
 insert t into Q
 return extractMin(Q)

- Complexity?
- Complexity for computing frequencies?
Building a Huffman Coding Tree

✧ We can use a table to avoid doing a calculation more than once:

initialize a empty priority queue, Q
add a leaf node to Q for each character

while ($|Q| > 1$) do
 $l = \text{extractMin}(Q)$
 $r = \text{extractMin}(Q)$
 $t = \text{new tree node}$
 with left=l, right=r, freq=$l.freq+r.freq$
 \quad \text{insert } t \text{ into } Q$

return $\text{extractMin}(Q)$

✧ Complexity?
✧ Complexity for computing frequencies?
We can use a table to avoid doing a calculation more than once:

initialize a empty priority queue, Q
add a leaf node to Q for each character
while (|Q|>1) do
 l = extractMin(Q)
 r = extractMin(Q)
 t = new tree node
 with left=l, right=r, freq=l.freq+r.freq
 insert t into Q
return extractMin(Q)

Complexity?
Complexity for computing frequencies?
Example:

5 f
9 e
12 c
13 b
16 d
45 a
Example:
Example:
Example:
Example:
Example:
“Optimal Subproblems”

- At each iteration, our task is to find an optimal code for $|Q|$ items
- We pick the pair of characters that have the lowest frequencies
- We reduce the original problem to the task of finding an optimal code for $|Q|-1$ items
- We can prove that the resulting coding scheme is indeed optimal
Huffman Trees (2nd Example)

Build the optimal Huffman code for the following set of frequencies:

- a: 1
- b: 1
- c: 2
- d: 3
- e: 5
- f: 8
- g: 13
- h: 21
Correctness of Huffman Code

Proof Idea

✦ Step 1: Show that this problem satisfies the greedy choice property, that is, if a greedy choice is made by Huffman's algorithm, an optimal solution remains possible.

✦ Step 2: Show that this problem has an optimal substructure property, that is, an optimal solution to Huffman's algorithm contains optimal solutions to subproblems.

✦ Step 3: Conclude correctness of Huffman's algorithm using step 1 and step 2.
Lemma: Greedy Choice Property

Let c be an alphabet in which each character c has frequency $f[c]$. Let x and y be two characters in C having the lowest frequencies. Then there exists an optimal prefix code for C in which the codewords for x and y have the same length and differ only in the last bit.
Lemma: Optimal Substructure Property

- Let T be a full binary tree representing an optimal prefix code over an alphabet C, where each $c \in C$ has frequency f_c.
- Consider any two characters x and y that appear as sibling leaves in the tree T.
- Consider alphabet $C' = C - \{x, y\} \cup \{z\}$ with frequency $f_z = f_x + f_y$, and label with z the parent of x and y.
- Then $T' = T - \{x, y\}$ represents an optimal code for alphabet C'.
T represents an optimal prefix code for alphabet C

x and y appear as sibling leaves

$T = \begin{array}{c}
\text{d} \\
\text{f}_{x} + f_{y} \\
\text{x} \quad \text{f}_{x} \\
\text{y} \quad \text{f}_{y}
\end{array}$
T' represents an optimal prefix code for alphabet C'

x and y replaced by z
Priority Queues
Priority Queues

- A Priority Queue is a data structure optimized for finding and removing the element with the max (or min) key. It has operations to:
 - find the highest priority element (with max key)
 - delete the highest priority element
 - add a new item
- We want to avoid insertion sort at each step
 - Complexity of insertion would be $O(n)$
- We use a *Heap* (Levitin §6.4) — a particular kind of balanced tree.
The ideal:

- O(log n) complexity
- Everybody happy

![Smiley face]
The ideal:

- O(log n) complexity
- Everybody happy

The (possible) reality:
The ideal:

- $O(\log n)$ complexity
- Everybody happy

The (possible) reality:
The ideal:

- O(log n) complexity
- Everybody happy

The (possible) reality:
The ideal:

- \(O(\log n) \) complexity
- Everybody happy

The (possible) reality:
The ideal:

- O(log n) complexity
- Everybody happy

The (possible) reality:
The ideal:

- \(O(\log n) \) complexity
- Everybody happy

The (possible) reality:
The ideal:

- O(log n) complexity
- Everybody happy

The (possible) reality:

Unbalanced!
The ideal:

- \(O(\log n) \) complexity
- Everybody happy

![Smiley face]

The (possible) reality:

- \(O(n) \) complexity
- Could have used lists!

Unbalanced!
The ideal:

- O(log n) complexity
- Everybody happy

The (possible) reality:

- O(n) complexity
- Could have used lists!

Unbalanced!
What does “balanced” mean?

Perhaps:

size $L = size R$
Too constraining!

- A balanced binary tree of height \(h \) has exactly \(n_h \) elements, where:

\[
n_{-1} = 0 \quad \text{and} \quad n_{(h+1)} = 1 + 2 \ n_h;
\]

- So if \(T \) is perfectly balanced, then:

\[
\text{size } T \in \{0, 1, 3, 7, 15, 31, 63, \ldots, 2^{h-1}, \ldots\};
\]

- There is no perfectly balanced tree with any other number of elements.
A perfectly balanced tree:
A perfectly balanced tree:

Think of this as an empty frame that we can fill with elements ...
A perfectly balanced tree:

Think of this as an empty frame that we can fill with elements ...
A perfectly balanced tree:

Think of this as an empty frame that we can fill with elements ...
A perfectly balanced tree:

Think of this as an empty frame that we can fill with elements ...
A perfectly balanced tree:

Think of this as an empty frame that we can fill with elements ...
A perfectly balanced tree:

Think of this as an empty frame that we can fill with elements ...
A perfectly balanced tree:

Think of this as an empty frame that we can fill with elements ...

... filling the rows up one at a time makes the tree as balanced as possible!
Number the nodes — in binary!

```
\begin{array}{cccc}
1000 & 1001 & 1010 & 1011 \\
0100 & 0101 & 0110 & 0111 \\
0010 & 0011 & 0000 & 0001 \\
0001 & 0010 & 0011 & 0100 \\
0110 & 0111 & 1000 & 1001 \\
1100 & 1101 & 1110 & 1111 \\
\end{array}
```
Number the nodes — in binary!

There is a common pattern at each node:
Number the nodes — in binary!

There is a common pattern at each node:

- Multiply by 2
- Multiply by 2 and add 1
Embed a tree in an array

- A tree with \(t < 2^n \) elements can be implemented using an array \(a \) and variable \(t \):
 - elements \(a[1..t] \), (\(a[t+1 .. 2^n-1] \) are empty)
 - the root is held in position \(a[1] \)
 - left child of node \(a[i] \) is \(a[2i] \)
 - right child of node \(a[i] \) is \(a[2i+1] \)
 - parent of node \(a[i] \) is \(a[\lfloor i/2 \rfloor] \)

- True or False: all elements of the array with index \(\geq 2^{n-1} \) represent leaf nodes
Too good to be true?

✧ So now we can build (almost) perfectly balanced binary trees with:
 ✸ the smallest possible height for any number of elements stored;
 ✸ O(1) complexity for addition.

✧ Where’s the flaw?
Out of order!

Building a tree in this way does not give binary search trees:

We cannot preserve the binary search tree invariant and retain $O(1)$ time for insertion.
Properties of a Heap:

1. Shape Property:
 The binary tree is **essentially complete**, that is, all levels are filled except some of the rightmost leaves may be missing in the last level.
Properties of a Heap:

2. Parental dominance Property:
 The key in each node is greater than or equal to the keys of its children. So, all values in L are \(\leq n \), and all values in R are also \(\leq n \)
Inserting an element:

The new element should be added here (takes O(1) time)
Inserting an element:

If $a \leq b$, then this is a heap, and we are done!

New value, a
Inserting an element:

These nodes might not satisfy the parental dominance property!

But if $a > b$, then we need to do some work to restore the heap property.
Inserting an element:

These nodes might not satisfy the parental dominance property!

But if $a > b$, then we need to do some work to restore the heap property.

Start by swapping a and b ...

48
Inserting an element:

These nodes might not satisfy the parental dominance property!

Repeat until we’re done.

Takes $O(\log n)$ time: we have to worry about the nodes on only one path in the tree.
Implementation:

heapInsert(value) {
 size ← size + 1
 int i ← size;
 while (i>1 ∧ h[parent(i)]<value) do {
 h[i] ← h[parent(i)]
 i ← parent(i)
 }
 h[i] ← value;
}

h[] is an array containing the heap elements;
size is the number of entries in the heap that have been used.
Removing maximal element:

Finding the maximum element is easy! (takes O(1) time)
Removing maximal element:

We can fill the gap with the last value in the array (takes O(1) time)
Removing maximal element:

We can fill the gap with the last value in the array (takes O(1) time)
Removing maximal element:

We can fill the gap with the last value in the array (takes $O(1)$ time)
Removing maximal element:

We can fill the gap with the last value in the array (takes O(1) time)

But now this node might not satisfy the dominance property!
Removing maximal element:

If \(a > b\) and \(a > c\), then this is a heap, and we are done!
Removing maximal element:

Otherwise, suppose \(b > a\) and \(b > c\).

Then we can swap \(a\) with \(b\) ...
Removing maximal element:

But now this node might not satisfy the heap property!

Repeat until we’re done.

Takes $O(\log n)$ time: we have to worry about the nodes on only one path in the tree.
Implementation:

heapExtractMax() {
 size ← size - 1
 int max ← h[1];
 h[1] ← h[size];
 heapify(1);
 return max;
}
Implementation:

heapify(i) {
 l ← left(i); r ← right(i);
 largest ← i;
 if (l≤size) {
 if (h[l]>h[i])
 largest ← l;
 if (r≤size ∧ h[r]>h[largest])
 largest ← r;
 }
 if (largest≠i) {
 h.swap(i, largest);
 heapify(largest);
 }
}

Priority queues:

✧ A priority queue is a variation on the queue data structure with a “highest-priority first out” policy.

✧ More concretely, a priority queue supports operations to:
 ✧ Add an element, and
 ✧ Remove highest priority element.

✧ Heaps can be used as an implementation of priority queues—one of the most common uses of heaps in practice.
Building a heap:

Suppose we start with an arbitrary array of values.

Run `heapify` on each of the interior nodes, starting at the bottom, and working back to the root. Now we have a heap!
Implementation:

```java
buildHeap() {
    size ← h.length;
    for i from size/2 downto 1 do {
        heapify(i);
    }
}
```
Complexity:

To a first approximation: there are $O(n)$ calls to heapify, and $O(\log n)$ steps for each such call, giving a total:

$O(n \log n)$
Complexity:

- To a first approximation: there are $O(n)$ calls to \textit{heapify}, and $O(\log n)$ steps for each such call, giving a total:

 $$O(n \log n)$$

- But we can do better than this!
- Many of the calls to \textit{heapify} involve trees with heights that are $< \log n$.

The total cost of buildHeap is:

\[\sum_{h=0}^{\left\lfloor \lg n \right\rfloor} \left\lceil \frac{n}{2^h + 1} \right\rceil O(h) \]

Simplifying:

\[\sum_{h=0}^{\left\lfloor \lg n \right\rfloor} n \frac{1}{2^h + 1} O(h) = O \left(n \sum_{h=0}^{\left\lfloor \lg n \right\rfloor} \frac{h}{2^h + 1} \right) \]

\[\leq O \left(n \sum_{h=0}^{\infty} \frac{h}{2^h} \right) = O(n) \]
The total cost of buildHeap is:

\[
\sum_{h=0}^{\lceil \lg n \rceil} \left\lfloor \frac{n}{2^{h+1}} \right\rfloor O(h)
\]

trees of height h

Simplifying:

\[
\sum_{h=0}^{\lceil \lg n \rceil} \frac{n}{2^{h+1}} O(h) = O \left(n \sum_{h=0}^{\lceil \lg n \rceil} \frac{h}{2^{h+1}} \right)
\]

\[
\leq O \left(n \sum_{h=0}^{\infty} \frac{h}{2^h} \right) = O(n)
\]
The total cost of buildHeap is:

\[
\sum_{h=0}^{\lfloor \lg n \rfloor} \left\lfloor \frac{n}{2^h + 1} \right\rfloor O(h)
\]

trees of height h

Simplifying:

\[
\sum_{h=0}^{\lfloor \lg n \rfloor} \frac{n}{2^h + 1} O(h) = O \left(n \sum_{h=0}^{\lfloor \lg n \rfloor} \frac{h}{2^h + 1} \right)
\]

\[
\leq O \left(n \sum_{h=0}^{\infty} \frac{h}{2^h} \right) = O(n)
\]
The total cost of buildHeap is:

\[
\sum_{h=0}^{\lceil \log n \rceil} \left\lfloor \frac{n}{2^{h+1}} \right\rfloor O(h)
\]

trees of height h

cost of heapify on trees of height h

Simplifying:

\[
\sum_{h=0}^{\lceil \log n \rceil} \frac{n}{2^{h+1}} O(h) = O \left(n \sum_{h=0}^{\lceil \log n \rceil} \frac{h}{2^{h+1}} \right)
\]

\[
\leq O \left(n \sum_{h=0}^{\infty} \frac{h}{2^h} \right) = O(n)
\]
The total cost of buildHeap is:

\[
\sum_{h=0}^{\lceil \lg n \rceil} \left(\frac{n}{2^{h+1}} \right) O(h)
\]

trees of height h

cost of heapify on trees of height h

Simplifying:

\[
\sum_{h=0}^{\lceil \lg n \rceil} \frac{n}{2^{h+1}} O(h) = O \left(n \sum_{h=0}^{\lceil \lg n \rceil} \frac{h}{2^{h+1}} \right)
\]

\leq O \left(n \sum_{h=0}^{\infty} \frac{h}{2^h} \right) = O(n)
The total cost of buildHeap is:

\[\sum_{h=0}^{\lceil \log n \rceil} \frac{n}{2^h + 1} O(h) \]

- # trees of height h
- cost of heapify on trees of height h

Simplifying:

\[\sum_{h=0}^{\lceil \log n \rceil} \frac{n}{2^h + 1} O(h) = O \left(n \sum_{h=0}^{\lceil \log n \rceil} \frac{h}{2^h + 1} \right) \]

\[\leq O \left(n \sum_{h=0}^{\infty} \frac{h}{2^h} \right) = O(n) \]

converges to 2
The total cost of buildHeap is:

\[
\sum_{h=0}^{\lfloor \log n \rfloor} \left\lfloor \frac{n}{2^{h+1}} \right\rfloor O(h)
\]

trees of height h
cost of heapify on trees of height h

Simplifying:

\[
\sum_{h=0}^{\lfloor \log n \rfloor} \frac{n}{2^{h+1}} O(h) = O \left(n \sum_{h=0}^{\lfloor \log n \rfloor} \frac{h}{2^{h+1}} \right)
\]

converges to 2

\[
\leq O \left(n \sum_{h=0}^{\infty} \frac{h}{2^h} \right) = O(n)
\]
Spanning Trees
Spanning Trees

If e is a minimum-weight edge in a connected graph, then e must be an edge in at least one minimum spanning tree

True or False?
Spanning Trees

If e is a minimum-weight edge in a connected graph, then e must be an edge in all minimum spanning trees of the graph

True or False?
Spanning Trees

- If every edge in a connected graph G has a distinct weight, then G must have exactly one minimum spanning tree.

- True or False?
Kruskal’s Algorithm
Building bridges:

- Suppose that we want to link a group of \(n \) small islands together with bridges.

- There will be many possible ways to do this, each corresponding to a connected graph, with the islands as vertices and bridges as edges.

- What is the minimum number of bridges that we will need to build?
Spanning trees:

A **spanning tree** T of a connected graph $G = (V,E)$ is a subgraph of G that is:

- connected;
- acyclic;
- includes all of V as vertices.
Spanning trees:

- A **spanning tree** T of a connected graph $G = (V,E)$ is a subgraph of G that is:
 - connected;
 - acyclic;
 - includes all of V as vertices.

![Diagram of a spanning tree](image)
Spanning trees:

A spanning tree T of a connected graph $G = (V, E)$ is a subgraph of G that is:

- connected;
- acyclic;
- includes all of V as vertices.
Spanning trees:

A spanning tree T of a connected graph $G = (V,E)$ is a subgraph of G that is:

- connected;
- acyclic;
- includes all of V as vertices.

Any spanning tree has $|V| - 1$ edges.
Growing a forest:

- Find a spanning tree for connected graph $G=(V,E)$:
 - partition V into $|V|$ singleton sets of the form $\{v\}$.
 - let E_T be an empty set of edges.
 - for each edge (u,v) in E:
 - let S_u be the set containing u
 - let S_v be the set containing v
 - if $S_u \neq S_v$, then
 - replace S_u and S_v with $S_u \cup S_v$
 - add (u,v) to E_T
 - return (V, E_T) as the spanning tree

- We start with $|V|$ sets ...
 - ... we end up with just 1 set.
- Hence: $|V|−1$ unions, $|V|−1$ edges added to E_T.
Calculating connected components:

What if $G=(V,E)$ is not connected?

- partition V into $|V|$ singleton sets of the form $\{v\}$.
- let E_T be an empty set of edges.
- for each edge (u,v) in E:
 - let S_u be the set containing u
 - let S_v be the set containing v
 - if $S_u \neq S_v$, then
 - replace S_u and S_v with $S_u \cup S_v$
 - add (u,v) to E_T

We end up with c distinct sets S_u, where c is the number of connected components of G;

E_T is a spanning forest for G, with $|V| - c$ edges.

NB: exactly the same algorithm as before, but repeated for convenience!
Union-find:

The operations we need are:

- Make a singleton set;
- Test if two sets are equal;
- Union two sets together.

There is a simple data structure that we can use to implement these operations.
Implementation:

- To make a singleton set:
- To test if two sets are the same:
 - Test if the representatives are the same.
- To merge two sets:
Complexity:

- A sequence of m operations can take $\Theta(m^2)$ time (amortized time per operation is $\Theta(m)$)

- More sophisticated variations are possible, with better complexity bounds.

- A tree based approach
 - Optimization heuristics:
 - Union by rank
 - Path compression

- See Levitin §9.2 or CLRS Chapter 21 for more details.
Quick Union:

- Uses Tree-based representation of sets
 - root of tree used as representative of set

Tree representing \{1, 4, 5, 2\} and \{3, 6\}

After union(5,6)
Path Compression

- Amortized cost can be reduced by updating pointers to point directly to the root when they are queried.
- See Levitin §9.2 or CLRS Chapter 21 for more details.
Kruskal’s Algorithm
Growing a tree:

Suppose that we have a connected graph \(G=(V, E) \) and pick an arbitrary vertex \(r \in V \):

\[
\text{let } W \leftarrow \{r\}, \quad E_T \leftarrow \text{empty set};
\]

\[
\text{while } (W \neq V) \text{ do } \{ \\
\quad \text{find an edge } (u,v) \text{ with } u \in W \text{ and } v \notin W; \\
\quad W \leftarrow W \cup \{v\}; \\
\quad E_T \leftarrow E_T \cup \{(u,v)\}; \\
\}
\]
Growing a tree:

Suppose that we have a connected graph $G=(V, E)$ and pick an arbitrary vertex $r \in V$:

```
let $W \leftarrow \{r\}$, $E_T \leftarrow$ empty set;

while ($W \neq V$) do {
    find an edge $(u, v)$ with $u \in W$ and $v \in W$;
    $W \leftarrow W \cup \{v\}$;
    $E_T \leftarrow E_T \cup \{(u, v)\}$;
}
```

How many times will this loop execute?
Growing a tree:

Suppose that we have a connected graph $G=(V, E)$ and pick an arbitrary vertex $r \in V$:

```
let W ← \{r\}, E_T ← \emptyset;

while (W ≠ V) do {
    find an edge (u,v) with u \in W and v \notin W;
    W ← W ∪ \{v\};
    E_T ← E_T ∪ \{(u,v)\};
}
```

Invariant: (W, E_T) is a connected, acyclic subgraph of G.

How many times will this loop execute?
Growing a tree:

Suppose that we have a connected graph $G=(V, E)$ and pick an arbitrary vertex $r \in V$:

let $W \leftarrow \{r\}$, $E_T \leftarrow$ empty set;

while ($W \neq V$) do {
 find an edge (u,v) with $u \in W$ and $v \notin W$;
 $W \leftarrow W \cup \{v\}$;
 $E_T \leftarrow E_T \cup \{(u,v)\}$;
}

Invariant: (W, E_T) is a connected, acyclic subgraph of G

There must always be such an edge, otherwise G would not be connected.

How many times will this loop execute?
Growing a tree:

Suppose that we have a connected graph $G = (V, E)$ and pick an arbitrary vertex $r \in V$:

\[
\text{let } W \leftarrow \{r\}, \ E_T \leftarrow \text{empty set};
\]
\[
\text{while } (W \neq V) \text{ do } \{
\quad \text{find an edge } (u,v) \text{ with } u \in W \text{ and } v \notin W;
\quad W \leftarrow W \cup \{v\};
\quad E_T \leftarrow E_T \cup \{(u,v)\};
\}
\]

Invariant: (W, E_T) is a connected, acyclic subgraph of G

There must always be such an edge, otherwise G would not be connected.

We add a total of $|V| - 1$ edges to E_T

How many times will this loop execute?
Minimum Spanning Trees
To link a group of \(n \) small islands together with bridges, we will need to build at least \((n-1)\) bridges; any spanning tree will do for this.

But now suppose that we want to minimize the total span of all the bridges as well ... How should we proceed?
Minimum spanning trees:

- To take account of the distances between the islands, we need to use a labeled, or weighted graph.

![Graph with weights 3, 4, and 5 on the edges.]

- A *minimum spanning tree* (MST) is a spanning tree that minimizes the total of the weights on its edges.

- Not all spanning trees have this property.
The MST problem:

Suppose that we have a connected, undirected graph $G=(V,E)$, with a numerical weighting $w(u,v)$ for each edge (u,v).

Problem: Find an acyclic subset $T \subseteq E$ that connects all of the vertices in V, and minimizes:

$$\sum \{w(u,v) \mid (u,v) \in T\}$$

Solution: We will look for an algorithm of the form:

$$E_T \leftarrow \text{empty set of edges}$$

while (E$_T$ is not a spanning tree)

add an edge to E_T

At each stage we will ensure that E_T is a subset of a MST.

Obviously true when we start ... the trick is to ensure that the invariant is preserved when we add an element ...
Greedy Choice

Whenever we add an edge, let’s make the Greedy choice:

- add the edge with the lowest weight that does not form a cycle
- Edges that do form a cycle are not needed in the spanning tree

Does making the Greedy choice ever add an edge that we don't need?
A key result:

Suppose that we partition V into two sets (a “cut”), and that none of the edges in E_T crosses between the two sets (the cut “respects” E_T).

Suppose also that (u,v) is an edge that crosses between the two halves, and that no other edge that crosses has lower weight — (u,v) is a “light edge”.

Claim: $E_T \cup \{(u,v)\}$ is a subset of a minimum spanning tree: (u,v) is “safe” for E_T.
Proof:
Proof:

Edges in E_T
Proof:

Edges in E_T

Edges in T

u

v

cut
Proof:

E_T is a subset of some minimum spanning tree T.
Proof:

- E_T is a subset of some minimum spanning tree T.
- Because u and v are on opposite sides, there is an edge e in T that crosses the cut.
Proof:

- E_T is a subset of some minimum spanning tree T.
- Because u and v are on opposite sides, there is an edge e in T that crosses the cut.
Proof:

- E_T is a subset of some minimum spanning tree T.
- Because u and v are on opposite sides, there is an edge e in T that crosses the cut.
- By assumption weight of $(u,v) \leq$ the weight of e.
Proof:

- E_T is a subset of some minimum spanning tree T.
- Because u and v are on opposite sides, there is an edge e in T that crosses the cut.
- By assumption weight of $(u,v) \leq$ the weight of e.
- So if we replace e with (u,v), we get a minimum spanning tree ... which contains $E_T \cup \{(u,v)\}$.
Proof:

- E_T is a subset of some minimum spanning tree T.
- Because u and v are on opposite sides, there is an edge e in T that crosses the cut.
- By assumption weight of $(u,v) \leq$ the weight of e.
- So if we replace e with (u,v), we get a minimum spanning tree ... which contains $E_T \cup \{(u,v)\}$.
Proof:

✧ E_T is a subset of some minimum spanning tree T.
✧ Because u and v are on opposite sides, there is an edge e in T that crosses the cut.
✧ By assumption weight of $(u,v) \leq$ the weight of e.
✧ So if we replace e with (u,v), we get a minimum spanning tree ... which contains $E_T \cup \{(u,v)\}$.
Corollary:

✦ Suppose that:
 - C is a connected component in the forest (V, E_T);
 - (u,v) is a light edge connecting C to some other component in G.

✦ Then (u,v) is safe for E_T.

✦ Follows directly by using a cut to separate the vertices in C from the vertices outside.

✦ Requiring C to be a connected component of (V, E_T) ensures that no edge in E_T crosses the cut.
Kruskal’s algorithm:

Given a connected graph G=(V, E):

\[E_T \leftarrow \text{empty set of edges} \]

for each v in V

make a singleton set \{v\}

sort the edges of E by nondecreasing weight

for each edge (u,v) in E

if \(S_u \neq S_v \), then

replace \(S_u \) and \(S_v \) with \(S_u \cup S_v \)

add (u,v) to \(E_T \)

Complexity is \(O(|E| \log |E|) \).

(With our simple union-find, more like \(O(|E|^2) \))
How does this work?

Suppose that C and D are the two connected components in the forest \((V, E_T)\) that are connected by an edge \((u, v)\).

Then \((u, v)\) must have the least weight of any edge between C and D (otherwise C and D would have already been connected).
Your turn!

Apply Kruskal’s algorithm to this graph:
Your turn!

Apply Kruskal’s algorithm to this graph:

```
Tree edges               List of edges (sorted by weight)
bc   de   bd   cd   ab   ad   ce
b      c      1
  1      3
5      4
6      6
5
6
```

Diagram:
```
  b --- 1 --- c
  |     |
  |  3  |
  |     |
  |  4  |
  |     |
  5     6
  a --- 6 --- d --- 2
       |
       3
       |
       |
       4
       |
       |
       6
       |
       |
       2
       |
       |
       2
   e
```
Your turn!

Apply Kruskal’s algorithm to this graph:

Tree edges

| bc₁ |

List of edges (sorted by weight)

| de₂ | bd₃ | cd₄ | ab₅ | ad₆ | ce₆ |

Diagram:

- Nodes: a, b, c, d, e
- Edges with weights:
 - ab: 5
 - bc: 1
 - bd: 3
 - cd: 4
 - de: 2
 - ad: 6
 - ce: 6
Your turn!

✧ Apply Kruskal’s algorithm to this graph:

Tree edges	List of edges (sorted by weight)
bc₁ | de₂ bd₃ cd₄ ab₅ ad₆ ce₆
Try it out!
Prim’s Algorithm
Prim’s algorithm:

- In Kruskal’s algorithm, E_T is a forest whose components are combined as the algorithm runs until just one component remains.
- Suppose instead that we start with an arbitrary vertex r, and then add edges while ensuring that E_T is just a single tree at each stage.
- This is the essence of Prim’s algorithm:

```plaintext
let $V_T \leftarrow \{r\}$, $E_T \leftarrow$ empty set
while ($V_T \neq V$)
    find a light edge $(u,v)$ for some $u \in V_T$ and $v \notin V_T$
    add $v$ to $V_T$; add $(u,v)$ to $E_T$
(V, $E_T$) is the required MST
```
Why does this work?

- V_T cuts V into two pieces: V_T and $(V - V_T)$;

- The edges that we add to E_T are light edges across the cut;

- Hence, they are safe to add.
Choosing the edges:

- Store all vertices that are not in \((V_T, E_T)\) in a priority queue Q with an extractMin operation.

- If u is a vertex in Q, what’s key[u] (the value that determines u’s position in Q)?
 - key[u] = minimum weight of edge from u into \(V_T\)
 - if no such edge exists, key[u] = \(\infty\).

- We maintain information about the parent (in \((V_T, E_T)\)) of each vertex v in an array parent[].
 - \(E_T\) is kept implicitly as \{((v, parent[v])) | v \in V−Q−\{r}\}.
The input is the graph $G=(V, E)$, and a root $r \in V$.

```plaintext
for each $v$ in $V$
    key[v] ← $\infty$;
    parent[v] ← null;
key[r] ← 0;
add all vertices in $V$ to the queue $Q$.

while (Q is nonempty) {
    $u$ ← extractMin(Q);
    for each vertex $v$ that is adjacent to $u$ {
        if $v$ ∈ $Q$ and weight($u$, $v$) < key[$v$] {
            parent[$v$] ← $u$;
            key[$v$] ← weight($u$, $v$);
        }
    }
}
```
The input is the graph \(G=(V, E) \), and a root \(r \in V \).

```plaintext
for each \( v \) in \( V \)
    \( \text{key}[v] \leftarrow \infty; \)
    \( \text{parent}[v] \leftarrow \text{null}; \)
\( \text{key}[r] \leftarrow 0; \)
add all vertices in \( V \) to the queue \( Q \).

while (\( Q \) is nonempty) {
    \( u \leftarrow \text{extractMin}(Q); \)
    for each vertex \( v \) that is adjacent to \( u \) {
        if \( v \in Q \) and weight(\( u,v \)) < \text{key}[v] \{
            \text{parent}[v] \leftarrow u;
            \text{key}[v] \leftarrow \text{weight}(u,v);
        }
    }
}
```

How can this test be implemented in \(O(1) \)?
The input is the graph $G = (V, E)$, and a root $r \in V$.

```plaintext
for each $v$ in $V$
    key[$v$] ← $\infty$;
    parent[$v$] ← null;
key[$r$] ← 0;
add all vertices in $V$ to the queue $Q$.

while (Q is nonempty) {
    $u$ ← extractMin($Q$);
    for each vertex $v$ that is adjacent to $u$ {
        if $v \in Q$ and weight($u, v$) < key[$v$] {
            parent[$v$] ← $u$;
            key[$v$] ← weight($u, v$);
        }
    }
}
```

How can this test be implemented in $O(1)$?

When we change a key, we will also need to readjust the priority queue.
Complexity:

- Assuming a binary heap ...
 - Initialization takes $O(|V|)$ time.
 - Main loop is executed $|V|$ times, and each `extractMin` takes $O(\log |V|)$.
 - The body of the inner loop is executed a total of $O(|E|)$ times; each adjustment of the queue takes $O(\log |V|)$ time.

- Overall complexity: $O((|V|+|E|) \log |V|) = O(|E| \log |V|)$.
Your turn!

Apply Prim’s algorithm to this graph:
Your turn!

Apply Prim’s algorithm to this graph:

Diagram of a graph with vertices a, b, c, d, and e, and edges with weights 1, 2, 3, 5, 6, 9.

<table>
<thead>
<tr>
<th>Tree vertices</th>
<th>Priority Queue of remaining vertices</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>e</td>
</tr>
<tr>
<td>e</td>
<td>c, d</td>
</tr>
<tr>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>d</td>
<td></td>
</tr>
</tbody>
</table>
Your turn!

Apply Prim’s algorithm to this graph:

Tree vertices	Priority Queue of remaining vertices
a(−, −) |
Your turn!

✿ Apply Prim’s algorithm to this graph:

Tree vertices

Priority Queue of remaining vertices

parent
Your turn!

Apply Prim’s algorithm to this graph:

- Tree vertices
 - a(\text{parent, weight of edge})

- Priority Queue of remaining vertices
Apply Prim’s Algorithm
Try it out!