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Greedy Algorithms
✦ Solves an optimization problem by breaking it into a 

sequence of steps, and making the best choice at each 
step. 

✦ Key idea: a series of locally-optimal choices yields a 
globally-optimal choice.  

✦ Not all problems can be solved by Greedy Algorithms; 
if the problem forms a matroid, then it can be so 
solved.
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(denominations 1¢, 5¢, 10¢ and 25¢) that 
can be used to make up 41¢?
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Example: Knapsack problem
Exercises 8.4

1. a. Apply the bottom-up dynamic programming algorithm to the following

instance of the knapsack problem:

item weight value

1 3 $25

2 2 $20

3 1 $15

4 4 $40

5 5 $50

, capacity W = 6.

b. How many different optimal subsets does the instance of part (a) have?

c. In general, how can we use the table generated by the dynamic pro-

gramming algorithm to tell whether there is more than one optimal subset

for the knapsack problem’s instance?

2. a. Write a pseudocode of the bottom-up dynamic programming algorithm

for the knapsack problem.

b. Write a pseudocode of the algorithm that finds the composition of

an optimal subset from the table generated by the bottom-up dynamic

programming algorithm for the knapsack problem.

3. For the bottom-up dynamic programming algorithm for the knapsack

problem, prove that

a. its time efficiency is in Θ(nW ).

b. its space efficiency is in Θ(nW ).

c. the time needed to find the composition of an optimal subset from

a filled dynamic programming table is in O(n+W ).

4. a. True or false: A sequence of values in a row of the dynamic program-

ming table for an instance of the knapsack problem is always nondecreas-

ing.

b. True or false: A sequence of values in a column of the dynamic pro-

gramming table for an instance of the knapsack problem is always nonde-

creasing?

5. Apply the memory function method to the instance of the knapsack prob-

lem given in Problem 1. Indicate the entries of the dynamic programming

table that are: (i) never computed by the memory function method on

this instance; (ii) retrieved without a recomputation.

29

!4



Example: Knapsack problem
✦This is the instance of the Knapsack 

problem that we solved previously:

Exercises 8.4

1. a. Apply the bottom-up dynamic programming algorithm to the following

instance of the knapsack problem:

item weight value

1 3 $25

2 2 $20

3 1 $15

4 4 $40

5 5 $50

, capacity W = 6.

b. How many different optimal subsets does the instance of part (a) have?

c. In general, how can we use the table generated by the dynamic pro-

gramming algorithm to tell whether there is more than one optimal subset

for the knapsack problem’s instance?

2. a. Write a pseudocode of the bottom-up dynamic programming algorithm

for the knapsack problem.

b. Write a pseudocode of the algorithm that finds the composition of

an optimal subset from the table generated by the bottom-up dynamic

programming algorithm for the knapsack problem.

3. For the bottom-up dynamic programming algorithm for the knapsack

problem, prove that

a. its time efficiency is in Θ(nW ).

b. its space efficiency is in Θ(nW ).

c. the time needed to find the composition of an optimal subset from

a filled dynamic programming table is in O(n+W ).

4. a. True or false: A sequence of values in a row of the dynamic program-

ming table for an instance of the knapsack problem is always nondecreas-

ing.

b. True or false: A sequence of values in a column of the dynamic pro-

gramming table for an instance of the knapsack problem is always nonde-

creasing?

5. Apply the memory function method to the instance of the knapsack prob-

lem given in Problem 1. Indicate the entries of the dynamic programming

table that are: (i) never computed by the memory function method on

this instance; (ii) retrieved without a recomputation.

29

!4



Example: Knapsack problem
✦This is the instance of the Knapsack 

problem that we solved previously:

✦ What is the “greedy solution”?

Exercises 8.4

1. a. Apply the bottom-up dynamic programming algorithm to the following

instance of the knapsack problem:

item weight value

1 3 $25

2 2 $20

3 1 $15

4 4 $40

5 5 $50

, capacity W = 6.

b. How many different optimal subsets does the instance of part (a) have?

c. In general, how can we use the table generated by the dynamic pro-

gramming algorithm to tell whether there is more than one optimal subset

for the knapsack problem’s instance?

2. a. Write a pseudocode of the bottom-up dynamic programming algorithm

for the knapsack problem.

b. Write a pseudocode of the algorithm that finds the composition of

an optimal subset from the table generated by the bottom-up dynamic

programming algorithm for the knapsack problem.

3. For the bottom-up dynamic programming algorithm for the knapsack

problem, prove that

a. its time efficiency is in Θ(nW ).

b. its space efficiency is in Θ(nW ).

c. the time needed to find the composition of an optimal subset from

a filled dynamic programming table is in O(n+W ).

4. a. True or false: A sequence of values in a row of the dynamic program-

ming table for an instance of the knapsack problem is always nondecreas-

ing.

b. True or false: A sequence of values in a column of the dynamic pro-

gramming table for an instance of the knapsack problem is always nonde-

creasing?

5. Apply the memory function method to the instance of the knapsack prob-

lem given in Problem 1. Indicate the entries of the dynamic programming

table that are: (i) never computed by the memory function method on

this instance; (ii) retrieved without a recomputation.

29

A. Item 5 
B. Items 3 & 5 
C. Items 2 & 4 

D. Items 1 & 5 
E. None of the 

above

!4



Example: Knapsack problem
✦This is the instance of the Knapsack 

problem that we solved previously: 

✦ What is the “greedy solution” 
✦ Is this optimal? 
✦ Will a greedy algorithm always work? 

! Suppose that W = 5? W = 3?

Exercises 8.4

1. a. Apply the bottom-up dynamic programming algorithm to the following

instance of the knapsack problem:

item weight value

1 3 $25

2 2 $20

3 1 $15

4 4 $40

5 5 $50

, capacity W = 6.

b. How many different optimal subsets does the instance of part (a) have?

c. In general, how can we use the table generated by the dynamic pro-

gramming algorithm to tell whether there is more than one optimal subset

for the knapsack problem’s instance?

2. a. Write a pseudocode of the bottom-up dynamic programming algorithm

for the knapsack problem.

b. Write a pseudocode of the algorithm that finds the composition of

an optimal subset from the table generated by the bottom-up dynamic

programming algorithm for the knapsack problem.

3. For the bottom-up dynamic programming algorithm for the knapsack

problem, prove that

a. its time efficiency is in Θ(nW ).

b. its space efficiency is in Θ(nW ).

c. the time needed to find the composition of an optimal subset from

a filled dynamic programming table is in O(n+W ).

4. a. True or false: A sequence of values in a row of the dynamic program-

ming table for an instance of the knapsack problem is always nondecreas-

ing.

b. True or false: A sequence of values in a column of the dynamic pro-

gramming table for an instance of the knapsack problem is always nonde-

creasing?

5. Apply the memory function method to the instance of the knapsack prob-

lem given in Problem 1. Indicate the entries of the dynamic programming

table that are: (i) never computed by the memory function method on

this instance; (ii) retrieved without a recomputation.

29

A. Yes 
B. No

!5



Example: Knapsack problem
✦This is the instance of the Knapsack 

problem that we solved previously: 

✦ What is the “greedy solution” 
✦ Is this optimal? 
✦ Will a greedy algorithm always work? 

! Suppose that W = 5? W = 3?

Exercises 8.4

1. a. Apply the bottom-up dynamic programming algorithm to the following

instance of the knapsack problem:

item weight value

1 3 $25

2 2 $20

3 1 $15

4 4 $40

5 5 $50

, capacity W = 6.

b. How many different optimal subsets does the instance of part (a) have?

c. In general, how can we use the table generated by the dynamic pro-

gramming algorithm to tell whether there is more than one optimal subset

for the knapsack problem’s instance?

2. a. Write a pseudocode of the bottom-up dynamic programming algorithm

for the knapsack problem.

b. Write a pseudocode of the algorithm that finds the composition of

an optimal subset from the table generated by the bottom-up dynamic

programming algorithm for the knapsack problem.

3. For the bottom-up dynamic programming algorithm for the knapsack

problem, prove that

a. its time efficiency is in Θ(nW ).

b. its space efficiency is in Θ(nW ).

c. the time needed to find the composition of an optimal subset from

a filled dynamic programming table is in O(n+W ).

4. a. True or false: A sequence of values in a row of the dynamic program-

ming table for an instance of the knapsack problem is always nondecreas-

ing.

b. True or false: A sequence of values in a column of the dynamic pro-

gramming table for an instance of the knapsack problem is always nonde-

creasing?

5. Apply the memory function method to the instance of the knapsack prob-

lem given in Problem 1. Indicate the entries of the dynamic programming

table that are: (i) never computed by the memory function method on

this instance; (ii) retrieved without a recomputation.

29

!5



Example: Knapsack problem
✦This is the instance of the Knapsack 

problem that we solved previously: 

✦ What is the “greedy solution” 
✦ Is this optimal? 
✦ Will a greedy algorithm always work? 

! Suppose that W = 5? W = 3?

Exercises 8.4

1. a. Apply the bottom-up dynamic programming algorithm to the following

instance of the knapsack problem:

item weight value

1 3 $25

2 2 $20

3 1 $15

4 4 $40

5 5 $50

, capacity W = 6.

b. How many different optimal subsets does the instance of part (a) have?

c. In general, how can we use the table generated by the dynamic pro-

gramming algorithm to tell whether there is more than one optimal subset

for the knapsack problem’s instance?

2. a. Write a pseudocode of the bottom-up dynamic programming algorithm

for the knapsack problem.

b. Write a pseudocode of the algorithm that finds the composition of

an optimal subset from the table generated by the bottom-up dynamic

programming algorithm for the knapsack problem.

3. For the bottom-up dynamic programming algorithm for the knapsack

problem, prove that

a. its time efficiency is in Θ(nW ).

b. its space efficiency is in Θ(nW ).

c. the time needed to find the composition of an optimal subset from

a filled dynamic programming table is in O(n+W ).

4. a. True or false: A sequence of values in a row of the dynamic program-

ming table for an instance of the knapsack problem is always nondecreas-

ing.

b. True or false: A sequence of values in a column of the dynamic pro-

gramming table for an instance of the knapsack problem is always nonde-

creasing?

5. Apply the memory function method to the instance of the knapsack prob-

lem given in Problem 1. Indicate the entries of the dynamic programming

table that are: (i) never computed by the memory function method on

this instance; (ii) retrieved without a recomputation.

29

A. Yes B. No
!6



Example: Knapsack problem
✦This is the instance of the Knapsack 

problem that we solved previously: 

✦ What is the “greedy solution” 
✦ Is this optimal? 
✦ Will a greedy algorithm always work? 

! Suppose that W = 5? W = 3?

Exercises 8.4

1. a. Apply the bottom-up dynamic programming algorithm to the following

instance of the knapsack problem:

item weight value

1 3 $25

2 2 $20

3 1 $15

4 4 $40

5 5 $50

, capacity W = 6.

b. How many different optimal subsets does the instance of part (a) have?

c. In general, how can we use the table generated by the dynamic pro-

gramming algorithm to tell whether there is more than one optimal subset

for the knapsack problem’s instance?

2. a. Write a pseudocode of the bottom-up dynamic programming algorithm

for the knapsack problem.

b. Write a pseudocode of the algorithm that finds the composition of

an optimal subset from the table generated by the bottom-up dynamic

programming algorithm for the knapsack problem.

3. For the bottom-up dynamic programming algorithm for the knapsack

problem, prove that

a. its time efficiency is in Θ(nW ).

b. its space efficiency is in Θ(nW ).

c. the time needed to find the composition of an optimal subset from

a filled dynamic programming table is in O(n+W ).

4. a. True or false: A sequence of values in a row of the dynamic program-

ming table for an instance of the knapsack problem is always nondecreas-

ing.

b. True or false: A sequence of values in a column of the dynamic pro-

gramming table for an instance of the knapsack problem is always nonde-

creasing?

5. Apply the memory function method to the instance of the knapsack prob-

lem given in Problem 1. Indicate the entries of the dynamic programming

table that are: (i) never computed by the memory function method on

this instance; (ii) retrieved without a recomputation.

29

!6



Huffman Coding
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The Coding Problem:
✦A data file contains 

100,000 “characters” 
each of which is either 
an a, b, c, d, e, or f 

✦Using three bits for each 
character takes:  
  
3 x 100,000 = 300,000 
bits 

✦How could we do better?
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The Coding Problem:
✦A data file contains 

100,000 “characters” 
each of which is either 
an a, b, c, d, e, or f 

✦Using three bits for each 
character takes:  
  
3 x 100,000 = 300,000 
bits 

✦How could we do better?
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a 000

b 001

c 010

d 011

e 100
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Using Frequency Information:
✦Variable length coding 

gives shorter codes to 
more frequent letters. 

✦Encoded size: 
(45 * 1 
 + (13+12+16+9) * 2  
 + 5 * 3) * 1,000  
= 160,000 

✦A saving of of over 46% 

✦ Is there a flaw?
!9
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a 45,000 0

b 13,000 01

c 12,000 10

d 16,000 00

e 9,000 11

f 5,000 100



Using Frequency Information:
✦Variable length coding 

gives shorter codes to 
more frequent letters. 

✦Encoded size: 
(45 * 1 
 + (13+12+16+9) * 2  
 + 5 * 3) * 1,000  
= 160,000 

✦A saving of of over 46% 

✦ Is there a flaw?
!9

Letter Frequency Code

a 45,000 0

b 13,000 01

c 12,000 10

d 16,000 00

e 9,000 11

f 5,000 100

A. Yes  B. No



Unique Decoding:
✦What string does the code  

10000011010 represent? 

✦One reading:  
 100 0 00 11 01 0 
   f   a  d   e   b  a 

✦Another reading: 
 10 00 0 01 10 10 
  c  d   a b   c   c 

✦Oh dear: we’ve lost too much  
of the information that was in the original!  

Letter Frequency Code

a 45,000 0

b 13,000 01

c 12,000 10

d 16,000 00

e 9,000 11

f 5,000 100
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Use a Prefix-free Code
✦Prefix(-free) property: 

no codeword is a prefix of 
another codeword 

✦Encoded size: 
(45 * 1 
 + (13+12+16) * 3  
 + (9 + 5) * 4) * 1,000  
= 224,000 

✦Still reduce size by ~25% 

✦And this time, it can be 
decoded!
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another codeword 

✦Encoded size: 
(45 * 1 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Letter Frequency Code

a 45,000 0

b 13,000 101

c 12,000 100

d 16,000 111

e 9,000 1101

f 5,000 1100



Prefix Coding & Decoding:
✦A prefix code can achieve compression that is optimal 

among any character code 

✦Code can be represented by a tree:
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Prefix Coding & Decoding:
✦A prefix code can achieve compression that is optimal 

among any character code 

✦Code can be represented by a tree:

Letter Frequency Code

a 45,000 0

b 13,000 101

c 12,000 100

d 16,000 111

e 9,000 1101

f 5,000 1100

10

10

10 10

10

a

c b

f e

d
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Frequencies & Costs:
✦ For any given coding tree T, the number of bits 

required to code a message is:

100

45 55

25 30

12 1413 16

5 9

a

c b

Letter Frequency Code

a 45,000 0

b 13,000 101

c 12,000 100

d 16,000 111

e 9,000 1101

f 5,000 1100

f e

d

cost(T ) =
X

c2C

freq(c) · depthT (c)
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Building a Huffman Coding Tree
✦We can use a table to avoid doing a calculation more than once: 

initialize a empty priority queue, Q 
add a leaf node to Q for each character 
while (|Q|>1) do 
   l = extractMin(Q) 
   r = extractMin(Q) 
   t = new tree node  
        with left=l, right=r, freq=l.freq+r.freq 
   insert t into Q 
return extractMin(Q) 

✦ Complexity? 
✦ Complexity for computing frequencies?

Using frequency 
as key
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Building a Huffman Coding Tree
✦We can use a table to avoid doing a calculation more than once: 

initialize a empty priority queue, Q 
add a leaf node to Q for each character 
while (|Q|>1) do 
   l = extractMin(Q) 
   r = extractMin(Q) 
   t = new tree node  
        with left=l, right=r, freq=l.freq+r.freq 
   insert t into Q 
return extractMin(Q) 

✦ Complexity? 
✦ Complexity for computing frequencies?

Using frequency 
as key

Greedy choices!

Last element in the 
queue
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Example:
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“Optimal Subproblems”
✦At each iteration, our task is to find an 

optimal code for |Q| items 

✦We pick the pair of characters that have the 
lowest frequencies 

✦We reduce the original problem to the task of 
finding an optimal code for |Q|-1 items 

✦We can prove that the resulting coding 
scheme is indeed optimal
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Huffman Trees (2nd Example)
✦Build the optimal Huffman code for the 

following set of frequencies 
 a:1   b:1    c:2   d:3     e:5    f:8    g:13   h:21  

!22

1 1 2 3 5 13 21

a b c d e g h
8
f
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a b
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8
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2 3 5 13 21
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1 1
a b
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Correctness of Huffman Code
Proof Idea 

✦ Step 1: Show that this problem satisfies the greedy 
choice property, that is, if a greedy choice is made by 
Huffman's algorithm, an optimal solution remains 
possible. 

✦ Step 2: Show that this problem has an optimal 
substructure property, that is, an optimal solution to 
Huffman's algorithm contains optimal solutions to 
subproblems. 

✦ Step 3: Conclude correctness of Huffman's algorithm 
using step 1 and step 2.
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Lemma: Greedy Choice Property  
Let c be an alphabet in which each character c has 
frequency f[c]. Let x and y be two characters in C 
having the lowest frequencies. Then there exists an 
optimal prefix code for C in which the codewords for x 
and y have the same length and differ only in the last 
bit.

!30



Lemma: Optimal Substructure Property   

• Let T be a full binary tree representing an 
optimal prefix code over an alphabet C, where 
each c ∈ C has frequency fc. 

• Consider any two characters x and y that appear 
as sibling leaves in the tree T. 

• Consider alphabet C ’= C − {x, y}∪{z} with 
frequency fz = fx + fy, and label with z the parent 
of x and y 

• Then T ’ = T − {x, y} represents an optimal code 
for alphabet C ’ 

!31



T represents 
an optimal 
prefix code for 
alphabet C

x and y appear 
as sibling 
leaves

!32
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T ’ represents 
an optimal 
prefix code for 
alphabet C ’

x and y 
replaced by z

!33
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T ’ = 
d



Priority Queues
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Priority Queues
✦A Priority Queue is a data structure optimized for 

finding and removing the element with the max 
(or min) key.  It has operations to: 
✦ find the highest priority element (with max key) 
✦ delete the highest priority element 
✦ add a new item 

✦We want to avoid insertion sort at each step  
✦ Complexity of insertion would be O(n)  

✦We use a Heap (Levitin §6.4) — a particular kind 
of balanced tree.

!35
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What does “balanced” mean?

L R

size L = size R

?

Perhaps:
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Too constraining!
✦ A balanced binary tree of height h has exactly nh 

elements, where: 
n-1 = 0  and  n(h+1) = 1 + 2 nh; 

✦ So if T  is perfectly balanced, then: 
size T ∈{0, 1, 3, 7, 15, 31, 63, …, 2h-1, …}; 

✦ There is no perfectly balanced tree with any 
other number of elements.
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A perfectly balanced tree:
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Think of this as an empty frame that 
we can fill with elements ...
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A perfectly balanced tree:

        

    

 

 

 

Think of this as an empty frame that 
we can fill with elements ...

        

    

 

 

 

… filling the rows up one at a time 
makes the tree as balanced as 
possible! !39



Number the nodes — in binary!

1000 1001 1010 1011 1100 1101 1110 1111

0100 0101 0110 0111

0010

0001

0011
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Number the nodes — in binary!

1000 1001 1010 1011 1100 1101 1110 1111

0100 0101 0110 0111

0010

0001

0011

There is a common 
pattern at each node:
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Number the nodes — in binary!

1000 1001 1010 1011 1100 1101 1110 1111

0100 0101 0110 0111

0010

0001

0011

n0 n1

nThere is a common 
pattern at each node:

Multiply by 2 Multiply by 2 and add 1

!40



Embed a tree in an array
✦ A tree with t < 2n elements can be 

implemented using an array a and variable t: 
! elements a[1..t], (a[t +1 .. 2n–1] are empty) 
! the root is held in position a[1] 
! left child of node a[i] is a[2i] 
! right child of node a[i] is a[2i+1] 
! parent of node a[i] is a[ ⌊i/2⌋ ] 

✦ True or False:  all elements of the array with 
index ≥ 2n−1 represent leaf nodes

!41



Too good to be true?
✦ So now we can build (almost) perfectly 

balanced binary trees with: 
✦ the smallest possible height for any number of 

elements stored; 
✦ O(1) complexity for addition. 

✦ Where’s the flaw?

!42



Building a tree in this way does not give binary search 
trees: 

We cannot preserve the binary search tree invariant and 
retain O(1) time for insertion.

Out of order!

8 9 10 11 12 13 14 15

4 5 6 7

2

1

3

!43



Properties of a Heap:

1. Shape Property: 
The binary tree is essentially complete, that is, 
all levels are filled except some of the rightmost 
leaves may be missing in the last level

!44



Properties of a Heap:

L R

n

2. Parental dominance Property: 
The key in each node is greater than or equal to the keys 
of its children.  So, all values in L are ≤n, and all values  
in R are also ≤n 

✦

!45



Inserting an element:

        

    

 

 

 

The new element should be added here                  
(takes O(1) time)
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Inserting an element:

     a   

  b  

 

 

 

New value, a
If a≤b, then this is a heap, and 
we are done!
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Inserting an element:

     a   

  b  

 

!!!

!!!

These nodes might not 
satisfy the parental 
dominance property!

But if a>b, then we need to do some work 
to restore the heap property.
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Inserting an element:

     a   

  b  

 

!!!

!!!

These nodes might not 
satisfy the parental 
dominance property!

But if a>b, then we need to do some work 
to restore the heap property.

Start by swapping a and b … 

!48



Inserting an element:

     a   

  b  

 

!!!

!!!

These nodes might not 
satisfy the parental 
dominance property!

!49

Repeat until we’re done. 

Takes O(log n) time: we have to worry about the nodes on 
only one path in the tree.



Implementation:

heapInsert(value) {
   size ← size + 1   

 int i ← size;
   while (i>1 ∧ h[parent(i)]<value) do {
      h[i] ← h[parent(i)]
      i    ← parent(i)
   }
   h[i] ← value;
}

h[] is an array containing 
the heap elements; 

size is the number of 
entries in the heap that have 
been used.
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Removing maximal element:

        

    

 

 

 

Finding the maximum element is 
easy!         (takes O(1) time)
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Removing maximal element:

        

    

 

 

 

We can fill the gap with the last value in the 
array                   (takes O(1) time)
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Removing maximal element:

        

    

 

 

 

We can fill the gap with the last value in the 
array                   (takes O(1) time)

But now this node 
might not satisfy the 
dominance property!
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Removing maximal element:

        

    

b

a

c

If a>b and a>c, then this is a heap, and 
we are done!
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Removing maximal element:

        

    

b

a

c

Otherwise, suppose b>a and b>c. 

Then we can swap a with b … 
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Removing maximal element:

        

    

a

b

c

But now this node 
might not satisfy the 
heap property!

Repeat until we’re done. 

Takes O(log n) time: we have to worry about the nodes on 
only one path in the tree.
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Implementation:

heapExtractMax() {  
 size ← size - 1

   int max ← h[1];
   h[1]    ← h[size];
   heapify(1);
   return max;
}

!56



Implementation:
heapify(i) {
   l ← left(i); r ← right(i);
   largest ← i;
   if (l≤size) {
      if (h[l]>h[i])
         largest ← l;
      if (r≤size ∧ h[r]>h[largest])
         largest ← r;
   }
   if (largest≠i) {
      h.swap(i, largest);
      heapify(largest);
   }
}
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Priority queues:
✦A priority queue is a variation on the queue data 

structure with a “highest-priority first out” policy. 

✦More concretely, a priority queue supports 
operations to: 
✦ Add an element, and 
✦ Remove highest priority element. 

✦Heaps can be used as an implementation of 
priority queues—one of the most common uses 
of heaps in practice.
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Building a heap:

        

    

 

 

 

Suppose we start with an arbitrary array of values. 

Run heapify on each of the interior nodes, starting at the 
bottom, and working back to the root. Now we have a heap!
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Implementation:

buildHeap() {
   size ← h.length;
   for i from size/2 downto 1 do {
      heapify(i);
   }
}
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Complexity:

✦To a first approximation: there are O(n) calls to 
heapify, and O(log n) steps for each such call, 
giving a total: 

O(n log n)
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Complexity:

✦To a first approximation: there are O(n) calls to 
heapify, and O(log n) steps for each such call, 
giving a total: 

O(n log n)

✦ But we can do better than this! 
✦ Many of the calls to heapify involve trees with 

heights that are < log n.
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✦The total cost of buildHeap is: 

✦Simplifying:
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✦The total cost of buildHeap is: 
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# trees of 
height h
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✦Simplifying:

# trees of 
height h

cost of heapify on 
trees of height h
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✦The total cost of buildHeap is: 

✦Simplifying:

# trees of 
height h

cost of heapify on 
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Spanning Trees
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Spanning Trees
✦ If e is a minimum-weight edge in a 

connected graph, then e must be an edge in 
at least one minimum spanning tree 

✦ True or False?
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Spanning Trees
✦ If e is a minimum-weight edge in a 

connected graph, then e must be an edge in 
all minimum spanning trees of the graph 

✦ True or False?
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Spanning Trees
✦ If every edge in a connected graph G has a 

distinct weight, then G must have exactly 
one  minimum spanning tree 

✦ True or False?
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Kruskal’s Algorithm
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Building bridges:
✦Suppose that we want to link a group of n 

small islands together with bridges. 

✦There will be many possible ways to do this, 
each corresponding to a connected graph, 
with the islands as vertices and bridges as 
edges. 

✦What is the minimum number of bridges 
that we will need to build?
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Spanning trees:
A spanning tree T of a connected graph G = (V,E) is a 
subgraph of G that is: 
" connected; 
" acyclic; 
" includes all of V as vertices.
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" connected; 
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Spanning trees:
A spanning tree T of a connected graph G = (V,E) is a 
subgraph of G that is: 
" connected; 
" acyclic; 
" includes all of V as vertices.

Any spanning tree has |V|−1 edges.

!69



Growing a forest:
✦ Find a spanning tree for connected graph G=(V,E): 

partition V into |V| singleton sets of the form {v}.
let ET be an empty set of edges.
for each edge (u,v) in E:
   let Su be the set containing u
   let Sv be the set containing v
   if Su ≠ Sv, then
      replace Su and Sv with Su ∪ Sv
      add (u,v) to ET
return (V, ET) as the spanning tree

✦ We start with |V| sets …  
… we end up with just 1 set. 

✦ Hence: |V|−1 unions, |V|−1 edges added to ET.
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Calculating connected components:

What if G=(V,E) is not connected? 
partition V into |V| singleton sets of the form {v}.
let ET be an empty set of edges.
for each edge (u,v) in E:
   let Su be the set containing u
   let Sv be the set containing v
   if Su ≠ Sv, then
      replace Su and Sv with Su ∪ Sv
      add (u,v) to ET

We end up with c distinct sets Su, where c is the number 
of connected components of G; 

ET is a spanning forest for G, with |V|−c edges.

NB: exactly the same 
algorithm as before, 
but repeated for 
convenience!
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Union-find:
The operations we 
need are: 
" Make a singleton set; 
" Test if two sets are 

equal; 
" Union two sets 

together. 

There is a simple data 
structure that we can 
use to implement 
these operations.

x

Pointer to this 
vertex’s 
representative

Pointer to 
next vertex in 
this set

Pointer to this 
vertex’s 
adjacency list

x

y

z 0
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Implementation:
To make a singleton set: 

To test if two sets are the same: 
" Test if the representatives are the same. 

To merge two sets:

0

a

b

c 0

d

e 0

∪ =

a

b

c

d

e 0
!75



Complexity:
A sequence of m operations can take Θ(m2) time 
(amortized time per operation is Θ(m)) 

More sophisticated variations are possible, with better 
complexity bounds. 

A tree based approach 
" Optimization heuristics: 

! Union by rank 
! Path compression 

See Levitin §9.2 or CLRS Chapter 21 for more details.

...
...
...

...
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Quick Union:
Uses Tree-based representation of sets 
‣ root of tree used as representative of set

!77

330 Greedy Technique

1

54

2

3

6

1

4 5

62

(a) (b)

3

FIGURE 9.8 (a) Forest representation of subsets {1, 4, 5, 2} and {3, 6} used by quick
union. (b) Result of union(5, 6).

union by size. Though it does not improve the worst-case efficiency of a single ap-
plication of the union operation (it is still in !(n)), the worst-case running time of
any legitimate sequence of union-by-size operations turns out to be in O(n log n).3

Here is a proof of this assertion. Let ai be an element of set S whose disjoint
subsets we manipulate, and let Ai be the number of times ai’s representative is
updated in a sequence of union-by-size operations. How large can Ai get if set S

has n elements? Each time ai’s representative is updated, ai must be in a smaller
subset involved in computing the union whose size will be at least twice as large as
the size of the subset containing ai. Hence, when ai’s representative is updated for
the first time, the resulting set will have at least two elements; when it is updated
for the second time, the resulting set will have at least four elements; and, in
general, if it is updated Ai times, the resulting set will have at least 2Ai elements.
Since the entire set S has n elements, 2Ai ≤ n and hence Ai ≤ log2 n. Therefore,
the total number of possible updates of the representatives for all n elements in S

will not exceed n log2 n.

Thus, for union by size, the time efficiency of a sequence of at most n − 1
unions and m finds is in O(n log n + m).

The quick union—the second principal alternative for implementing disjoint
subsets—represents each subset by a rooted tree. The nodes of the tree contain
the subset’s elements (one per node), with the root’s element considered the
subset’s representative; the tree’s edges are directed from children to their parents
(Figure 9.8). In addition, a mapping of the set elements to their tree nodes—
implemented, say, as an array of pointers—is maintained. This mapping is not
shown in Figure 9.8 for the sake of simplicity.

For this implementation, makeset(x) requires the creation of a single-node
tree, which is a !(1) operation; hence, the initialization of n singleton subsets is in
!(n). A union(x, y) is implemented by attaching the root of the y’s tree to the root
of the x’s tree (and deleting the y’s tree from the collection by making the pointer
to its root null). The time efficiency of this operation is clearly !(1). A find(x) is

3. This is a specific example of the usefulness of the amortized efficiency we mentioned back in Chapter 2.

Tree representing  
{1, 4, 5, 2} and {3, 6} 

After union(5,6) 



Path Compression

✦Amortized cost can be reduced by updating 
pointers to point directly to the root when they 
are queried. 

✦See Levitin §9.2 or CLRS Chapter 21 for more 
details.
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T4

x T4

x

T3T2

T1

T3

T2

T1

FIGURE 9.9 Path compression.

performed by following the pointer chain from the node containing xto the tree’s
root whose element is returned as the subset’s representative. Accordingly, the
time efficiency of a single find operation is in O(n) because a tree representing a
subset can degenerate into a linked list with n nodes.

This time bound can be improved. The straightforward way for doing so is to
always perform a union operation by attaching a smaller tree to the root of a larger
one, with ties broken arbitrarily. The size of a tree can be measured either by the
number of nodes (this version is called union by size) or by its height (this version
is called union by rank). Of course, these options require storing, for each node of
the tree, either the number of node descendants or the height of the subtree rooted
at that node, respectively. One can easily prove that in either case the height of the
tree will be logarithmic, making it possible to execute each find in O(log n) time.
Thus, for quick union, the time efficiency of a sequence of at most n − 1 unions
and m finds is in O(n + m log n).

In fact, an even better efficiency can be obtained by combining either vari-
ety of quick union with path compression. This modification makes every node
encountered during the execution of a find operation point to the tree’s root (Fig-
ure 9.9). According to a quite sophisticated analysis that goes beyond the level
of this book (see [Tar84]), this and similar techniques improve the efficiency of a
sequence of at most n − 1 unions and m finds to only slightly worse than linear.

Exercises 9.2

1. Apply Kruskal’s algorithm to find a minimum spanning tree of the following
graphs.
a.

b c

a ed

1

3 4

6 2

5 6



Kruskal’s Algorithm

Back to ...
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Growing a tree:
Suppose that we have a connected graph G=(V, E) and 
pick an arbitrary vertex r ∈ V: 

let W ← {r}, ET ← empty set;

while (W≠V) do {
   find an edge (u,v) with u∈W and v∉W;

   W ← W ∪ {v};
   ET ← ET ∪ {(u,v)};
}
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Growing a tree:
Suppose that we have a connected graph G=(V, E) and 
pick an arbitrary vertex r ∈ V: 

let W ← {r}, ET ← empty set;

while (W≠V) do {
   find an edge (u,v) with u∈W and v∉W;

   W ← W ∪ {v};
   ET ← ET ∪ {(u,v)};
}

Invariant: (W,ET) is a connected, 
acyclic subgraph of G
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Growing a tree:
Suppose that we have a connected graph G=(V, E) and 
pick an arbitrary vertex r ∈ V: 

let W ← {r}, ET ← empty set;

while (W≠V) do {
   find an edge (u,v) with u∈W and v∉W;

   W ← W ∪ {v};
   ET ← ET ∪ {(u,v)};
}

Invariant: (W,ET) is a connected, 
acyclic subgraph of G

There must always be such an edge, 
otherwise G would not be connected.
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Growing a tree:
Suppose that we have a connected graph G=(V, E) and 
pick an arbitrary vertex r ∈ V: 

let W ← {r}, ET ← empty set;

while (W≠V) do {
   find an edge (u,v) with u∈W and v∉W;

   W ← W ∪ {v};
   ET ← ET ∪ {(u,v)};
}

Invariant: (W,ET) is a connected, 
acyclic subgraph of G

There must always be such an edge, 
otherwise G would not be connected.

We add a total of |V|-1 
edges to ET

!80

How many times 
will this loop

execute?
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Minimum Spanning Trees

!82



Back to bridge building … 
To link a group of n small islands together with 
bridges, we will need to build at least (n-1) bridges; 
any spanning tree will do for this. 

But now suppose that we want to minimize the total 
span of all the bridges as well … How should we 
proceed?
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Minimum spanning trees:
To take account of the distances between the islands, 
we need to use a labeled, or weighted graph. 

A minimum spanning tree (MST) is a spanning tree that 
minimizes the total of the weights on its edges. 

Not all spanning trees have this property.

3

4

5
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The MST problem:
Suppose that we have a connected, undirected graph G=(V,E), 
with a numerical weighting w(u,v) for each edge (u,v). 

Problem: Find an acyclic subset T ⊆ E that connects all of the 
vertices in V, and minimizes: 

Σ {w(u,v) | (u,v) ∈ T } 
Solution: We will look for an algorithm of the form: 

ET ← empty set of edges 
while (ET is not a spanning tree) 
    add an edge to ET 

At each stage we will ensure that ET is a subset of a MST. 
Obviously true when we start … the trick is to ensure that the 
invariant is preserved when we add an element ...
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Greedy Choice
✦Whenever we add an edge, let’s make the 

Greedy choice: 
✦ add the edge with the lowest weight that does 

not form a cycle 
✦ Edges that do form a cycle are not needed in the 

spanning tree 
✦Does making the Greedy choice ever add an 

edge that we don't need?
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A key result:

Suppose that we partition V into two sets (a “cut”), 
and that none of the edges in ET crosses between the 
two sets (the cut “respects” ET). 

Suppose also that (u,v) is an edge that crosses 
between the two halves, and that no other edge that 
crosses has lower weight — (u,v) is a “light edge”. 

Claim: ET ∪ {(u,v)} is a subset of a minimum 
spanning tree: (u,v) is “safe” for ET.
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Proof:
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Proof:

u

v

Edges in ET
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Proof:

✦ ET is a subset of some minimum spanning tree T.

u

v

Edges in ET

Edges in T
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Proof:

✦ ET is a subset of some minimum spanning tree T.
✦ Because u and v are on opposite sides, there is an 

edge e in T that crosses the cut.

u

v

Edges in ET

Edges in T
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Proof:

✦ ET is a subset of some minimum spanning tree T.
✦ Because u and v are on opposite sides, there is an 

edge e in T that crosses the cut.

u

v

Edges in ET

Edges in Te
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Proof:

✦ ET is a subset of some minimum spanning tree T.
✦ Because u and v are on opposite sides, there is an 

edge e in T that crosses the cut.

u

v

Edges in ET
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Corollary:
✦ Suppose that: 

" C is a connected component in the forest (V, ET); 
" (u,v) is a light edge connecting C to some other component in G. 

✦ Then (u,v) is safe for ET. 

✦ Follows directly by using a cut to separate the vertices in 
C from the vertices outside. 

✦ Requiring C to be a connected component of (V, ET) 
ensures that no edge in ET crosses the cut.
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Kruskal’s algorithm:
✦ Given a connected graph G=(V, E): 

ET ← empty set of edges 
for each v in V 
   make a singleton set {v} 

sort the edges of E by nondecreasing weight 

for each edge (u,v) in E 
   if Su ≠ Sv, then 

   replace Su and Sv with Su ∪ Sv 
   add (u,v) to ET 

✦ Complexity is O(|E| log |E|). 
✦ (With our simple union-find, more like O(|E|2))
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How does this work?
Suppose that C and D are the two connected 
components in the forest (V,ET) that are connected by 
an edge (u,v). 

Then (u,v) must have the least weight of any edge 
between C and D (otherwise C and D would have 
already been connected ).
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Prim’s Algorithm
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Prim’s algorithm:
In Kruskal’s algorithm, ET is a forest whose components 
are combined as the algorithm runs until just one 
component remains. 
Suppose instead that we start with an arbitrary vertex r, 
and then add edges while ensuring that ET is just a 
single tree at each stage. 
This is the essence of Prim’s algorithm: 

let VT ← {r}, ET ← empty set 
while (VT ≠ V) 
   find a light edge (u,v) for some u ∈ VT and v ∉ VT 
   add v to VT; add (u,v) to ET 
(V, ET) is the required MST
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Why does this work?
VT cuts V into two pieces: VT and (V − VT); 

The edges that we add to ET are light edges across the 
cut; 

Hence, they are safe to add.
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Choosing the edges:
Store all vertices that are not in (VT, ET) in a priority 
queue Q with an extractMin operation. 

If u is a vertex in Q, what’s key[u] (the value that 
determines u’s position in Q)? 
‣ key[u] = minimum weight of edge from u into VT  
‣ if no such edge exists, key[u] = ∞. 

We maintain information about the parent (in (VT, ET)) 
of each vertex v in an array parent[]. 
‣ ET is kept implicitly as {(v, parent[v]) | v ∈ V−Q−{r}}.
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The input is the graph G=(V, E), and a root r ∈ V. 

for each v in V
   key[v]    ← ∞;
   parent[v] ← null;
key[r] ← 0;
add all vertices in V to the queue Q.

while (Q is nonempty) {
   u ← extractMin(Q);
   for each vertex v that is adjacent to u {
      if v ∈ Q and weight(u,v) < key[v] {
         parent[v] ← u;
         key[v]    ← weight(u,v);
      }
   }
}
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The input is the graph G=(V, E), and a root r ∈ V. 

for each v in V
   key[v]    ← ∞;
   parent[v] ← null;
key[r] ← 0;
add all vertices in V to the queue Q.

while (Q is nonempty) {
   u ← extractMin(Q);
   for each vertex v that is adjacent to u {
      if v ∈ Q and weight(u,v) < key[v] {
         parent[v] ← u;
         key[v]    ← weight(u,v);
      }
   }
}

How can this test 
be implemented 

in O(1)?

When we change a key, we will also need to 
readjust the priority queue
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Complexity:
✦ Assuming a binary heap … 

" Initialization takes O(|V|) time. 

" Main loop is executed |V| times, and each extractMin 
takes O(log |V|). 

" The body of the inner loop is executed a total of  
O(|E|) times; each adjustment of the queue takes O(log 
|V|) time. 

✦ Overall complexity: O((|V|+|E|) log |V|)  
= O(|E| log |V|).
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Apply Prim’s Algorithm
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