
CS 350 Algorithms and Complexity

Lecture 14: Greedy Algorithms
(slides based on those of Mark Jones)

Andrew P. Black

Department of Computer Science

Portland State University

Winter 2019

Greedy Algorithms
✦ Solves an optimization problem by breaking it into a

sequence of steps, and making the best choice at each
step.

✦ Key idea: a series of locally-optimal choices yields a
globally-optimal choice.

✦ Not all problems can be solved by Greedy Algorithms;
if the problem forms a matroid, then it can be so
solved.

!2

Example: making change

!3

Example: making change
✦What is the smallest number of US coins

(denominations 1¢, 5¢, 10¢ and 25¢) that
can be used to make up 41¢?

!3

Example: making change
✦What is the smallest number of US coins

(denominations 1¢, 5¢, 10¢ and 25¢) that
can be used to make up 41¢?
✦ Solve the problem using a Greedy Algorithm

!3

Example: making change
✦What is the smallest number of US coins

(denominations 1¢, 5¢, 10¢ and 25¢) that
can be used to make up 41¢?
✦ Solve the problem using a Greedy Algorithm
✦ Numeric answer

!3

Example: making change
✦What is the smallest number of US coins

(denominations 1¢, 5¢, 10¢ and 25¢) that
can be used to make up 41¢?
✦ Solve the problem using a Greedy Algorithm
✦ Numeric answer

✦Now suppose that the US had a 20¢ coin (as
does the UK, for example). Can you still
solve the problem using a Greedy Algorithm?

!3

Example: making change
✦What is the smallest number of US coins

(denominations 1¢, 5¢, 10¢ and 25¢) that
can be used to make up 41¢?
✦ Solve the problem using a Greedy Algorithm
✦ Numeric answer

✦Now suppose that the US had a 20¢ coin (as
does the UK, for example). Can you still
solve the problem using a Greedy Algorithm?

A. Yes

!3

Example: making change
✦What is the smallest number of US coins

(denominations 1¢, 5¢, 10¢ and 25¢) that
can be used to make up 41¢?
✦ Solve the problem using a Greedy Algorithm
✦ Numeric answer

✦Now suppose that the US had a 20¢ coin (as
does the UK, for example). Can you still
solve the problem using a Greedy Algorithm?

A. Yes
B. No

!3

Example: Knapsack problem
Exercises 8.4

1. a. Apply the bottom-up dynamic programming algorithm to the following

instance of the knapsack problem:

item weight value

1 3 $25

2 2 $20

3 1 $15

4 4 $40

5 5 $50

, capacity W = 6.

b. How many different optimal subsets does the instance of part (a) have?

c. In general, how can we use the table generated by the dynamic pro-

gramming algorithm to tell whether there is more than one optimal subset

for the knapsack problem’s instance?

2. a. Write a pseudocode of the bottom-up dynamic programming algorithm

for the knapsack problem.

b. Write a pseudocode of the algorithm that finds the composition of

an optimal subset from the table generated by the bottom-up dynamic

programming algorithm for the knapsack problem.

3. For the bottom-up dynamic programming algorithm for the knapsack

problem, prove that

a. its time efficiency is in Θ(nW).

b. its space efficiency is in Θ(nW).

c. the time needed to find the composition of an optimal subset from

a filled dynamic programming table is in O(n+W).

4. a. True or false: A sequence of values in a row of the dynamic program-

ming table for an instance of the knapsack problem is always nondecreas-

ing.

b. True or false: A sequence of values in a column of the dynamic pro-

gramming table for an instance of the knapsack problem is always nonde-

creasing?

5. Apply the memory function method to the instance of the knapsack prob-

lem given in Problem 1. Indicate the entries of the dynamic programming

table that are: (i) never computed by the memory function method on

this instance; (ii) retrieved without a recomputation.

29

!4

Example: Knapsack problem
✦This is the instance of the Knapsack

problem that we solved previously:

Exercises 8.4

1. a. Apply the bottom-up dynamic programming algorithm to the following

instance of the knapsack problem:

item weight value

1 3 $25

2 2 $20

3 1 $15

4 4 $40

5 5 $50

, capacity W = 6.

b. How many different optimal subsets does the instance of part (a) have?

c. In general, how can we use the table generated by the dynamic pro-

gramming algorithm to tell whether there is more than one optimal subset

for the knapsack problem’s instance?

2. a. Write a pseudocode of the bottom-up dynamic programming algorithm

for the knapsack problem.

b. Write a pseudocode of the algorithm that finds the composition of

an optimal subset from the table generated by the bottom-up dynamic

programming algorithm for the knapsack problem.

3. For the bottom-up dynamic programming algorithm for the knapsack

problem, prove that

a. its time efficiency is in Θ(nW).

b. its space efficiency is in Θ(nW).

c. the time needed to find the composition of an optimal subset from

a filled dynamic programming table is in O(n+W).

4. a. True or false: A sequence of values in a row of the dynamic program-

ming table for an instance of the knapsack problem is always nondecreas-

ing.

b. True or false: A sequence of values in a column of the dynamic pro-

gramming table for an instance of the knapsack problem is always nonde-

creasing?

5. Apply the memory function method to the instance of the knapsack prob-

lem given in Problem 1. Indicate the entries of the dynamic programming

table that are: (i) never computed by the memory function method on

this instance; (ii) retrieved without a recomputation.

29

!4

Example: Knapsack problem
✦This is the instance of the Knapsack

problem that we solved previously:

✦ What is the “greedy solution”?

Exercises 8.4

1. a. Apply the bottom-up dynamic programming algorithm to the following

instance of the knapsack problem:

item weight value

1 3 $25

2 2 $20

3 1 $15

4 4 $40

5 5 $50

, capacity W = 6.

b. How many different optimal subsets does the instance of part (a) have?

c. In general, how can we use the table generated by the dynamic pro-

gramming algorithm to tell whether there is more than one optimal subset

for the knapsack problem’s instance?

2. a. Write a pseudocode of the bottom-up dynamic programming algorithm

for the knapsack problem.

b. Write a pseudocode of the algorithm that finds the composition of

an optimal subset from the table generated by the bottom-up dynamic

programming algorithm for the knapsack problem.

3. For the bottom-up dynamic programming algorithm for the knapsack

problem, prove that

a. its time efficiency is in Θ(nW).

b. its space efficiency is in Θ(nW).

c. the time needed to find the composition of an optimal subset from

a filled dynamic programming table is in O(n+W).

4. a. True or false: A sequence of values in a row of the dynamic program-

ming table for an instance of the knapsack problem is always nondecreas-

ing.

b. True or false: A sequence of values in a column of the dynamic pro-

gramming table for an instance of the knapsack problem is always nonde-

creasing?

5. Apply the memory function method to the instance of the knapsack prob-

lem given in Problem 1. Indicate the entries of the dynamic programming

table that are: (i) never computed by the memory function method on

this instance; (ii) retrieved without a recomputation.

29

A. Item 5
B. Items 3 & 5
C. Items 2 & 4

D. Items 1 & 5
E. None of the

above

!4

Example: Knapsack problem
✦This is the instance of the Knapsack

problem that we solved previously:

✦ What is the “greedy solution”
✦ Is this optimal?
✦ Will a greedy algorithm always work?

! Suppose that W = 5? W = 3?

Exercises 8.4

1. a. Apply the bottom-up dynamic programming algorithm to the following

instance of the knapsack problem:

item weight value

1 3 $25

2 2 $20

3 1 $15

4 4 $40

5 5 $50

, capacity W = 6.

b. How many different optimal subsets does the instance of part (a) have?

c. In general, how can we use the table generated by the dynamic pro-

gramming algorithm to tell whether there is more than one optimal subset

for the knapsack problem’s instance?

2. a. Write a pseudocode of the bottom-up dynamic programming algorithm

for the knapsack problem.

b. Write a pseudocode of the algorithm that finds the composition of

an optimal subset from the table generated by the bottom-up dynamic

programming algorithm for the knapsack problem.

3. For the bottom-up dynamic programming algorithm for the knapsack

problem, prove that

a. its time efficiency is in Θ(nW).

b. its space efficiency is in Θ(nW).

c. the time needed to find the composition of an optimal subset from

a filled dynamic programming table is in O(n+W).

4. a. True or false: A sequence of values in a row of the dynamic program-

ming table for an instance of the knapsack problem is always nondecreas-

ing.

b. True or false: A sequence of values in a column of the dynamic pro-

gramming table for an instance of the knapsack problem is always nonde-

creasing?

5. Apply the memory function method to the instance of the knapsack prob-

lem given in Problem 1. Indicate the entries of the dynamic programming

table that are: (i) never computed by the memory function method on

this instance; (ii) retrieved without a recomputation.

29

A. Yes
B. No

!5

Example: Knapsack problem
✦This is the instance of the Knapsack

problem that we solved previously:

✦ What is the “greedy solution”
✦ Is this optimal?
✦ Will a greedy algorithm always work?

! Suppose that W = 5? W = 3?

Exercises 8.4

1. a. Apply the bottom-up dynamic programming algorithm to the following

instance of the knapsack problem:

item weight value

1 3 $25

2 2 $20

3 1 $15

4 4 $40

5 5 $50

, capacity W = 6.

b. How many different optimal subsets does the instance of part (a) have?

c. In general, how can we use the table generated by the dynamic pro-

gramming algorithm to tell whether there is more than one optimal subset

for the knapsack problem’s instance?

2. a. Write a pseudocode of the bottom-up dynamic programming algorithm

for the knapsack problem.

b. Write a pseudocode of the algorithm that finds the composition of

an optimal subset from the table generated by the bottom-up dynamic

programming algorithm for the knapsack problem.

3. For the bottom-up dynamic programming algorithm for the knapsack

problem, prove that

a. its time efficiency is in Θ(nW).

b. its space efficiency is in Θ(nW).

c. the time needed to find the composition of an optimal subset from

a filled dynamic programming table is in O(n+W).

4. a. True or false: A sequence of values in a row of the dynamic program-

ming table for an instance of the knapsack problem is always nondecreas-

ing.

b. True or false: A sequence of values in a column of the dynamic pro-

gramming table for an instance of the knapsack problem is always nonde-

creasing?

5. Apply the memory function method to the instance of the knapsack prob-

lem given in Problem 1. Indicate the entries of the dynamic programming

table that are: (i) never computed by the memory function method on

this instance; (ii) retrieved without a recomputation.

29

!5

Example: Knapsack problem
✦This is the instance of the Knapsack

problem that we solved previously:

✦ What is the “greedy solution”
✦ Is this optimal?
✦ Will a greedy algorithm always work?

! Suppose that W = 5? W = 3?

Exercises 8.4

1. a. Apply the bottom-up dynamic programming algorithm to the following

instance of the knapsack problem:

item weight value

1 3 $25

2 2 $20

3 1 $15

4 4 $40

5 5 $50

, capacity W = 6.

b. How many different optimal subsets does the instance of part (a) have?

c. In general, how can we use the table generated by the dynamic pro-

gramming algorithm to tell whether there is more than one optimal subset

for the knapsack problem’s instance?

2. a. Write a pseudocode of the bottom-up dynamic programming algorithm

for the knapsack problem.

b. Write a pseudocode of the algorithm that finds the composition of

an optimal subset from the table generated by the bottom-up dynamic

programming algorithm for the knapsack problem.

3. For the bottom-up dynamic programming algorithm for the knapsack

problem, prove that

a. its time efficiency is in Θ(nW).

b. its space efficiency is in Θ(nW).

c. the time needed to find the composition of an optimal subset from

a filled dynamic programming table is in O(n+W).

4. a. True or false: A sequence of values in a row of the dynamic program-

ming table for an instance of the knapsack problem is always nondecreas-

ing.

b. True or false: A sequence of values in a column of the dynamic pro-

gramming table for an instance of the knapsack problem is always nonde-

creasing?

5. Apply the memory function method to the instance of the knapsack prob-

lem given in Problem 1. Indicate the entries of the dynamic programming

table that are: (i) never computed by the memory function method on

this instance; (ii) retrieved without a recomputation.

29

A. Yes B. No
!6

Example: Knapsack problem
✦This is the instance of the Knapsack

problem that we solved previously:

✦ What is the “greedy solution”
✦ Is this optimal?
✦ Will a greedy algorithm always work?

! Suppose that W = 5? W = 3?

Exercises 8.4

1. a. Apply the bottom-up dynamic programming algorithm to the following

instance of the knapsack problem:

item weight value

1 3 $25

2 2 $20

3 1 $15

4 4 $40

5 5 $50

, capacity W = 6.

b. How many different optimal subsets does the instance of part (a) have?

c. In general, how can we use the table generated by the dynamic pro-

gramming algorithm to tell whether there is more than one optimal subset

for the knapsack problem’s instance?

2. a. Write a pseudocode of the bottom-up dynamic programming algorithm

for the knapsack problem.

b. Write a pseudocode of the algorithm that finds the composition of

an optimal subset from the table generated by the bottom-up dynamic

programming algorithm for the knapsack problem.

3. For the bottom-up dynamic programming algorithm for the knapsack

problem, prove that

a. its time efficiency is in Θ(nW).

b. its space efficiency is in Θ(nW).

c. the time needed to find the composition of an optimal subset from

a filled dynamic programming table is in O(n+W).

4. a. True or false: A sequence of values in a row of the dynamic program-

ming table for an instance of the knapsack problem is always nondecreas-

ing.

b. True or false: A sequence of values in a column of the dynamic pro-

gramming table for an instance of the knapsack problem is always nonde-

creasing?

5. Apply the memory function method to the instance of the knapsack prob-

lem given in Problem 1. Indicate the entries of the dynamic programming

table that are: (i) never computed by the memory function method on

this instance; (ii) retrieved without a recomputation.

29

!6

Huffman Coding

!7

The Coding Problem:
✦A data file contains

100,000 “characters”
each of which is either
an a, b, c, d, e, or f

✦Using three bits for each
character takes:  
  
3 x 100,000 = 300,000
bits

✦How could we do better?

!8

The Coding Problem:
✦A data file contains

100,000 “characters”
each of which is either
an a, b, c, d, e, or f

✦Using three bits for each
character takes:  
  
3 x 100,000 = 300,000
bits

✦How could we do better?

Letter Code

a 000

b 001

c 010

d 011

e 100

f 101

!8

Using Frequency Information:
✦Variable length coding

gives shorter codes to
more frequent letters.

✦Encoded size: 
(45 * 1 
 + (13+12+16+9) * 2  
 + 5 * 3) * 1,000  
= 160,000

✦A saving of of over 46%

✦ Is there a flaw?
!9

Letter Frequency Code

a 45,000 0

b 13,000 01

c 12,000 10

d 16,000 00

e 9,000 11

f 5,000 100

Using Frequency Information:
✦Variable length coding

gives shorter codes to
more frequent letters.

✦Encoded size: 
(45 * 1 
 + (13+12+16+9) * 2  
 + 5 * 3) * 1,000  
= 160,000

✦A saving of of over 46%

✦ Is there a flaw?
!9

Letter Frequency Code

a 45,000 0

b 13,000 01

c 12,000 10

d 16,000 00

e 9,000 11

f 5,000 100

A. Yes B. No

Unique Decoding:
✦What string does the code  

10000011010 represent?

✦One reading:  
 100 0 00 11 01 0 
 f a d e b a

✦Another reading: 
 10 00 0 01 10 10 
 c d a b c c

✦Oh dear: we’ve lost too much  
of the information that was in the original!

Letter Frequency Code

a 45,000 0

b 13,000 01

c 12,000 10

d 16,000 00

e 9,000 11

f 5,000 100

!10

Use a Prefix-free Code
✦Prefix(-free) property: 

no codeword is a prefix of
another codeword

✦Encoded size: 
(45 * 1 
 + (13+12+16) * 3  
 + (9 + 5) * 4) * 1,000  
= 224,000

✦Still reduce size by ~25%

✦And this time, it can be
decoded!

!11

Use a Prefix-free Code
✦Prefix(-free) property: 

no codeword is a prefix of
another codeword

✦Encoded size: 
(45 * 1 
 + (13+12+16) * 3  
 + (9 + 5) * 4) * 1,000  
= 224,000

✦Still reduce size by ~25%

✦And this time, it can be
decoded!

!11

Letter Frequency Code

a 45,000 0

b 13,000 101

c 12,000 100

d 16,000 111

e 9,000 1101

f 5,000 1100

Prefix Coding & Decoding:
✦A prefix code can achieve compression that is optimal

among any character code

✦Code can be represented by a tree:

!12

Prefix Coding & Decoding:
✦A prefix code can achieve compression that is optimal

among any character code

✦Code can be represented by a tree:

Letter Frequency Code

a 45,000 0

b 13,000 101

c 12,000 100

d 16,000 111

e 9,000 1101

f 5,000 1100

10

10

10 10

10

a

c b

f e

d

!12

Frequencies & Costs:
✦ For any given coding tree T, the number of bits

required to code a message is:

100

45 55

25 30

12 1413 16

5 9

a

c b

Letter Frequency Code

a 45,000 0

b 13,000 101

c 12,000 100

d 16,000 111

e 9,000 1101

f 5,000 1100

f e

d

cost(T) =
X

c2C

freq(c) · depthT (c)

!13

0 1

Building a Huffman Coding Tree
✦We can use a table to avoid doing a calculation more than once:

initialize a empty priority queue, Q
add a leaf node to Q for each character
while (|Q|>1) do
 l = extractMin(Q) 
 r = extractMin(Q) 
 t = new tree node  
 with left=l, right=r, freq=l.freq+r.freq
 insert t into Q
return extractMin(Q)

✦ Complexity?
✦ Complexity for computing frequencies?

Using frequency
as key

!14

Building a Huffman Coding Tree
✦We can use a table to avoid doing a calculation more than once:

initialize a empty priority queue, Q
add a leaf node to Q for each character
while (|Q|>1) do
 l = extractMin(Q) 
 r = extractMin(Q) 
 t = new tree node  
 with left=l, right=r, freq=l.freq+r.freq
 insert t into Q
return extractMin(Q)

✦ Complexity?
✦ Complexity for computing frequencies?

Using frequency
as key

Greedy choices!

!14

Building a Huffman Coding Tree
✦We can use a table to avoid doing a calculation more than once:

initialize a empty priority queue, Q
add a leaf node to Q for each character
while (|Q|>1) do
 l = extractMin(Q) 
 r = extractMin(Q) 
 t = new tree node  
 with left=l, right=r, freq=l.freq+r.freq
 insert t into Q
return extractMin(Q)

✦ Complexity?
✦ Complexity for computing frequencies?

Using frequency
as key

Greedy choices!

Last element in the
queue

!14

Example:

45
a

12
c

13
b

5
f

9
e

16
d

!15

Example:

45
a

12
c

13
b

5
f

9
e

16
d

!16

14

Example:

45
a

12
c

13
b

5
f

9
e

16
d

!17

14 25

Example:

25 30

12 1413 16

5 9

45
a

c b

f e

d

!18

Example:

45 55

25 30

12 1413 16

5 9

a

c b

f e

d

!19

Example:

100

45 55

25 30

12 1413 16

5 9

a

c b

f e

d

!20

“Optimal Subproblems”
✦At each iteration, our task is to find an

optimal code for |Q| items

✦We pick the pair of characters that have the
lowest frequencies

✦We reduce the original problem to the task of
finding an optimal code for |Q|-1 items

✦We can prove that the resulting coding
scheme is indeed optimal

!21

Huffman Trees (2nd Example)
✦Build the optimal Huffman code for the

following set of frequencies
 a:1 b:1 c:2 d:3 e:5 f:8 g:13 h:21  

!22

1 1 2 3 5 13 21

a b c d e g h
8
f

!23

1 1 2 3 5 13 21

a b c d e g h
8
f

!24

1 1

2 3 5 13 21

a b

c d e g h
8
f

2

!25

2 3 5 13 21

c d e g h
8
f

1 1
a b

2

!26

2

3 5 13 21

c

d e g h
8
f

1 1
a b

2

!27

2

3 5 13 21

c

d e g h
8
f

1 1
a b

2

4

!28

2

3 5 13 21

c

d e g h
8
f

1 1
a b

2

4

Correctness of Huffman Code
Proof Idea

✦ Step 1: Show that this problem satisfies the greedy
choice property, that is, if a greedy choice is made by
Huffman's algorithm, an optimal solution remains
possible.

✦ Step 2: Show that this problem has an optimal
substructure property, that is, an optimal solution to
Huffman's algorithm contains optimal solutions to
subproblems.

✦ Step 3: Conclude correctness of Huffman's algorithm
using step 1 and step 2.

!29

Lemma: Greedy Choice Property
Let c be an alphabet in which each character c has
frequency f[c]. Let x and y be two characters in C
having the lowest frequencies. Then there exists an
optimal prefix code for C in which the codewords for x
and y have the same length and differ only in the last
bit.

!30

Lemma: Optimal Substructure Property

• Let T be a full binary tree representing an
optimal prefix code over an alphabet C, where
each c ∈ C has frequency fc.

• Consider any two characters x and y that appear
as sibling leaves in the tree T.

• Consider alphabet C ’= C − {x, y}∪{z} with
frequency fz = fx + fy, and label with z the parent
of x and y

• Then T ’ = T − {x, y} represents an optimal code
for alphabet C ’

!31

T represents
an optimal
prefix code for
alphabet C

x and y appear
as sibling
leaves

!32

fx fy
x y

fx+fy

T =
d

T ’ represents
an optimal
prefix code for
alphabet C ’

x and y
replaced by z

!33

z

fx+fy

T ’ =
d

Priority Queues

!34

Priority Queues
✦A Priority Queue is a data structure optimized for

finding and removing the element with the max
(or min) key. It has operations to:
✦ find the highest priority element (with max key)
✦ delete the highest priority element
✦ add a new item

✦We want to avoid insertion sort at each step
✦ Complexity of insertion would be O(n)

✦We use a Heap (Levitin §6.4) — a particular kind
of balanced tree.

!35

2

1 3

6

5 7

4The ideal:

✦ O(log n) complexity
✦ Everybody happy

!36

2

1 3

6

5 7

4The ideal:

✦ O(log n) complexity
✦ Everybody happy

The (possible) reality:

!36

2

1 3

6

5 7

4The ideal:

✦ O(log n) complexity
✦ Everybody happy

1
The (possible) reality:

!36

2

1 3

6

5 7

4The ideal:

✦ O(log n) complexity
✦ Everybody happy

1

2

The (possible) reality:

!36

2

1 3

6

5 7

4The ideal:

✦ O(log n) complexity
✦ Everybody happy

1

2

.

The (possible) reality:

!36

. .

2

1 3

6

5 7

4The ideal:

✦ O(log n) complexity
✦ Everybody happy

1

2

6

.

The (possible) reality:

!36

. .

2

1 3

6

5 7

4The ideal:

✦ O(log n) complexity
✦ Everybody happy

1

2

6

7

.

The (possible) reality:

!36

. .

2

1 3

6

5 7

4The ideal:

✦ O(log n) complexity
✦ Everybody happy

1

2

6

7

.

The (possible) reality:

Unbalanced!

!36

. .

2

1 3

6

5 7

4The ideal:

✦ O(log n) complexity
✦ Everybody happy

1

2

6

7

.

The (possible) reality:

Unbalanced!✦ O(n) complexity
✦ Could have used lists!

!36

. .

2

1 3

6

5 7

4The ideal:

✦ O(log n) complexity
✦ Everybody happy

1

2

6

7

.

The (possible) reality:

Unbalanced!✦ O(n) complexity
✦ Could have used lists!

!36

. .

What does “balanced” mean?

L R

size L = size R

?

Perhaps:

!37

Too constraining!
✦ A balanced binary tree of height h has exactly nh

elements, where:
n-1 = 0 and n(h+1) = 1 + 2 nh;

✦ So if T is perfectly balanced, then:
size T ∈{0, 1, 3, 7, 15, 31, 63, …, 2h-1, …};

✦ There is no perfectly balanced tree with any
other number of elements.

!38

A perfectly balanced tree:

!39

A perfectly balanced tree:

Think of this as an empty frame that
we can fill with elements ...

!39

A perfectly balanced tree:

Think of this as an empty frame that
we can fill with elements ...

!39

A perfectly balanced tree:

Think of this as an empty frame that
we can fill with elements ...

!39

A perfectly balanced tree:

Think of this as an empty frame that
we can fill with elements ...

!39

A perfectly balanced tree:

Think of this as an empty frame that
we can fill with elements ...

!39

A perfectly balanced tree:

Think of this as an empty frame that
we can fill with elements ...

!39

A perfectly balanced tree:

Think of this as an empty frame that
we can fill with elements ...

… filling the rows up one at a time
makes the tree as balanced as
possible! !39

Number the nodes — in binary!

1000 1001 1010 1011 1100 1101 1110 1111

0100 0101 0110 0111

0010

0001

0011

!40

Number the nodes — in binary!

1000 1001 1010 1011 1100 1101 1110 1111

0100 0101 0110 0111

0010

0001

0011

There is a common
pattern at each node:

!40

Number the nodes — in binary!

1000 1001 1010 1011 1100 1101 1110 1111

0100 0101 0110 0111

0010

0001

0011

n0 n1

nThere is a common
pattern at each node:

Multiply by 2 Multiply by 2 and add 1

!40

Embed a tree in an array
✦ A tree with t < 2n elements can be

implemented using an array a and variable t:
! elements a[1..t], (a[t +1 .. 2n–1] are empty)
! the root is held in position a[1]
! left child of node a[i] is a[2i]
! right child of node a[i] is a[2i+1]
! parent of node a[i] is a[⌊i/2⌋]

✦ True or False: all elements of the array with
index ≥ 2n−1 represent leaf nodes

!41

Too good to be true?
✦ So now we can build (almost) perfectly

balanced binary trees with:
✦ the smallest possible height for any number of

elements stored;
✦ O(1) complexity for addition.

✦ Where’s the flaw?

!42

Building a tree in this way does not give binary search
trees:

We cannot preserve the binary search tree invariant and
retain O(1) time for insertion.

Out of order!

8 9 10 11 12 13 14 15

4 5 6 7

2

1

3

!43

Properties of a Heap:

1. Shape Property:
The binary tree is essentially complete, that is,
all levels are filled except some of the rightmost
leaves may be missing in the last level

!44

Properties of a Heap:

L R

n

2. Parental dominance Property:
The key in each node is greater than or equal to the keys
of its children. So, all values in L are ≤n, and all values  
in R are also ≤n

✦

!45

Inserting an element:

The new element should be added here
(takes O(1) time)

!46

Inserting an element:

 a

 b

New value, a
If a≤b, then this is a heap, and
we are done!

!47

Inserting an element:

 a

 b

!!!

!!!

These nodes might not
satisfy the parental
dominance property!

But if a>b, then we need to do some work
to restore the heap property.

!48

Inserting an element:

 a

 b

!!!

!!!

These nodes might not
satisfy the parental
dominance property!

But if a>b, then we need to do some work
to restore the heap property.

Start by swapping a and b …

!48

Inserting an element:

 a

 b

!!!

!!!

These nodes might not
satisfy the parental
dominance property!

!49

Repeat until we’re done.

Takes O(log n) time: we have to worry about the nodes on
only one path in the tree.

Implementation:

heapInsert(value) {
 size ← size + 1  

 int i ← size;
 while (i>1 ∧ h[parent(i)]<value) do {
 h[i] ← h[parent(i)]
 i ← parent(i)
 }
 h[i] ← value;
}

h[] is an array containing
the heap elements;

size is the number of
entries in the heap that have
been used.

!50

Removing maximal element:

Finding the maximum element is
easy! (takes O(1) time)

!51

Removing maximal element:

We can fill the gap with the last value in the
array (takes O(1) time)

!52

Removing maximal element:

We can fill the gap with the last value in the
array (takes O(1) time)

!52

Removing maximal element:

We can fill the gap with the last value in the
array (takes O(1) time)

!52

Removing maximal element:

We can fill the gap with the last value in the
array (takes O(1) time)

But now this node
might not satisfy the
dominance property!

!52

Removing maximal element:

b

a

c

If a>b and a>c, then this is a heap, and
we are done!

!53

Removing maximal element:

b

a

c

Otherwise, suppose b>a and b>c.

Then we can swap a with b …

!54

Removing maximal element:

a

b

c

But now this node
might not satisfy the
heap property!

Repeat until we’re done.

Takes O(log n) time: we have to worry about the nodes on
only one path in the tree.

!55

Implementation:

heapExtractMax() {  
 size ← size - 1

 int max ← h[1];
 h[1] ← h[size];
 heapify(1);
 return max;
}

!56

Implementation:
heapify(i) {
 l ← left(i); r ← right(i);
 largest ← i;
 if (l≤size) {
 if (h[l]>h[i])
 largest ← l;
 if (r≤size ∧ h[r]>h[largest])
 largest ← r;
 }
 if (largest≠i) {
 h.swap(i, largest);
 heapify(largest);
 }
}

!57

Priority queues:
✦A priority queue is a variation on the queue data

structure with a “highest-priority first out” policy.

✦More concretely, a priority queue supports
operations to:
✦ Add an element, and
✦ Remove highest priority element.

✦Heaps can be used as an implementation of
priority queues—one of the most common uses
of heaps in practice.

!58

Building a heap:

Suppose we start with an arbitrary array of values.

Run heapify on each of the interior nodes, starting at the
bottom, and working back to the root. Now we have a heap!

!59

Implementation:

buildHeap() {
 size ← h.length;
 for i from size/2 downto 1 do {
 heapify(i);
 }
}

!60

Complexity:

✦To a first approximation: there are O(n) calls to
heapify, and O(log n) steps for each such call,
giving a total:

O(n log n)

!61

Complexity:

✦To a first approximation: there are O(n) calls to
heapify, and O(log n) steps for each such call,
giving a total:

O(n log n)

✦ But we can do better than this!
✦ Many of the calls to heapify involve trees with

heights that are < log n.

!61

✦The total cost of buildHeap is:

✦Simplifying:

!62

dlgneX

h=0

n

2h+1
O(h) = O

0

@n

dlgneX

h=0

h

2h+1

1

A

 O

n

1X

h=0

h

2h

!
= O(n)

dlgneX

h=0

⇠
n

2h+1

⇡
O(h)

✦The total cost of buildHeap is:

✦Simplifying:

trees of
height h

!62

dlgneX

h=0

n

2h+1
O(h) = O

0

@n

dlgneX

h=0

h

2h+1

1

A

 O

n

1X

h=0

h

2h

!
= O(n)

dlgneX

h=0

⇠
n

2h+1

⇡
O(h)

✦The total cost of buildHeap is:

✦Simplifying:

trees of
height h

!62

dlgneX

h=0

n

2h+1
O(h) = O

0

@n

dlgneX

h=0

h

2h+1

1

A

 O

n

1X

h=0

h

2h

!
= O(n)

dlgneX

h=0

⇠
n

2h+1

⇡
O(h)

✦The total cost of buildHeap is:

✦Simplifying:

trees of
height h

cost of heapify on
trees of height h

!62

dlgneX

h=0

n

2h+1
O(h) = O

0

@n

dlgneX

h=0

h

2h+1

1

A

 O

n

1X

h=0

h

2h

!
= O(n)

dlgneX

h=0

⇠
n

2h+1

⇡
O(h)

✦The total cost of buildHeap is:

✦Simplifying:

trees of
height h

cost of heapify on
trees of height h

!62

dlgneX

h=0

n

2h+1
O(h) = O

0

@n

dlgneX

h=0

h

2h+1

1

A

 O

n

1X

h=0

h

2h

!
= O(n)

dlgneX

h=0

⇠
n

2h+1

⇡
O(h)

✦The total cost of buildHeap is:

✦Simplifying:

trees of
height h

cost of heapify on
trees of height h

!62

dlgneX

h=0

n

2h+1
O(h) = O

0

@n

dlgneX

h=0

h

2h+1

1

A

 O

n

1X

h=0

h

2h

!
= O(n)

dlgneX

h=0

⇠
n

2h+1

⇡
O(h)

converges to 2

✦The total cost of buildHeap is:

✦Simplifying:

trees of
height h

cost of heapify on
trees of height h

!62

dlgneX

h=0

n

2h+1
O(h) = O

0

@n

dlgneX

h=0

h

2h+1

1

A

 O

n

1X

h=0

h

2h

!
= O(n)

dlgneX

h=0

⇠
n

2h+1

⇡
O(h)

converges to 2

Spanning Trees

!63

Spanning Trees
✦ If e is a minimum-weight edge in a

connected graph, then e must be an edge in
at least one minimum spanning tree

✦ True or False?

!64

Spanning Trees
✦ If e is a minimum-weight edge in a

connected graph, then e must be an edge in
all minimum spanning trees of the graph

✦ True or False?

!65

Spanning Trees
✦ If every edge in a connected graph G has a

distinct weight, then G must have exactly
one minimum spanning tree

✦ True or False?

!66

Kruskal’s Algorithm

!67

Building bridges:
✦Suppose that we want to link a group of n

small islands together with bridges.

✦There will be many possible ways to do this,
each corresponding to a connected graph,
with the islands as vertices and bridges as
edges.

✦What is the minimum number of bridges
that we will need to build?

!68

Spanning trees:
A spanning tree T of a connected graph G = (V,E) is a
subgraph of G that is:
" connected;
" acyclic;
" includes all of V as vertices.

!69

Spanning trees:
A spanning tree T of a connected graph G = (V,E) is a
subgraph of G that is:
" connected;
" acyclic;
" includes all of V as vertices.

!69

Spanning trees:
A spanning tree T of a connected graph G = (V,E) is a
subgraph of G that is:
" connected;
" acyclic;
" includes all of V as vertices.

!69

Spanning trees:
A spanning tree T of a connected graph G = (V,E) is a
subgraph of G that is:
" connected;
" acyclic;
" includes all of V as vertices.

Any spanning tree has |V|−1 edges.

!69

Growing a forest:
✦ Find a spanning tree for connected graph G=(V,E):

partition V into |V| singleton sets of the form {v}.
let ET be an empty set of edges.
for each edge (u,v) in E:
 let Su be the set containing u
 let Sv be the set containing v
 if Su ≠ Sv, then
 replace Su and Sv with Su ∪ Sv
 add (u,v) to ET
return (V, ET) as the spanning tree

✦ We start with |V| sets …
… we end up with just 1 set.

✦ Hence: |V|−1 unions, |V|−1 edges added to ET.

!70

!71

!71

!71

!71

!71

!71

!71

!71

!71

!71

!71

!71

!71

!71

!71

Calculating connected components:

What if G=(V,E) is not connected?
partition V into |V| singleton sets of the form {v}.
let ET be an empty set of edges.
for each edge (u,v) in E:
 let Su be the set containing u
 let Sv be the set containing v
 if Su ≠ Sv, then
 replace Su and Sv with Su ∪ Sv
 add (u,v) to ET

We end up with c distinct sets Su, where c is the number
of connected components of G;

ET is a spanning forest for G, with |V|−c edges.

NB: exactly the same
algorithm as before,
but repeated for
convenience!

!72

!73

!73

!73

!73

!73

!73

!73

!73

!73

!73

!73

!73

Union-find:
The operations we
need are:
" Make a singleton set;
" Test if two sets are

equal;
" Union two sets

together.

There is a simple data
structure that we can
use to implement
these operations.

x

Pointer to this
vertex’s
representative

Pointer to
next vertex in
this set

Pointer to this
vertex’s
adjacency list

x

y

z 0

!74

Implementation:
To make a singleton set:

To test if two sets are the same:
" Test if the representatives are the same.

To merge two sets:

0

a

b

c 0

d

e 0

∪ =

a

b

c

d

e 0
!75

Complexity:
A sequence of m operations can take Θ(m2) time
(amortized time per operation is Θ(m))

More sophisticated variations are possible, with better
complexity bounds.

A tree based approach
" Optimization heuristics:

! Union by rank
! Path compression

See Levitin §9.2 or CLRS Chapter 21 for more details.

...
...
...

...

!76

Quick Union:
Uses Tree-based representation of sets
‣ root of tree used as representative of set

!77

330 Greedy Technique

1

54

2

3

6

1

4 5

62

(a) (b)

3

FIGURE 9.8 (a) Forest representation of subsets {1, 4, 5, 2} and {3, 6} used by quick
union. (b) Result of union(5, 6).

union by size. Though it does not improve the worst-case efficiency of a single ap-
plication of the union operation (it is still in !(n)), the worst-case running time of
any legitimate sequence of union-by-size operations turns out to be in O(n log n).3

Here is a proof of this assertion. Let ai be an element of set S whose disjoint
subsets we manipulate, and let Ai be the number of times ai’s representative is
updated in a sequence of union-by-size operations. How large can Ai get if set S

has n elements? Each time ai’s representative is updated, ai must be in a smaller
subset involved in computing the union whose size will be at least twice as large as
the size of the subset containing ai. Hence, when ai’s representative is updated for
the first time, the resulting set will have at least two elements; when it is updated
for the second time, the resulting set will have at least four elements; and, in
general, if it is updated Ai times, the resulting set will have at least 2Ai elements.
Since the entire set S has n elements, 2Ai ≤ n and hence Ai ≤ log2 n. Therefore,
the total number of possible updates of the representatives for all n elements in S

will not exceed n log2 n.

Thus, for union by size, the time efficiency of a sequence of at most n − 1
unions and m finds is in O(n log n + m).

The quick union—the second principal alternative for implementing disjoint
subsets—represents each subset by a rooted tree. The nodes of the tree contain
the subset’s elements (one per node), with the root’s element considered the
subset’s representative; the tree’s edges are directed from children to their parents
(Figure 9.8). In addition, a mapping of the set elements to their tree nodes—
implemented, say, as an array of pointers—is maintained. This mapping is not
shown in Figure 9.8 for the sake of simplicity.

For this implementation, makeset(x) requires the creation of a single-node
tree, which is a !(1) operation; hence, the initialization of n singleton subsets is in
!(n). A union(x, y) is implemented by attaching the root of the y’s tree to the root
of the x’s tree (and deleting the y’s tree from the collection by making the pointer
to its root null). The time efficiency of this operation is clearly !(1). A find(x) is

3. This is a specific example of the usefulness of the amortized efficiency we mentioned back in Chapter 2.

Tree representing  
{1, 4, 5, 2} and {3, 6}

After union(5,6)

Path Compression

✦Amortized cost can be reduced by updating
pointers to point directly to the root when they
are queried.

✦See Levitin §9.2 or CLRS Chapter 21 for more
details.

!78

9.2 Kruskal’s Algorithm 331

T4

x T4

x

T3T2

T1

T3

T2

T1

FIGURE 9.9 Path compression.

performed by following the pointer chain from the node containing xto the tree’s
root whose element is returned as the subset’s representative. Accordingly, the
time efficiency of a single find operation is in O(n) because a tree representing a
subset can degenerate into a linked list with n nodes.

This time bound can be improved. The straightforward way for doing so is to
always perform a union operation by attaching a smaller tree to the root of a larger
one, with ties broken arbitrarily. The size of a tree can be measured either by the
number of nodes (this version is called union by size) or by its height (this version
is called union by rank). Of course, these options require storing, for each node of
the tree, either the number of node descendants or the height of the subtree rooted
at that node, respectively. One can easily prove that in either case the height of the
tree will be logarithmic, making it possible to execute each find in O(log n) time.
Thus, for quick union, the time efficiency of a sequence of at most n − 1 unions
and m finds is in O(n + m log n).

In fact, an even better efficiency can be obtained by combining either vari-
ety of quick union with path compression. This modification makes every node
encountered during the execution of a find operation point to the tree’s root (Fig-
ure 9.9). According to a quite sophisticated analysis that goes beyond the level
of this book (see [Tar84]), this and similar techniques improve the efficiency of a
sequence of at most n − 1 unions and m finds to only slightly worse than linear.

Exercises 9.2

1. Apply Kruskal’s algorithm to find a minimum spanning tree of the following
graphs.
a.

b c

a ed

1

3 4

6 2

5 6

Kruskal’s Algorithm

Back to ...

!79

Growing a tree:
Suppose that we have a connected graph G=(V, E) and
pick an arbitrary vertex r ∈ V:

let W ← {r}, ET ← empty set;

while (W≠V) do {
 find an edge (u,v) with u∈W and v∉W;

 W ← W ∪ {v};
 ET ← ET ∪ {(u,v)};
}

!80

Growing a tree:
Suppose that we have a connected graph G=(V, E) and
pick an arbitrary vertex r ∈ V:

let W ← {r}, ET ← empty set;

while (W≠V) do {
 find an edge (u,v) with u∈W and v∉W;

 W ← W ∪ {v};
 ET ← ET ∪ {(u,v)};
}

!80

How many times 
will this loop

execute?

Growing a tree:
Suppose that we have a connected graph G=(V, E) and
pick an arbitrary vertex r ∈ V:

let W ← {r}, ET ← empty set;

while (W≠V) do {
 find an edge (u,v) with u∈W and v∉W;

 W ← W ∪ {v};
 ET ← ET ∪ {(u,v)};
}

Invariant: (W,ET) is a connected,
acyclic subgraph of G

!80

How many times 
will this loop

execute?

Growing a tree:
Suppose that we have a connected graph G=(V, E) and
pick an arbitrary vertex r ∈ V:

let W ← {r}, ET ← empty set;

while (W≠V) do {
 find an edge (u,v) with u∈W and v∉W;

 W ← W ∪ {v};
 ET ← ET ∪ {(u,v)};
}

Invariant: (W,ET) is a connected,
acyclic subgraph of G

There must always be such an edge,
otherwise G would not be connected.

!80

How many times 
will this loop

execute?

Growing a tree:
Suppose that we have a connected graph G=(V, E) and
pick an arbitrary vertex r ∈ V:

let W ← {r}, ET ← empty set;

while (W≠V) do {
 find an edge (u,v) with u∈W and v∉W;

 W ← W ∪ {v};
 ET ← ET ∪ {(u,v)};
}

Invariant: (W,ET) is a connected,
acyclic subgraph of G

There must always be such an edge,
otherwise G would not be connected.

We add a total of |V|-1
edges to ET

!80

How many times 
will this loop

execute?

!81

!81

!81

!81

!81

!81

!81

!81

!81

Minimum Spanning Trees

!82

Back to bridge building …
To link a group of n small islands together with
bridges, we will need to build at least (n-1) bridges;
any spanning tree will do for this.

But now suppose that we want to minimize the total
span of all the bridges as well … How should we
proceed?

!83

Minimum spanning trees:
To take account of the distances between the islands,
we need to use a labeled, or weighted graph.

A minimum spanning tree (MST) is a spanning tree that
minimizes the total of the weights on its edges.

Not all spanning trees have this property.

3

4

5

!84

The MST problem:
Suppose that we have a connected, undirected graph G=(V,E),
with a numerical weighting w(u,v) for each edge (u,v).

Problem: Find an acyclic subset T ⊆ E that connects all of the
vertices in V, and minimizes:

Σ {w(u,v) | (u,v) ∈ T }
Solution: We will look for an algorithm of the form:

ET ← empty set of edges
while (ET is not a spanning tree)
 add an edge to ET

At each stage we will ensure that ET is a subset of a MST.
Obviously true when we start … the trick is to ensure that the
invariant is preserved when we add an element ...

!85

Greedy Choice
✦Whenever we add an edge, let’s make the

Greedy choice:
✦ add the edge with the lowest weight that does

not form a cycle
✦ Edges that do form a cycle are not needed in the

spanning tree
✦Does making the Greedy choice ever add an

edge that we don't need?

!86

A key result:

Suppose that we partition V into two sets (a “cut”),
and that none of the edges in ET crosses between the
two sets (the cut “respects” ET).

Suppose also that (u,v) is an edge that crosses
between the two halves, and that no other edge that
crosses has lower weight — (u,v) is a “light edge”.

Claim: ET ∪ {(u,v)} is a subset of a minimum
spanning tree: (u,v) is “safe” for ET.

!87

Proof:

!88

Proof:

u

v

Edges in ET

!88

cut

Proof:

u

v

Edges in ET

Edges in T

!88

cut

Proof:

✦ ET is a subset of some minimum spanning tree T.

u

v

Edges in ET

Edges in T

!88

cut

Proof:

✦ ET is a subset of some minimum spanning tree T.
✦ Because u and v are on opposite sides, there is an

edge e in T that crosses the cut.

u

v

Edges in ET

Edges in T

!88

cut

Proof:

✦ ET is a subset of some minimum spanning tree T.
✦ Because u and v are on opposite sides, there is an

edge e in T that crosses the cut.

u

v

Edges in ET

Edges in Te

!88

cut

Proof:

✦ ET is a subset of some minimum spanning tree T.
✦ Because u and v are on opposite sides, there is an

edge e in T that crosses the cut.

u

v

Edges in ET

Edges in Te

✦ By assumption weight of (u,v) ≤ the weight of e.

!88

cut

Proof:

✦ ET is a subset of some minimum spanning tree T.
✦ Because u and v are on opposite sides, there is an

edge e in T that crosses the cut.

u

v

Edges in ET

Edges in Te

✦ By assumption weight of (u,v) ≤ the weight of e.
✦ So if we replace e with (u,v), we get a minimum

spanning tree … which contains ET ∪ {(u,v)}.
!88

cut

Proof:

✦ ET is a subset of some minimum spanning tree T.
✦ Because u and v are on opposite sides, there is an

edge e in T that crosses the cut.

u

v

Edges in ET

Edges in Te

✦ By assumption weight of (u,v) ≤ the weight of e.
✦ So if we replace e with (u,v), we get a minimum

spanning tree … which contains ET ∪ {(u,v)}.
!88

cut

Proof:

✦ ET is a subset of some minimum spanning tree T.
✦ Because u and v are on opposite sides, there is an

edge e in T that crosses the cut.

u

v

Edges in ET

Edges in Te

✦ By assumption weight of (u,v) ≤ the weight of e.
✦ So if we replace e with (u,v), we get a minimum

spanning tree … which contains ET ∪ {(u,v)}.
!88

cut

light edge

Corollary:
✦ Suppose that:

" C is a connected component in the forest (V, ET);
" (u,v) is a light edge connecting C to some other component in G.

✦ Then (u,v) is safe for ET.

✦ Follows directly by using a cut to separate the vertices in
C from the vertices outside.

✦ Requiring C to be a connected component of (V, ET)
ensures that no edge in ET crosses the cut.

!89

Kruskal’s algorithm:
✦ Given a connected graph G=(V, E):

ET ← empty set of edges
for each v in V
 make a singleton set {v}

sort the edges of E by nondecreasing weight

for each edge (u,v) in E
 if Su ≠ Sv, then

 replace Su and Sv with Su ∪ Sv
 add (u,v) to ET

✦ Complexity is O(|E| log |E|).
✦ (With our simple union-find, more like O(|E|2))

!90

How does this work?
Suppose that C and D are the two connected
components in the forest (V,ET) that are connected by
an edge (u,v).

Then (u,v) must have the least weight of any edge
between C and D (otherwise C and D would have
already been connected).

!91

2

Your turn!
✦Apply Kruskal’s algorithm to this graph:

!92

b c

ed

1

65 3 4

6
a

2

Your turn!
✦Apply Kruskal’s algorithm to this graph:

!92

b c

ed

1

65 3 4

6

Tree edges List of edges (sorted by weight)

bc1 bc1 de2 bd3 cd4 ab5 ad6 ce6

a

2

Your turn!
✦Apply Kruskal’s algorithm to this graph:

!92

b c

ed

1

65 3 4

6

Tree edges List of edges (sorted by weight)

bc1 bc1 de2 bd3 cd4 ab5 ad6 ce6

a

2

Your turn!
✦Apply Kruskal’s algorithm to this graph:

!92

b c

ed

1

65 3 4

6

Tree edges List of edges (sorted by weight)

bc1 bc1 de2 bd3 cd4 ab5 ad6 ce6

a

!93

3

4
45

6

8

910

11

12

13

13 15

16

Try it out!

!93

3

4
45

6

8

910

11

12

13

13 15

16

Try it out!

!93

3

4
45

6

8

910

11

12

13

13 15

16

Try it out!

!93

3

4
45

6

8

910

11

12

13

13 15

16

Try it out!

!93

3

4
45

6

8

910

11

12

13

13 15

16

Try it out!

!93

3

4
45

6

8

910

11

12

13

13 15

16

Try it out!

!93

3

4
45

6

8

910

11

12

13

13 15

16

Try it out!

!93

3

4
45

6

8

910

11

12

13

13 15

16

Try it out!

!93

3

4
45

6

8

910

11

12

13

13 15

16

Try it out!

!93

3

4
45

6

8

910

11

12

13

13 15

16

Try it out!

!93

3

4
45

6

8

910

11

12

13

13 15

16

Try it out!

!93

3

4
45

6

8

910

11

12

13

13 15

16

Try it out!

!93

3

4
45

6

8

910

11

12

13

13 15

16

Try it out!

!93

3

4
45

6

8

910

11

12

13

13 15

16

Try it out!

!93

3

4
45

6

8

910

11

12

13

13 15

16

Try it out!

!93

3

4
45

6

8

910

11

12

13

13 15

16

Try it out!

Try it out!

8 7

2

67
11

4

8
1 2

4
14

10

9

!94

Try it out!

8 7

2

67
11

4

8
1 2

4
14

10

9

!95

Prim’s Algorithm

!96

Prim’s algorithm:
In Kruskal’s algorithm, ET is a forest whose components
are combined as the algorithm runs until just one
component remains.
Suppose instead that we start with an arbitrary vertex r,
and then add edges while ensuring that ET is just a
single tree at each stage.
This is the essence of Prim’s algorithm:

let VT ← {r}, ET ← empty set
while (VT ≠ V)
 find a light edge (u,v) for some u ∈ VT and v ∉ VT
 add v to VT; add (u,v) to ET
(V, ET) is the required MST

!97

Why does this work?
VT cuts V into two pieces: VT and (V − VT);

The edges that we add to ET are light edges across the
cut;

Hence, they are safe to add.

!98

Choosing the edges:
Store all vertices that are not in (VT, ET) in a priority
queue Q with an extractMin operation.

If u is a vertex in Q, what’s key[u] (the value that
determines u’s position in Q)?
‣ key[u] = minimum weight of edge from u into VT
‣ if no such edge exists, key[u] = ∞.

We maintain information about the parent (in (VT, ET))
of each vertex v in an array parent[].
‣ ET is kept implicitly as {(v, parent[v]) | v ∈ V−Q−{r}}.

!99

The input is the graph G=(V, E), and a root r ∈ V.

for each v in V
 key[v] ← ∞;
 parent[v] ← null;
key[r] ← 0;
add all vertices in V to the queue Q.

while (Q is nonempty) {
 u ← extractMin(Q);
 for each vertex v that is adjacent to u {
 if v ∈ Q and weight(u,v) < key[v] {
 parent[v] ← u;
 key[v] ← weight(u,v);
 }
 }
}

!100

The input is the graph G=(V, E), and a root r ∈ V.

for each v in V
 key[v] ← ∞;
 parent[v] ← null;
key[r] ← 0;
add all vertices in V to the queue Q.

while (Q is nonempty) {
 u ← extractMin(Q);
 for each vertex v that is adjacent to u {
 if v ∈ Q and weight(u,v) < key[v] {
 parent[v] ← u;
 key[v] ← weight(u,v);
 }
 }
}

How can this test
be implemented

in O(1)?

!100

The input is the graph G=(V, E), and a root r ∈ V.

for each v in V
 key[v] ← ∞;
 parent[v] ← null;
key[r] ← 0;
add all vertices in V to the queue Q.

while (Q is nonempty) {
 u ← extractMin(Q);
 for each vertex v that is adjacent to u {
 if v ∈ Q and weight(u,v) < key[v] {
 parent[v] ← u;
 key[v] ← weight(u,v);
 }
 }
}

How can this test
be implemented

in O(1)?

When we change a key, we will also need to
readjust the priority queue

!100

Complexity:
✦ Assuming a binary heap …

" Initialization takes O(|V|) time.

" Main loop is executed |V| times, and each extractMin
takes O(log |V|).

" The body of the inner loop is executed a total of  
O(|E|) times; each adjustment of the queue takes O(log
|V|) time.

✦ Overall complexity: O((|V|+|E|) log |V|)  
= O(|E| log |V|).

!101

Your turn!
✦Apply Prim’s algorithm to this graph:

!102

a b

dc

e

5

69

1
2

5
3

3

Your turn!
✦Apply Prim’s algorithm to this graph:

!102

a b

dc

e

5

69

1
2

5
3

3

Tree vertices Priority Queue of remaining vertices

a(–, –)

Your turn!
✦Apply Prim’s algorithm to this graph:

!102

a b

dc

e

5

69

1
2

5
3

3

Tree vertices Priority Queue of remaining vertices

a(–, –)

Your turn!
✦Apply Prim’s algorithm to this graph:

!102

a b

dc

e

5

69

1
2

5
3

3

Tree vertices Priority Queue of remaining vertices

a(–, –)

parent

Your turn!
✦Apply Prim’s algorithm to this graph:

!102

a b

dc

e

5

69

1
2

5
3

3

Tree vertices Priority Queue of remaining vertices

a(–, –)

parent

weight
of edge

Apply Prim’s Algorithm

8 7

2

67
11

4

8
1 2

4
14

10

9

Start here!

!103

Try it out!

8 7

2

67
11

4

8
1 2

4
14

10

9

!104

