CS 350 Algorithms and Complexity

Winter 2019

Lecture 13: Dynamic Programming

Andrew P. Black

Department of Computer Science Portland State University

Dynamic programming:

- Solves problems by breaking them into smaller sub-problems and solving those.
- Which algorithm design technique is this like?
 - ◆ Brute force
 - ◆ Decrease-and-conquer
 - Divide-and-conquer
 - None that we've seen so far

Question:

- Compare Dynamic Programming with Decrease-and-Conquer:
- A. They are the same
- B. They both solve a large problem by first solving a smaller problem
- c. In decrease and conquer, we don't "memoize" the solutions to the smaller problem
- D. In dynamic programming, we do "memoize" the smaller problems
- E. B, C & D
- F. **B&C**
- G. **B&D**

Dynamic Programming

- ◆ Dynamic programming differs from decrease-and-conquer because in dynamic programming we remember the answers to the smaller sub-problems.
- ♦ Why?
- A. To use more space
- B. In the hope that we might re-use them
- Because we know that the subproblems overlap

Dynamic programming:

- Solves problems by breaking them into smaller subproblems and solving those.
 - like: decrease & conquer
- Key idea: do not compute the solution to any subproblem more than once;
 - instead: save computed solutions in a table so that they can be reused.
- Consequently: dynamic programming works well when the sub-problems overlap.
 - unlike: decrease & conquer

Why Dynamic Programming?

- ◆ If the subproblems are not independent, i.e. subproblems share sub-subproblems,
 - then a decrease and conquer algorithm repeatedly solves the common subsubproblems.
 - thus: it does more work than necessary
- ↑ The "memo table" in DP ensures that each sub-problem is solved (at most) once.

- For dynamic programming to be applicable:
 - At most polynomial-number of subproblems
 - otherwise: still exponential
 - Solution to original problem is easy to compute from solutions to subproblems
 - Natural ordering on subproblems from "smallest" to "largest"
 - An easy-to-compute recurrence that allows solving a larger subproblem from a smaller subproblem

Optimization problems:

- Dynamic programming is typically (but not always) applied to optimization problems
 - In an optimization problem, the goal is to find a solution among many possible candidates that *minimizes* or *maximizes* some particular value.
- Such solutions are said to be <u>optimal</u>.

Example: Fibonacci Numbers

The familiar recursive definition:

```
fib 0 = 0
fib 1 = 1
fib (n+2) = fib (n+1) + fib n
```

Grows very rapidly:

```
0,1,1,2,3,5,8,13,21,34,55,89,144, ...
832040 (30<sup>th</sup>), ...
354224848179261915075 (100<sup>th</sup>), ...
```

Question

♦ What is the order of growth of the Fibonacci function?

```
A. O(n)
B. O(n^2)
C. O(1.61803...^n)
D. O(2^n)
E. O(e^n)
```

 In fact, the ith Fibonacci number is the integer closest to

$$\varphi^i/\sqrt{5}$$

where:

$$\varphi = \frac{1+\sqrt{5}}{2} = 1.61803\cdots$$

(the "golden ratio")

 Thus, the result of the Fibonacci function grows exponentially.

Complexity of brute-force fib:

let nfib be the <u>number of calls</u> needed to evaluate fib n, implemented according to the definition.

```
nfib 0 = 1

nfib 1 = 1

nfib (n+2) = 1 + nfib (n+1) + nfib n
```

- Grows even more rapidly than fib!
 - ✦ Hence fib is at least exponential ☺
- However: many calls to fib have the same argument ...

Repeated calls, same argument:

Avoiding repeated calculations:

We can use a table to avoid doing a calculation more than once:

```
table[0] \( \cap 0;\)
table[1] \( \cap 1;\)
table[2..max] \( \cap -1;\)
int tableFib(int n) {
   if (table[n] = -1) {
      table[n] \( \chi \) tableFib(n-1) + tableFib(n-2);
   }
   return table[n];
}
```

 Table size is fixed, but values can be shared over many calls.

Riding the wave:

Alternatively, we can look at the way the entries in the table are filled:

```
0 1 1 2 3 5 8 13 21 34 55 89 ...
```

This leads to code:

```
int a + 0, b + 1;
for i from 0 to n do {
    int c = a + b;
    a + b;
    b + c;
}
    Complexity is O(n)!
return a;
```

No limits on n now, but values cannot be reused.

Coin-collecting Problem

- Arrive at bottom-right with max number of pennies
- Robot can move right, or down
- Starts at top-left
 square (i, j) contains c_{ij}
- How can robot reach bottom-right?

Coin-collecting Problem

- Either from above, or from left
- How many pennies can it bring?
- If from above:

$$P(i-1, j)$$

If from left:

$$P(i, j-1)$$

♦ Hence: $P(i, j) = max(P(i-1, j), P(i, j-1)) + c_{ij}$

Example Problem

You fill in the table

Can you fill in the table for the coincollecting problem by rows, starting at the top-left?

- ◆ A. Yes
- ♦ B. No

Can you fill in the table for the coincollecting problem by columns, starting at the left-top?

- ◆ A. Yes
- ♦ B. No

Can you fill in the table for the coincollecting problem by rows, starting at the bottom-left?

- ◆ A. Yes
- ♦ B. No

Can you fill in the table for the coincollecting problem by columns, starting at the top-right?

- ◆ A. Yes
- ♦ B. No

Discussion Question

What constraints are there on filling in the rows and columns?

Can we do this "top down" rather than "bottom up"?

Knapsack Problem by DP

• Given *n* items of

```
integer weights: w_1 w_2 ... w_n values: v_1 v_2 ... v_n
```

a knapsack of integer capacity W

find most valuable subset of the items that fit into the knapsack

 How can we set this up as a recursion over smaller subproblems?

Knapsack Problem by DP

Consider problem instance defined by first i items and capacity j ($j \le W$).

Let V[i, j] be value of optimal solution of this problem instance. Then

$$V[i,j] = \begin{cases} \max (V[i-1, j], v_i + V[i-1, j-w_i]) & \text{if } j \ge w_i \\ V[i-1,j] & \text{if } j < w_i \end{cases}$$

Initial conditions: V[0, j] = 0 and V[i, 0] = 0

Knapsack Problem by DP (example)

Knapsack of capacity W = 5

item	weight	value								_	
1	2	\$12	$V[i,j] = \left\{ \right.$	max	(V[i-1]	, j], v	$V_i+V[i-$	-1, <i>j</i> -v	v_i]) if	f <i>j</i> ≥w _i	
2	1	\$10	Ι (<i>V</i> [<i>i</i> -1	, <i>j</i>]				if	<i>j</i> < <i>w</i> _{<i>i</i>}	
3	3	\$20									
4	2	\$15	capacity, j								
				0	1	2	3	4	5		
			0								
	W	$v_1 = 2, v_1 = 12$	1								
	W	$v_2 = 1, v_2 = 10$	<i>i</i> 2								
	w	$_3 = 3$, $v_3 = 20$	3								
	W	4 = 2, <i>v</i> ₄ = 15	4								

Can we do this "top down"?

- Yes: use a memo function
 - Not: a "memory function"
 - ◆ D. Michie. "Memo" functions and machine learning. *Nature*, 218:19–22, 6 April 1968.
- Idea: record previously computed values "just in time"

ALGORITHM MFKnapsack(i, j)//Implements the memory function method for the knapsack problem //Input: A nonnegative integer i indicating the number of the first items being considered and a nonnegative integer j indicating the knapsack's capacity //Output: The value of an optimal feasible subset of the first i items //Note: Uses as global variables input arrays Weights[1..n], Values[1..n], //and table V[0..n, 0..W] whose entries are initialized with -1's except for //row 0 and column 0 initialized with 0's **if** V[i, j] < 0**if** j < Weights[i] $value \leftarrow MFKnapsack(i-1, j)$ else $value \leftarrow \max(MFKnapsack(i-1, j),$ Values[i] + MFKnapsack(i-1, j-Weights[i]) $V[i, j] \leftarrow value$

return V[i, j]

Summary

- Dynamic programming is a good technique to use when:
 - Solutions defined in terms of solutions to smaller problems of the same type.
 - Many overlapping subproblems.
- → Implementation can use either:
 - top-down, recursive definition with memoization
 - explicit bottom-up tabulation

Problem

a. Apply the bottom-up dynamic programming algorithm to the following instance of the knapsack problem:

item	weight	value		
1	3	\$25	_	
2	2	\$20		appoint $W = 6$
3	1	\$15	,	capacity $W = 6$.
4	4	\$40		
5	5	\$50		

- b. How many different optimal subsets does the instance of part (a) have?
- c. In general, how can we use the table generated by the dynamic programming algorithm to tell whether there is more than one optimal subset for the knapsack problem's instance?

Problem:

- ◆ The sequence of values in a row of the dynamic programming table for an instance of the knapsack problem is always non-decreasing:
 - ◆ True or False?

Problem:

- ◆ The sequence of values in a column of the dynamic programming table for an instance of the knapsack problem is always non-decreasing:
 - ◆ True or False?

Problem

item	weight	value		
1	3	\$25	_	
2	2	\$20		conscitu $W = 6$
3	1	\$15	,	capacity $W = 6$.
4	4	\$40		
5	5	\$50		

Apply the memo function method to the above instance of the knapsack problem. Which entries of the dynamic programming table are (i) *never* computed by the memo function, and (ii) retrieved without recomputation.

Solution

In the table below, the cells marked by a minus indicate the ones for which no entry is computed for the instance in question; the only nontrivial entry that is retrieved without recomputation is (2,1).

		capacity j							
	i	0	1	2	3	4	5	6	
	0	0	0	0	0	0	0	0	
$w_1 = 3, v_1 = 25$	1	0	0	0	25	25	25	25	
$w_2 = 2, v_2 = 20$	2	0	0	20	_	-	45	45	
$w_3 = 1, v_3 = 15$	3	0	15	20	_	-	_	60	
$w_4 = 4, v_4 = 40$	4	0	15	_	<u> </u>	_	-	60	
$w_5 = 5, v_5 = 50$	5	0	_	_	_	_	_	65	

Warshall's Algorithm

- Computes the transitive closure of a relation.
 - reachability in a graph is only an example of such a relation ...

Warshall's Algorithm

Warshall Algorithm 1

```
Warshall(M_R: n \times n 0-1 matrix)
W := M_R (W = [w_{ij}])
for(k=1 to n) {
	for(i=1 to n) {
		w_{ij} = w_{ij} \lor (w_{ik} \land w_{kj})
		}
	}
}
return W
```

Warshall Algorithm 2

```
Warshall(M_R: n \times n 0-1 matrix)
W := M_R (W = [w_{ij}])
for(k=1 \text{ to } n)
  for(i=1 to n) {
     if(w_{ik}=1) {
        for(j=1 to n) {
           w_{ij} = w_{ij} \vee w_{kj}
return W
```

Example

$$M_R = egin{array}{ccccccc} 1 & 0 & 1 & 0 \ \hline 0 & 0 & 1 & 1 \ \hline 0 & 1 & 1 & 0 \ \hline 1 & 0 & 0 & 0 \ \hline \end{array}$$

 $W_0 = M_R = \text{direct connections between nodes}$

 $W_0 = M_R =$ direct connections between nodes $W_1 = W_0 + \text{connections thru node 1}$

$$M_R = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

$$W_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$W_1 = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$$

$$W_4 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix}
1 & 1 \\
1 & 1 \\
1 & 1
\end{bmatrix}$$
1 return W

Floyd's Algorithm

 the all-pairs shortest-paths problem: generate the matrix that contains as element (*i*,*j*) the shortest path from vertex *i* to vertex *j* in a known graph

Floyd's Algorithm

- What's the recurrence?
- generate a series of distance matrices:

$$D^{(0)}, D^{(1)}, ..., D^{(k)}, ..., D^{(n)}$$

- where no path in $D^{(k)}$ uses an intermediate vertex with index greater than k
- ◆ D⁽⁰⁾ is just the distance matrix of the graph

→ Basic idea:

lack shortest path from i to j:

$$d_{ij}^{(k)} = \min \left\{ d_{ij}^{(k-1)}, \quad d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \right\}, \quad \text{for } k \ge 1,$$

$$d_{ij}^{(0)} = w_{ij}$$

.

Floyd's Algorithm Example

Solve the all-pairs shortest path problem for the digraph with the following weight matrix:

$$\begin{bmatrix} 0 & 2 & \infty & 1 & 8 \\ 6 & 0 & 3 & 2 & \infty \\ \infty & \infty & 0 & 4 & \infty \\ \infty & \infty & 2 & 0 & 3 \\ 3 & \infty & \infty & \infty & 0 \end{bmatrix}$$

Solution

Applying Floyd's algorithm to the given weight matrix generates the following sequence of matrices:

$$D^{(0)} = \begin{bmatrix} 0 & 2 & \infty & 1 & 8 \\ 6 & 0 & 3 & 2 & \infty \\ \infty & \infty & 0 & 4 & \infty \\ \infty & \infty & 2 & 0 & 3 \\ 3 & \infty & \infty & \infty & 0 \end{bmatrix} \qquad D^{(1)} = \begin{bmatrix} 0 & 2 & \infty & 1 & 8 \\ 6 & 0 & 3 & 2 & 14 \\ \infty & \infty & 0 & 4 & \infty \\ \infty & \infty & 2 & 0 & 3 \\ 3 & 5 & \infty & 4 & 0 \end{bmatrix}$$

$$D^{(1)} = \begin{vmatrix} 0 & 2 & \infty & 1 & 8 \\ 6 & 0 & 3 & 2 & \mathbf{14} \\ \infty & \infty & 0 & 4 & \infty \\ \infty & \infty & 2 & 0 & 3 \\ 3 & \mathbf{5} & \infty & \mathbf{4} & 0 \end{vmatrix}$$

Sequence Alignment

- ◆ In genetics, sequence alignment is the process of converting one genesequence into another at minimal cost
 - operations:
 - replace an element
 - remove an element
 - insert an element
 - What's the minimum edit distance between two sequences?

- A can be optimally edited into B by
- insert first element of B, and optimally aligning A into tail of B, or
- 2. delete first element of A, and optimally aligning the tail of A and B, or
- replacing the first element of A with the first element of B, and optimally aligning the tails of A and B
- ◆ Build matrix H, where H_{ij} is cost of aligning A[1..i] with B[1..j]

Sequence
$$A = ACACACTA$$

Sequence B = AGCACACA

$$w(a, -) = w(-, b) = -1$$

 $w(\text{mismatch}) = -1$
 $w(\text{match}) = +2$

$$H(i,j) = \max \begin{cases} 0 \\ H(i-1,j) + w(a_i,b_j) \\ H(i-1,j) + w(a_i,-) \\ H(i,j+1) + w(-,b_j) \end{cases} \quad \begin{array}{c} \text{Deletion} \\ \text{Insertion} \\ \end{array}$$

$$H = \begin{pmatrix} A & C & A & C & A & C & T & A \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ A & 0 & 2 & 1 & 2 & 1 & 2 & 1 & 0 & 2 \\ G & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 \\ C & 0 & 0 & 3 & 2 & 3 & 2 & 3 & 2 & 1 \\ A & 0 & 2 & 2 & 5 & 4 & 5 & 4 & 3 & 4 \\ C & 0 & 1 & 4 & 4 & 7 & 6 & 7 & 6 & 5 \\ A & 0 & 2 & 3 & 6 & 6 & 9 & 8 & 7 & 8 \\ C & 0 & 1 & 4 & 5 & 8 & 8 & 11 & 10 & 9 \\ A & 0 & 2 & 3 & 6 & 7 & 10 & 10 & 10 & 12 \\ \end{array}$$