CS 350 Algorithms and Complexity

Winter 2019

Lecture 13: Dynamic Programming

Andrew P. Black

Department of Computer Science
Portland State University

Dynamic programming:

+ Solves problems by breaking them
into smaller sub-problems and solving

those.

+ Which algorithm design technique is
this like?
4+ Brute force
4+ Decrease-and-conquer
4+ Divide-and-conquer
+ None that we’ve seen so far

Question:

4+ Compare Dynamic Programming with
Decrease-and-Conquer:

A. They are the same

8. They both solve a large problem by first solving a
smaller problem

c. In decrease and conquer, we don’t “memoize”
the solutions to the smaller problem

p. In dynamic programming, we do “memoize” the
smaller problems

e B,C&D
F B&C
c. B&D

Dynamic Programming

+ Dynamic programming differs from

decrease-and-conquer because in
dynamic programming we remember the
answers to the smaller sub-problems.

+ Why?

A.

B.

C.

To use more space
In the hope that we might re-use them

Because we know that the sub-
problems overlap

Dynamic programming:
+ Solves problems by breaking them into smaller sub-

problems and solving those.

+ like: decrease & conquer

+ Key idea: do not compute the solution to any sub-
problem more than once;

+ instead: save computed solutions in a table so
that they can be reused.

+ Consequently: dynamic programming works well
when the sub-problems overlap.

+ unlike: decrease & conquer

Why Dynamic Programming?

+ If the subproblems are not independent,
l.e. subproblems share sub-subproblems,

+ then a decrease and conquer algorithm
repeatedly solves the common sub-
subproblems.

+ thus: it does more work than necessary

+ The *memo table” in DP ensures that each
sub-problem is solved (at most) once.

+ For dynamic programming to be
applicable:
4+ At most polynomial-number of

subproblems
+ otherwise: still exponential

+ Solution to original problem is easy to
compute from solutions to subproblems

4+ Natural ordering on subproblems from
“smallest” to “largest”

+ An easy-to-compute recurrence that
allows solving a larger subproblem from a
smaller subproblem

Optimization problems:

+ Dynamic programming is typically (but not
always) applied to optimization problems
+ In an optimization problem, the goal is to
find a solution among many possible

candidates that minimizes or maximizes
some particular value.

+ Such solutions are said to be optimal.

Example: Fibonacci Numbers

+ The familiar recursive definition:
fib O =0
fib 1 =1
fib (n+2) = fib (n+1) + fib n
+ Grows very rapidly:
0,1,1,2,3,5,8,13,21,34,55,89,144, ...
832040 (30th), ...

354224848179261915075 (100th), ...

Question

+ What is the order of growth of the
Fibonacci function?

mm o 0 W P

10

+ In fact, the ith Fibonacci number is the
integer closest to

o' /5

where:
1 5
o = ;f — 1.61803- - -

(the “golden ratio”)

+ Thus, the result of the Fibonacci
function grows exponentially.

11

Complexity of brute-force fib:

let nfib be the number of calls needed to evaluate
fib n, implemented according to the definition.

nfib 0 =1
nfib 1 =1
nfib(n+2)= 1 + nfib (n+l) + nfib n

+ Grows even more rapidly than fib!
+ Hence fib is at least exponential ®

+ However: many calls to fib have the same
argument ...

12

Repeated calls, same argument:

13

Avoiding repeated calculations:

+ We can use a table to avoid doing a
calculation more than once:

table[0] « O;
table[l] « 1; ‘
table[2. .max] « -1;
int tableFib(int n) {
if (table[n] = -1) {
table[n] « tableFib(n-1) + tableFib(n-2);

all other entries in the table
are initially set to -1.

}

return table[n];

}

+ Table size is fixed, but values can be shared

over many calls.
14

Riding the wave:

+ Alternatively, we can look at the way the
entries in the table are filled:

O/ 1|1 2 3| 5|8 13 21 34|55 89| ...

This leads to code:

int a - 0, b « 1;
for i1 from 0 to n do {
int ¢ = a + b;

a « b;

b -~ ¢c;
} Complexity is O(n)!
return a;

No limits on n now, but values cannot be reused.

Coin-collecting Problem

*

*

Arrive at bottom-right
with max number of pennies

Robot can move
right, or down

Starts at top-left

square (i, j) contains c;;

How can robot

reach bottom-
right?

éﬁm——@

16

Coin-collecting Problem

+ Either from above,
or from left

+ How many pennies
can it bring?

+ If from above:
P(i-1,))

+ If from left:
P(, j-1)

l

e

-

+ Hence: P(i, j)) = max(P(i-1, j), P(@, j-1)) + c;;

17

Example Problem
+ You fill in the table

oaum A W N =

o o o o o

18

Quiz Question

+ Can you fill in the table for the coin-
collecting problem by rows, starting at
the top-left?

+ A. Yes
4+ B. No

19

Quiz Question

+ Can you fill in the table for the coin-
collecting problem by columns, starting
at the left-top?

+ A. Yes
4+ B. No

20

Quiz Question

+ Can you fill in the table for the coin-
collecting problem by rows, starting at
the bottom-left?

+ A. Yes
4+ B. No

21

Quiz Question

+ Can you fill in the table for the coin-
collecting problem by columns, starting
at the top-right?

+ A. Yes
4+ B. No

22

Discussion Question

+ What constraints are there on filling in the
rows and columns?

+ Can we do this “top down” rather than
“bottom up”?

23

Knapsack Problem by DP

o Given n items of

integer weights: w1 w2 ... wq
values: Vi V2 ... Vn

a knapsack of integer capacity W

find most valuable subset of the items that
fit into the knapsack

e How can we set this up as a recursion over
smaller subproblems?

24

Knapsack Problem by DP

Consider problem instance defined by first i
items and capacity j (j < W).

Let V[i, j] be value of optimal solution of this
problem instance. Then

{max (V[i-1, j], vi+ V[i-1, j-wi]) if j2w;
VIij] = |
VIi-1,]] if i<w;

Initial conditions: V[0, j]=0 and V[i, 0] =0

25

Knapsack Problem by DP (example)

Knapsack of capacity W =5
item weight value

1 5 $12 Vi {max (VIi-1, j], vi+ V[i-1, j-wi]) i j=w;
> . $10 VIi-1,j] if j<w;
3 3 $20

4 2 $15 capacity, j

o1 2 3 4 5

w1 =2, =12 1
w2 =1, vo=10 i 2
ws =3, va= 20 3
wa =2, va=15 4

26

Can we do this “top down” ?

4+ Yes: use a memo function

+ Not: a “memory function”

4+ D. Michie. “Memo” functions and
machine learning. Nature, 218:19-22, 6
April 1968.

+ Idea: record previously computed
values “just in time”

27

ALGORITHM MFKnapsack(i, j)

//Implements the memory function method for the knapsack problem
/Input: A nonnegative integer i indicating the number of the first
// items being considered and a nonnegative integer j indicating
// the knapsack’s capacity
//Output: The value of an optimal feasible subset of the first / items
/INote: Uses as global variables input arrays Weights[1..n], Values[1..n],
/land table V[0..n, 0..W] whose entries are initialized with —1’s except for
/lrow 0 and column 0 initialized with 0’s
if V[i, j]<0
if j < Weights]i]
value «<— MFKnapsack(i — 1. j)
else
value < max(MFKnapsack(i — 1, j).
Values|i] + MFKnapsack (i — 1, j — Weights[i]))
V[i, j] < value
return V[i, j]
28

Summary

+ Dynamic programming is a good technique
to use when:

®m Solutions defined in terms of solutions to smaller
problems of the same type.

= Many overlapping subproblems.

+ Implementation can use either:

= top-down, recursive definition with memoization
= explicit bottom-up tabulation

29

Problem

a. Apply the bottom-up dynamic programming algorithm to the following
instance of the knapsack problem:

item | weight value
1 3 $25
2 2 $20
3 1 $15
4 4 $40
5 D $50

, capacity W = 6.

b. How many different optimal subsets does the instance of part (a) have?

c. In general, how can we use the table generated by the dynamic pro-
gramming algorithm to tell whether there is more than one optimal subset

for the knapsack problem’s instance?

30

Problem:

+ The sequence of values in a row of the
dynamic programming table for an
iInstance of the knapsack problem is
always non-decreasing:

4+ True or False?

31

Problem:

+ The sequence of values in a column of
the dynamic programming table for an
instance of the knapsack problem is
always non-decreasing:

4 True or False?

32

Problem

item | weight value
1 3 $25
g ? g?g , capacity W = 6.
4 4 $40
5 5 $50

Apply the memo function method to the above instance of
the knapsack problem. Which entries of the dynamic
programming table are (1) never computed by the memo
function, and (11) retrieved without recomputation.

33

Solution

In the table below, the cells marked by a minus indicate the ones for which
no entry is computed for the instance in question; the only nontrivial entry
that is retrieved without recomputation is (2,1).

capacity j
i|0 1 2 3 4 5 6
0fo 0 0 0 0 0 O
wi=3,vu=25 1[0 0 0 25 25 25 25
we=2,v2=20 20 0 20 - - |45 45
w3=1,v3=15 3|0 15 20| - - -]60
wg=4,v,=40 4|0 15[- - - - |60
ws =5,vs=50 5|0 - - - - - |65

34

Warshall’s Algorithm

+ Computes the transitive closure of a
relation.

+ reachabillity in a graph is only an example
of such a relation ...

35

Warshall’s Algorithm

Warshall Algorithm 1
Warshall(Mgz: n X n 0-1 matrix)
W = MR (W = [wij])
for(k=1ton) {
for(i=1 to n) {
for(j=1 to n) {
wij = Wi V (Wi A wj)
1
t
}

return W

Warshall Algorithm 2
Warshall(Mg: n X n 0-1 matrix)
W = MR (W — [wij])
for(k=1 to n){
for(i=1to n) {
if(w;p=1) {
for(j=1ton) {
Wij = Wi; V ’wkj)
t
h
1
1

return W

36

Example

Ol OO

OO =
O =t | =t || =t
OO = O

Wo = Mr = direct connections between nodes

37

Mz = direct connections between nodes

= Wo + connections thru node 1

Wi

XII’\?’(‘

sh

| 1
—_ OO =

1 1
T

add

O = O O

ﬁ

—)t

S —

VV 611

%|1‘

4

2 =

}
;

" W

all Aloorlthm 1

all(Mp: 1 |x n 01 Iﬁatrﬁ’x)

M YN== 6)’&] 3 1
ﬂ)l@/ﬂ 1ton){ 10 1
for(i=1to n) {-

new T ot Al

@j_

1
0_

(il T

38

Floyd’s Algorithm

+ the all-pairs shortest-paths problem:
generate the matrix that contains as
element (i,j) the shortest path from
vertex i to vertex j in a known graph

39

Floyd’s Algorithm
+ What’s the recurrence?

+ generate a series of distance matrices:
DO, DO), ..., D®W, ..., D@

where no path in D®W uses an intermediate
vertex with index greater than &

+ DO s just the distance matrix of the graph

40

4+ Basic idea:

4+ shortest path fromito;:

k—1 k=1) |
dz(-) — = min {d() dik
d\Y

1] — Wiy

(k 1)}

(k=1)

d;

for £ > 1,

41

42

Floyd’s Algorithm Example

Solve the all-pairs shortest path problem for the digraph with the following
weight matrix:

0 2 oo 1 8
6 0 3 2 o0
oo oo 0 4 o0
oo oo 2 0 3
3 oo oo oo 0

43

Solution

Applying Floyd’s algorithm to the given weight matrix generates the fol-
lowing sequence of matrices:

0
6
00
00
3

g8 3 o
oo wy

80»&[\3%\

8
00
00

3

0

0
6
00
00
3

2
0
o0
00
5

oo wy

B O & N~

8
14

00
3
0

44

Sequence Alignment

+ In genetics, sequence alignment is the

process of converting one gene-
sequence into another at minimal cost

4+ operations:
+ replace an element
+ remove an element
+ insert an element
+ What’s the minimum edit distance
between two sequences?

45

+ A can be optimally edited into B by
1. Insert first element of B, and optimally
aligning A into tail of B, or

2. delete first element of A, and optimally
aligning the tail of A and B, or

3. replacing the first element of A with the first
element of B, and optimally aligning the tails
of Aand B

+ Build matrix H, where Hjj is cost of aligning
A[1..i] with B[1..j]

46

w(a, —) =w(—,b) = —1

Sequence A = ACACACTA
Sequence B = AGCACACA

w(mismatch) = —1

w(match) = +2

Deletion

Insertion

/

47

8

A0 2 3 6 6 9

11 10 9

4 5 8 8

1
\4 0 2 3 6 7 10 10 10 12

C 0

