
CS 350 Algorithms and Complexity

Lecture 13: Dynamic Programming

Andrew P. Black

Department of Computer Science

Portland State University

Winter 2019

Dynamic programming:
✦ Solves problems by breaking them

into smaller sub-problems and solving
those.

✦ Which algorithm design technique is
this like?

✦ Brute force

✦ Decrease-and-conquer

✦ Divide-and-conquer

✦ None that we’ve seen so far

!2

Question:
✦ Compare Dynamic Programming with

Decrease-and-Conquer:

A. They are the same

B. They both solve a large problem by first solving a

smaller problem

C. In decrease and conquer, we don’t “memoize”

the solutions to the smaller problem

D. In dynamic programming, we do “memoize” the

smaller problems

E. B, C & D

F. B & C

G. B & D

!3

Dynamic Programming
✦ Dynamic programming differs from

decrease-and-conquer because in
dynamic programming we remember the
answers to the smaller sub-problems.

✦ Why?

A. To use more space

B. In the hope that we might re-use them

C. Because we know that the sub-

problems overlap

!4

Dynamic programming:
✦ Solves problems by breaking them into smaller sub-

problems and solving those.

✦ like: decrease & conquer

✦ Key idea: do not compute the solution to any sub-
problem more than once;

✦ instead: save computed solutions in a table so

that they can be reused.

✦ Consequently: dynamic programming works well

when the sub-problems overlap.

✦ unlike: decrease & conquer

!5

Why Dynamic Programming?
✦ If the subproblems are not independent,

i.e. subproblems share sub-subproblems,

✦ then a decrease and conquer algorithm

repeatedly solves the common sub-
subproblems.

✦ thus: it does more work than necessary

✦ The “memo table” in DP ensures that each

sub-problem is solved (at most) once.

!6

✦ For dynamic programming to be
applicable:

✦ At most polynomial-number of

subproblems

✦ otherwise: still exponential

✦ Solution to original problem is easy to
compute from solutions to subproblems

✦ Natural ordering on subproblems from
“smallest” to “largest”

✦ An easy-to-compute recurrence that
allows solving a larger subproblem from a
smaller subproblem

!7

Optimization problems:
✦ Dynamic programming is typically (but not

always) applied to optimization problems

✦ In an optimization problem, the goal is to

find a solution among many possible
candidates that minimizes or maximizes
some particular value.

✦ Such solutions are said to be optimal.

✦ There may be more than one “optimal”

solution: true or false?

!8

✦ The familiar recursive definition:

fib 0 = 0

fib 1 = 1

fib (n+2) = fib (n+1) + fib n

✦ Grows very rapidly:

 0,1,1,2,3,5,8,13,21,34,55,89,144, …

 832040 (30th), …

 354224848179261915075 (100th), ...

Example: Fibonacci Numbers

!9

Question
✦ What is the order of growth of the

Fibonacci function?

A. O(n)

B. O(n2)

C. O(1.61803…n)

D. O(2n)

E. O(en)

F. O(n!)

!10

✦ In fact, the i
th Fibonacci number is the

integer closest to

 where:

 (the “golden ratio”)

✦ Thus, the result of the Fibonacci

function grows exponentially.

'i/
p
5

' =
1 +

p
5

2
= 1.61803 · · ·

!11

Complexity of brute-force fib:
let nfib be the number of calls needed to evaluate
fib n, implemented according to the definition.

nfib 0 = 1
nfib 1 = 1
nfib(n+2)= 1 + nfib (n+1) + nfib n

✦ Grows even more rapidly than fib!

✦ Hence fib is at least exponential !

✦ However: many calls to fib have the same
argument …

!12

Repeated calls, same argument:
6

5 4

234

23 1 0

2 1

1 0

0

!13

Avoiding repeated calculations:
✦ We can use a table to avoid doing a

calculation more than once:

table[0] ← 0;
table[1] ← 1;
table[2..max] ← -1;
int tableFib(int n) {
 if (table[n] = -1) {
 table[n] ← tableFib(n-1) + tableFib(n-2);
 }
 return table[n];
}

✦ Table size is fixed, but values can be shared
over many calls.

all other entries in the table
are initially set to -1.

!14

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 ...

Riding the wave:
✦ Alternatively, we can look at the way the

entries in the table are filled:

This leads to code:
 int a ← 0, b ← 1;
 for i from 0 to n do {
 int c = a + b;
 a ← b;
 b ← c;
 }
 return a;

No limits on n now, but values cannot be reused.

Complexity is O(n)!

0 1 1 2 3 5 8 13 21 34 55 89 ...

!15

Coin-collecting Problem
✦ Arrive at bottom-right 

with max number of pennies

✦ Robot can move 

right, or down

✦ Starts at top-left

square (i, j) contains cij

✦ How can robot 

reach bottom- 
right?

!16

i

j

🤖

🤖 🤖🤖

Coin-collecting Problem
✦ Either from above, 

or from left

✦ How many pennies  

can it bring?

✦ If from above:

P(i-1, j)

✦ If from left:

P(i, j-1)

✦ Hence: P(i, j) = max(P(i-1, j), P(i, j-1)) + cij

!17

i

j

🤖

🤖

Example Problem
✦ You fill in the table

!18

0 0 0 0 0

0 0 1 1 1 1

0 1 1 1 1 3

0

0

0

1 2 3 4 5

1 •
2 • ••
3 • •
4 • •
5

Quiz Question
✦ Can you fill in the table for the coin-

collecting problem by rows, starting at
the top-left?

✦ A. Yes

✦ B. No

!19

Quiz Question
✦ Can you fill in the table for the coin-

collecting problem by columns, starting
at the left-top?

✦ A. Yes

✦ B. No

!20

Quiz Question
✦ Can you fill in the table for the coin-

collecting problem by rows, starting at
the bottom-left?

✦ A. Yes

✦ B. No

!21

Quiz Question
✦ Can you fill in the table for the coin-

collecting problem by columns, starting
at the top-right?

✦ A. Yes

✦ B. No

!22

Discussion Question
✦ What constraints are there on filling in the

rows and columns?

✦ Can we do this “top down” rather than
“bottom up”?

!23

Knapsack Problem by DP
• Given n items of

 integer weights: w1 w2 … wn

 values: v1 v2 … vn

 a knapsack of integer capacity W

find most valuable subset of the items that
fit into the knapsack

• How can we set this up as a recursion over
smaller subproblems?

!24

Knapsack Problem by DP
Consider problem instance defined by first i
items and capacity j (j ≤ W).

Let V[i, j] be value of optimal solution of this
problem instance. Then

	 max (V[i-1, j], vi+V[i-1, j-wi]) if j≥wi 
V[i,j] = 
 	 V[i-1,j] if j<wi

Initial conditions: V[0, j] = 0 and V[i, 0] = 0
!25

{

Knapsack Problem by DP (example)
Knapsack of capacity W = 5

item weight value

 1 2 $12

 2 1 $10

 3 3 $20

 4 2 $15 capacity, j

	 	 0 1 2 3 4 5

	 0

	 	 w1 = 2, v1= 12 1

	 	 w2 = 1, v2= 10 2

	 	 w3 = 3, v3= 20 3

	 	 w4 = 2, v4= 15 4	 	 	 	

i

!26

Can we do this “top down” ?
✦ Yes: use a memo function

✦ Not: a “memory function”

✦ D. Michie. “Memo” functions and

machine learning. Nature, 218:19–22, 6
April 1968.

✦ Idea: record previously computed
values “just in time”

!27

!28

Summary

✦Dynamic programming is a good technique
to use when:

" Solutions defined in terms of solutions to smaller

problems of the same type.

" Many overlapping subproblems.

✦ Implementation can use either:

" top-down, recursive definition with memoization

" explicit bottom-up tabulation

!29

Problem

!30

Exercises 8.4

1. a. Apply the bottom-up dynamic programming algorithm to the following

instance of the knapsack problem:

item weight value

1 3 $25

2 2 $20

3 1 $15

4 4 $40

5 5 $50

, capacity W = 6.

b. How many different optimal subsets does the instance of part (a) have?

c. In general, how can we use the table generated by the dynamic pro-

gramming algorithm to tell whether there is more than one optimal subset

for the knapsack problem’s instance?

2. a. Write a pseudocode of the bottom-up dynamic programming algorithm

for the knapsack problem.

b. Write a pseudocode of the algorithm that finds the composition of

an optimal subset from the table generated by the bottom-up dynamic

programming algorithm for the knapsack problem.

3. For the bottom-up dynamic programming algorithm for the knapsack

problem, prove that

a. its time efficiency is in Θ(nW).

b. its space efficiency is in Θ(nW).

c. the time needed to find the composition of an optimal subset from

a filled dynamic programming table is in O(n+W).

4. a. True or false: A sequence of values in a row of the dynamic program-

ming table for an instance of the knapsack problem is always nondecreas-

ing.

b. True or false: A sequence of values in a column of the dynamic pro-

gramming table for an instance of the knapsack problem is always nonde-

creasing?

5. Apply the memory function method to the instance of the knapsack prob-

lem given in Problem 1. Indicate the entries of the dynamic programming

table that are: (i) never computed by the memory function method on

this instance; (ii) retrieved without a recomputation.

29

Problem:

!31

✦ The sequence of values in a row of the
dynamic programming table for an
instance of the knapsack problem is
always non-decreasing:

✦ True or False?

Problem:

!32

✦ The sequence of values in a column of
the dynamic programming table for an
instance of the knapsack problem is
always non-decreasing:

✦ True or False?

Problem

!33

Exercises 8.4

1. a. Apply the bottom-up dynamic programming algorithm to the following

instance of the knapsack problem:

item weight value

1 3 $25

2 2 $20

3 1 $15

4 4 $40

5 5 $50

, capacity W = 6.

b. How many different optimal subsets does the instance of part (a) have?

c. In general, how can we use the table generated by the dynamic pro-

gramming algorithm to tell whether there is more than one optimal subset

for the knapsack problem’s instance?

2. a. Write a pseudocode of the bottom-up dynamic programming algorithm

for the knapsack problem.

b. Write a pseudocode of the algorithm that finds the composition of

an optimal subset from the table generated by the bottom-up dynamic

programming algorithm for the knapsack problem.

3. For the bottom-up dynamic programming algorithm for the knapsack

problem, prove that

a. its time efficiency is in Θ(nW).

b. its space efficiency is in Θ(nW).

c. the time needed to find the composition of an optimal subset from

a filled dynamic programming table is in O(n+W).

4. a. True or false: A sequence of values in a row of the dynamic program-

ming table for an instance of the knapsack problem is always nondecreas-

ing.

b. True or false: A sequence of values in a column of the dynamic pro-

gramming table for an instance of the knapsack problem is always nonde-

creasing?

5. Apply the memory function method to the instance of the knapsack prob-

lem given in Problem 1. Indicate the entries of the dynamic programming

table that are: (i) never computed by the memory function method on

this instance; (ii) retrieved without a recomputation.

29

Apply the memo function method to the above instance of
the knapsack problem. Which entries of the dynamic
programming table are (i) never computed by the memo
function, and (ii) retrieved without recomputation.

Solution

!34

for i ← n downto 1 do

if V [i, j] > V [i−1, j]

k ← k + 1; L[k] ← i //include item i

j ← j −w[i]

return L

Note: In fact, we can also stop the algorithm as soon as j, the unused

capacity of the knapsack, becomes 0.

3. The algorithm fills a table with n+ 1 rows and W + 1 columns, spending

Θ(1) time to fill one cell (either by applying (8.12) or (8.13). Hence, its

time efficiency and its space efficiency are in Θ(nW).

In order to identify the composition of an optimal subset, the algorithm

repeatedly compares values at no more than two cells in a previous row.

Hence, its time efficiency class is in O(n).

4. Both assertions are true:

a. V [i, j−1] ≤V [i, j] for 1 ≤j ≤W is true because it simply means that

the maximal value of a subset that fits into a knapsack of capacity j −1

cannot exceed the maximal value of a subset that fits into a knapsack of

capacity j.

b. V [i −1, j] ≤ V [i, j] for 1 ≤ i ≤ n is true because it simply means

that the maximal value of a subset of the first i −1 items that fits into

a knapsack of capacity j cannot exceed the maximal value of a subset of

the first i items that fits into a knapsack of the same capacity j.

5. In the table below, the cells marked by a minus indicate the ones for which

no entry is computed for the instance in question; the only nontrivial entry

that is retrieved without recomputation is (2, 1).

capacity j

i 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

w1 = 3 , v1 = 25 1 0 0 0 25 25 25 25

w2 = 2, v2 = 20 2 0 0 20 - - 45 45

w3 = 1, v3 = 15 3 0 15 20 - - - 60

w4 = 4, v4 = 40 4 0 15 - - - - 60

w5 = 5, v5 = 50 5 0 - - - - - 65

6. Since some of the cells of a table with n + 1 rows and W + 1 columns

are filled in constant time, both the time and space efficiencies are in

33

Warshall’s Algorithm
✦ Computes the transitive closure of a

relation.

✦ reachability in a graph is only an example

of such a relation …

!35

Warshall’s Algorithm

!36

Warshall’s Algorithm

Warshall’s algorithm is an efficient method for computing the transitive closure of a relation.
Warshall’s algorithm takes as input the matrix representing the relation , and outputs the matrix

of the relation , the transitive closure of . Below are two version of the algorithm. The first
is taken from Rosen [1], and the second is a slight variation of the algorithm.

Warshall Algorithm 1
Warshall(: 0-1 matrix)

()
for(=1 to)

for(=1 to)
for(=1 to)

return

Warshall Algorithm 2
Warshall(: 0-1 matrix)

()
for(=1 to)

for(=1 to)
if(=1)

for(=1 to)

return

Let’s examine the first algorithm closely. When the inner for loop is being executed, the only
value which is changing is . Notice that the value of does not depend on . Thus, during each
iteration of the inner loop, is constant. If , then

and if , then

for each value of . Thus, the values of remain unchanged if , and become if
. It is this observation which leads to the second algorithm. Notice that when , we

are simply replacing the th row of the matrix with OR of the th and th rows of the matrix.
In words, the second version of the algorithm says the following: To compute the th row of ,

look at the th column of the th row of . If this entry is a ”0”, the th row of is the th row
of . If this entry is a ”1”, the th row of is the OR of the th and th rows of .

A comparison of the running times of the algorithms is easy. The first algorithm requires bit
operations, and the second no more than (if we count comparison as a bit operation). Thus,
the second algorithm is in general slightly faster, and if implemented in a very special way, potentially
much faster.

1

Warshall’s Algorithm

Warshall’s algorithm is an efficient method for computing the transitive closure of a relation.
Warshall’s algorithm takes as input the matrix representing the relation , and outputs the matrix

of the relation , the transitive closure of . Below are two version of the algorithm. The first
is taken from Rosen [1], and the second is a slight variation of the algorithm.

Warshall Algorithm 1
Warshall(: 0-1 matrix)

()
for(=1 to)

for(=1 to)
for(=1 to)

return

Warshall Algorithm 2
Warshall(: 0-1 matrix)

()
for(=1 to)

for(=1 to)
if(=1)

for(=1 to)

return

Let’s examine the first algorithm closely. When the inner for loop is being executed, the only
value which is changing is . Notice that the value of does not depend on . Thus, during each
iteration of the inner loop, is constant. If , then

and if , then

for each value of . Thus, the values of remain unchanged if , and become if
. It is this observation which leads to the second algorithm. Notice that when , we

are simply replacing the th row of the matrix with OR of the th and th rows of the matrix.
In words, the second version of the algorithm says the following: To compute the th row of ,

look at the th column of the th row of . If this entry is a ”0”, the th row of is the th row
of . If this entry is a ”1”, the th row of is the OR of the th and th rows of .

A comparison of the running times of the algorithms is easy. The first algorithm requires bit
operations, and the second no more than (if we count comparison as a bit operation). Thus,
the second algorithm is in general slightly faster, and if implemented in a very special way, potentially
much faster.

1

Example

!37

Example: The matrix below is the matrix representation for a relation . Find the matrix
representation of , the transitive closure of .

Solution We know that . To compute , we notice that in the first column of ,
there are ”1”s in rows 1 and 4. Thus, we replace rows 1 and 4 with the OR of themselves and row 1.
We obtain

To compute , we notice that in the second column of , there is a ”1” in row 3. Thus, we replace
row 3 with the OR of rows 3 and 2, obtaining

To compute , we notice that in the third column of , there is a ”1” in every row. Thus, we
replace each row with the OR of itself and row 3, obtaining

To compute , we notice that in the fourth column of , there is a ”1” in every row. Thus, we
replace each row with the OR of itself and row 4, obtaining

For more details on relations and transitive closures, consult chapter 6 of [1].

References

[1] Rosen, Kenneth H., Discrete Mathematics and its Applications, Third Edition, McGraw-Hill, Inc,
1994.

2

1 3

24

W0 = MR = direct connections between nodes

wij wij _ (wik ^ wkj)wij wij _ (wi1 ^ w1j) add new 1 when i = 4 and j = 3wij wij _ (wi2 ^ w2j)

!38

Example: The matrix below is the matrix representation for a relation . Find the matrix
representation of , the transitive closure of .

Solution We know that . To compute , we notice that in the first column of ,
there are ”1”s in rows 1 and 4. Thus, we replace rows 1 and 4 with the OR of themselves and row 1.
We obtain

To compute , we notice that in the second column of , there is a ”1” in row 3. Thus, we replace
row 3 with the OR of rows 3 and 2, obtaining

To compute , we notice that in the third column of , there is a ”1” in every row. Thus, we
replace each row with the OR of itself and row 3, obtaining

To compute , we notice that in the fourth column of , there is a ”1” in every row. Thus, we
replace each row with the OR of itself and row 4, obtaining

For more details on relations and transitive closures, consult chapter 6 of [1].

References

[1] Rosen, Kenneth H., Discrete Mathematics and its Applications, Third Edition, McGraw-Hill, Inc,
1994.

2

Example: The matrix below is the matrix representation for a relation . Find the matrix
representation of , the transitive closure of .

Solution We know that . To compute , we notice that in the first column of ,
there are ”1”s in rows 1 and 4. Thus, we replace rows 1 and 4 with the OR of themselves and row 1.
We obtain

To compute , we notice that in the second column of , there is a ”1” in row 3. Thus, we replace
row 3 with the OR of rows 3 and 2, obtaining

To compute , we notice that in the third column of , there is a ”1” in every row. Thus, we
replace each row with the OR of itself and row 3, obtaining

To compute , we notice that in the fourth column of , there is a ”1” in every row. Thus, we
replace each row with the OR of itself and row 4, obtaining

For more details on relations and transitive closures, consult chapter 6 of [1].

References

[1] Rosen, Kenneth H., Discrete Mathematics and its Applications, Third Edition, McGraw-Hill, Inc,
1994.

2

Example: The matrix below is the matrix representation for a relation . Find the matrix
representation of , the transitive closure of .

Solution We know that . To compute , we notice that in the first column of ,
there are ”1”s in rows 1 and 4. Thus, we replace rows 1 and 4 with the OR of themselves and row 1.
We obtain

To compute , we notice that in the second column of , there is a ”1” in row 3. Thus, we replace
row 3 with the OR of rows 3 and 2, obtaining

To compute , we notice that in the third column of , there is a ”1” in every row. Thus, we
replace each row with the OR of itself and row 3, obtaining

To compute , we notice that in the fourth column of , there is a ”1” in every row. Thus, we
replace each row with the OR of itself and row 4, obtaining

For more details on relations and transitive closures, consult chapter 6 of [1].

References

[1] Rosen, Kenneth H., Discrete Mathematics and its Applications, Third Edition, McGraw-Hill, Inc,
1994.

2

Example: The matrix below is the matrix representation for a relation . Find the matrix
representation of , the transitive closure of .

Solution We know that . To compute , we notice that in the first column of ,
there are ”1”s in rows 1 and 4. Thus, we replace rows 1 and 4 with the OR of themselves and row 1.
We obtain

To compute , we notice that in the second column of , there is a ”1” in row 3. Thus, we replace
row 3 with the OR of rows 3 and 2, obtaining

To compute , we notice that in the third column of , there is a ”1” in every row. Thus, we
replace each row with the OR of itself and row 3, obtaining

To compute , we notice that in the fourth column of , there is a ”1” in every row. Thus, we
replace each row with the OR of itself and row 4, obtaining

For more details on relations and transitive closures, consult chapter 6 of [1].

References

[1] Rosen, Kenneth H., Discrete Mathematics and its Applications, Third Edition, McGraw-Hill, Inc,
1994.

2

Example: The matrix below is the matrix representation for a relation . Find the matrix
representation of , the transitive closure of .

Solution We know that . To compute , we notice that in the first column of ,
there are ”1”s in rows 1 and 4. Thus, we replace rows 1 and 4 with the OR of themselves and row 1.
We obtain

To compute , we notice that in the second column of , there is a ”1” in row 3. Thus, we replace
row 3 with the OR of rows 3 and 2, obtaining

To compute , we notice that in the third column of , there is a ”1” in every row. Thus, we
replace each row with the OR of itself and row 3, obtaining

To compute , we notice that in the fourth column of , there is a ”1” in every row. Thus, we
replace each row with the OR of itself and row 4, obtaining

For more details on relations and transitive closures, consult chapter 6 of [1].

References

[1] Rosen, Kenneth H., Discrete Mathematics and its Applications, Third Edition, McGraw-Hill, Inc,
1994.

2

1 3

24

W0 = MR = direct connections between nodes

W1 = W0 + connections thru node 1

Warshall’s Algorithm

Warshall’s algorithm is an efficient method for computing the transitive closure of a relation.
Warshall’s algorithm takes as input the matrix representing the relation , and outputs the matrix

of the relation , the transitive closure of . Below are two version of the algorithm. The first
is taken from Rosen [1], and the second is a slight variation of the algorithm.

Warshall Algorithm 1
Warshall(: 0-1 matrix)

()
for(=1 to)

for(=1 to)
for(=1 to)

return

Warshall Algorithm 2
Warshall(: 0-1 matrix)

()
for(=1 to)

for(=1 to)
if(=1)

for(=1 to)

return

Let’s examine the first algorithm closely. When the inner for loop is being executed, the only
value which is changing is . Notice that the value of does not depend on . Thus, during each
iteration of the inner loop, is constant. If , then

and if , then

for each value of . Thus, the values of remain unchanged if , and become if
. It is this observation which leads to the second algorithm. Notice that when , we

are simply replacing the th row of the matrix with OR of the th and th rows of the matrix.
In words, the second version of the algorithm says the following: To compute the th row of ,

look at the th column of the th row of . If this entry is a ”0”, the th row of is the th row
of . If this entry is a ”1”, the th row of is the OR of the th and th rows of .

A comparison of the running times of the algorithms is easy. The first algorithm requires bit
operations, and the second no more than (if we count comparison as a bit operation). Thus,
the second algorithm is in general slightly faster, and if implemented in a very special way, potentially
much faster.

1

Floyd’s Algorithm
✦ the all-pairs shortest-paths problem: 

generate the matrix that contains as
element (i,j) the shortest path from
vertex i to vertex j in a known graph

!39

Floyd’s Algorithm
✦ What’s the recurrence?

✦ generate a series of distance matrices:

D(0), D(1), ..., D(k),, D(n)

where no path in D(k) uses an intermediate
vertex with index greater than k

✦ D(0) is just the distance matrix of the graph

!40

!41

✦ Basic idea:

✦ shortest path from i to j :

d(k)ij = min
�
d(k�1)
ij , d(k�1)

ik + d(k�1)
kj

, for k � 1,

d(0)ij = wij

!42

Floyd’s Algorithm Example

!43

Exercises 8.4

1. Apply Warshall’s algorithm to find the transitive closure of the digraph
defined by the following adjacency matrix:

5

997

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

6

::8

2. a. Prove that the time e!ciency of Warshall’s algorithm is cubic.

b. Explain why the time e!ciency of Warshall’s algorithm is inferior
to that of the traversal-based algorithm for sparse graphs represented by
their adjacency lists.

3. Explain how to implement Warshall’s algorithm without using extra mem-
ory for storing elements of the algorithm’s intermediate matrices.

4. Explain how to restructure the innermost loop of the algorithm Warshall
to make it run faster at least on some inputs.

5. Rewrite the pseudocode of Warshall’s algorithm assuming that the matrix
rows are represented by bit strings on which the bitwise or operation can
be performed.

6. a. Explain how Warshall’s algorithm can be used to determine whether a
given digraph is a dag (directed acyclic graph). Is it a good algorithm for
this problem?

b. Is it a good idea to apply Warshall’s algorithm to find the transitive
closure of an undirected graph?

7. Solve the all-pairs shortest path problem for the digraph with the following
weight matrix: 5

99997

0 2 4 1 8
6 0 3 2 4
4 4 0 4 4
4 4 2 0 3
3 4 4 4 0

6

::::8

8. Prove that the next matrix in sequence (8.8) of Floyd’s algorithm can be
written over its predecessor.

9. Give an example of a graph or a digraph with negative weights for which
Floyd’s algorithm does not yield the correct result.

10. I Enhance Floyd’s algorithm so that shortest paths themselves, not just
their lengths, can be found.

34

Solution

!44

for l# 1 to q do
if D[l> n]

urz[l] # urz[l] bitwiseor urz[n] //rows of matrix D
return D

6. a. With the book’s definition of the transitive closure (which considers
only nontrivial paths of a digraph), a digraph has a directed cycle if and
only if its transitive closure has a 1 on its main diagonal. The algorithm
that finds the transitive closure by applying Warshall’s algorithm and then
checks the elements of its main diagonal is cubic. This is inferior to the
quadratic algorithms for checking whether a digraph represented by its
adjacency matrix is a dag, which were discussed in Section 4.2.

b. No. If W is the transitive closure of an undirected graph, W [l> m] = 1 if
and only if there is a nontrivial path from the lth vertex to the mth vertex.
If l 6= m> this is the case if and only if the lth vertex and the mth vertex
belong to the same connected component of the graph. Thus, one can
find the elements outside the main diagonal of the transitive closure that
are equal to 1 by a depth-first search or a breadth-first search traversal,
which is faster than applying Warshall’s algorithm. If l = m> W [l> l] = 1
if and only if the lth vertex is not isolated, i.e., if it has an edge to at
least one other vertex of the graph. Isolated vertices, if any, can be easily
identified by the graph’s traversal as one-node connected components of
the graph.

7. Applying Floyd’s algorithm to the given weight matrix generates the fol-
lowing sequence of matrices:

G(0) =

5

99997

0 2 4 1 8
6 0 3 2 4
4 4 0 4 4
4 4 2 0 3
3 4 4 4 0

6

::::8
G(1) =

5

99997

0 2 4 1 8
6 0 3 2 14
4 4 0 4 4
4 4 2 0 3
3 5 4 4 0

6

::::8

G(2) =

5

99997

0 2 5 1 8
6 0 3 2 14
4 4 0 4 4
4 4 2 0 3
3 5 8 4 0

6

::::8
G(3) =

5

99997

0 2 5 1 8
6 0 3 2 14
4 4 0 4 4
4 4 2 0 3
3 5 8 4 0

6

::::8

G(4) =

5

99997

0 2 3 1 4
6 0 3 2 5
4 4 0 4 7
4 4 2 0 3
3 5 6 4 0

6

::::8
G(5) =

5

99997

0 2 3 1 4
6 0 3 2 5
10 12 0 4 7
6 8 2 0 3
3 5 6 4 0

6

::::8
= G

39

Sequence Alignment
✦ In genetics, sequence alignment is the

process of converting one gene-
sequence into another at minimal cost

✦ operations:

✦ replace an element

✦ remove an element

✦ insert an element

✦ What’s the minimum edit distance
between two sequences?

!45

✦ A can be optimally edited into B by

1. insert first element of B, and optimally

aligning A into tail of B, or

2. delete first element of A, and optimally

aligning the tail of A and B, or

3. replacing the first element of A with the first

element of B, and optimally aligning the tails
of A and B

✦ Build matrix H, where Hij is cost of aligning
A[1..i] with B[1..j]

!46

w(match) = +2

Sequence A = ACACACTA

Sequence B = AGCACACA

!47

w(a,�) = w(�, b) = �1

w(mismatch) = �1

H(i, j) = max

8
>><

>>:

0
H(i� 1, j � 1) + w(ai, bj)
H(i� 1, j) + w(ai,�)
H(i, j � 1) + w(�, bj)

9
>>=

>>;

Deletion

Insertion

A

B

