CS 350 Algorithms and Complexity

Winter 2019

Lecture 8: Decrease & Conquer (continued)

Andrew P. Black

Department of Computer Science
Portland State University

Finding the Median

~The Median of an array of numbers is the
"middle” number, when sorted.

< We can obviously find the median by
sorting the array, and then picking the|5|t
element

< How much work is that (in average case)?
a. O(n)

8. O(nlg n)

c. O(n?)

Median in Linear Time?

<~ Can we do better?

= After all, sorting the whole array is more work than
IS needed to find the median

~What smaller problem will help us?

~ Key insight: generalize the problem! |2

= Rather than seeking an algorithm for the t
element, lets look for the k™ element, ke[1..n]

Suppose that we have a way of partitioning the array at

element with value p:
[r

=p_|p 2P
How can this help?

A = <p |p > D
T A I Ani

<~ Suppose that we are looking for the 10t
element, and:

*|AL] =5

* Al =1

= Then we can seek the 4" element of Au;
instead

< We have reduced the problem size by a variable
amount, in this case |A,| + |Ap] = 6

A = <p |p > D
T A I Ani

<~ Suppose that we are looking for the 10t
element, and:
* |A| = 28
= Then we can seek the 10t element of A
instead

<~ We have reduced the problem size by a variable
amount, in this case |A,| + |Axi]

A = <p |p > D
T A I Ani

<~ Suppose that we are looking for the 8t
element, and:

* |AL| = 6

¢ [Ap] = 2

= Then we can seek the 2" element of 4,
instead.

< We have now solved the problem, because all
the elements of A,are p

Variable-size decrease?

Variable-size decrease?

<~What's the connection?
= we would like to be able to find the »nt" element

® instead, partitioning lets us
- pick an element, and, in linear time,
- find its index (the s such that it is the st elem)

m If n=ys, we win!
" if n<s, we continue in the left part, or
mif n> s, We continue in the right part

Variable-size decrease?

<~ Example

= suppose that we have A[1:20] and are looking for
the 7th-smallest element:

= run partition, find s = 9, say
= \Where do we look for the 7th-smallest element?

A: Al1..20]
1 9 20
B: A[l..8]
A= =p P Zp
C: A[l.9]
D: A[10..20]

Variable-size decrease?

< A different run of the same example:

= suppose that we have A[1:20] and are looking for
the 7th-smallest element:

= run partition, find s = 3, say
= \Where do we look for the 7th-smallest element?

A: A[l..3]
1 3 20
B: All.4
A= =q | q 2 q
C: A[3..20]

D: Al4..20]

What's the Efficiency?

< Dasgupta’s analysis shows that;
if we can do the partition in O(n) time, and

the two parts are of roughly equal size
then we can select the £ element in O(n) time

~How can we do partition in O(n) time?

= |Lomuto Partition
= Hoare Partition

10

Lomuto Partition

< While algorithm is running:

< Invariant:
B Alll=p A All+]l..s]<p A Als+]1..i-1]=p A

[<s<I=<T |
[S l r

p| <p >p ?

< Establish invariant initially:
B p<—All]; s< [, 1< s+1
// makes < p interval and = p intervals both empty

[=s 1 r

p)

I don't like Lomuto Partition

12

I don't like Lomuto Partition

< It does more swaps than necessary

[S l r

p <p| =p 4

I don't like Lomuto Partition

< It does more swaps than necessary

[S l r

p| <p >p 7

= “half of the swap” is wasted

< It confuses students!
= Quicksort does not use the Lumuto Partition

< It does not randomize the choice of p

12

Lomuto Partition:

Just forget about it!

13

How to pick the pivot?

<~ The choice is crucial
= must be picked quickly

= should shrink the sub-array substantially
— ideally, [/..s] and [s..h] should be = V2 [[../h]

* if we can guarantee this, then T(n) = T(n/2) + O(n)
* but that would require that the pivot be the median!
® Tnstead, pick the pivot randomly

14

Efficiency analysis for random pivot

< If we are unlucky, and repeatedly choose the smallest
element for the pivot, the array would shrink by just one
element (the worst case)

+~ S0 we would be performing
nt(n—1)4(n—2)+..+—=0(n2

2
operations — but this is unlikely.

< It's also unlikely that we would stumble on the median each
time (the best case).

~ A "reasonably good" pivot is one between the 25th and 75th
percentile. That's half of the available candidates. So we
will get one, on average, after two random selections.

< After two partitions, we will shrink the problem to 34 of its

size, SO) < T GT”) 4 Om)

15

Efficiency analysis for random pivot

< If we are unlucky, and repeatedly choose the smallest
element for the pivot, the array would shrink by just one
element (the worst case)

+~ S0 we would be performing
nt(n—1)4(n—2)+..+—=0(n2

2
operations — but this is unlikely.

< It's also unlikely that we would stumble on the median each
time (the best case).

~ A "reasonably good" pivot is one between the 25th and 75th
percentile. That's half of the available candidates. So we
will get one, on average, after two random selections.

< After two partitions, we will shrink the problem to 34 of its

size, SO In

T(n)<T (Z) + O(n) see reading on Medians

15

Hoare Partition

< Classic algorithm of computing

< Developed in 1959, published
in 1961.

< Not only linear, but peculiarly efficient!

< Tony Hoare won the Turing Award for
Quicksort, which is based on this algorithm

... and some other things!

16

Partition: CACM

ALGORITHM 63
PARTITION
C. A. R. HoARrk

Elliott Brothers Ltd., Borehamwood, Hertfordshire, Eng.

procedure partition (A MN,1.J); value M,N;
array A; integer M N,1,J;

comment I and J are output variables, and A is the array (with
subscript bounds M:N) which i1s operated upon by this procedure.
Partition takes the value X of a random element of the array A,
and rearranges the values of the elements of the array in such a
way that there exist integers [and J with the following properties:

M=J<I= NprovidedM < N

AR s XforM =R =J

AR = XforJ <R <1

AR] =2 XforIZ R £ N
The procedure uses an integer procedure random (M,N) which
chooses equiprobably a random integer F between M and N, and
also a procedure exchange, which exchanges the values of its two
parameters;

L1

\%

Vol 4) July 1961

begin real X; integer F;
F := random (IM,N); X := A[F];
[:=M; J:= N;
up: for I := I step 1 until N do
if X < A [I] then go to down;
I:= N;
down: forJ:=J step —1 until M do
if A[J]<X then go to change;
J = M;
change: if I < J then begin exchange (A[I], A[J]};

IL:'=1+1;0:=J —-1,;

go to up
end ;
else if I < F then begin exchange (A[I], A[F]);
I:=1+1
end
else if F < Jthen begin exchange (A[F], AlJ]);
’ J:=J -1
end;

end partition

17

Partition: CACM

ALGORITHM 63
PARTITION
C. A. R. HoARrk

Elliott Brothers Ltd., Borehamwood, Hertfordshire, Eng.

procedure partition (A MN,1.J); value M,N;
array A; integer M N,1,J;

comment I and J are output variables, and A is the array (with
subscript bounds M:N) which i1s operated upon by this procedure.
Partition takes the value X of a random element of the array A,
and rearranges the values of the elements of the array in such a
way that there exist integers [and J with the following properties:

M=J<I= NprovidedM < N

AR s XforM =R =J

AR = XforJ <R <1

AR] =2 XforIZ R £ N
The procedure uses an integer procedure random (M,N) which
chooses equiprobably a random integer F between M and N, and
also a procedure exchange, which exchanges the values of its two
parameters;

L1

\%

Vol 4) July 1961

begin real X; iateger F;
F = random (M,N): X := A[F];
[:=M; J:=N;
up: for I := I step 1 until N do
if X < A [I] then go to down;
I:= N;
down: forJ:=J step —1 until M do
if A[J]<X then go to change;
J = M;
change: if I < J then begin exchange (A[I], A[J]};

IL:'=1+1;0:=J —-1,;

go to up
end ;
else if I < F then begin exchange (A[I], A[F]);
I:=1+1
end
else if F < Jthen begin exchange (A[F], AlJ]);
’ J:=J -1
end;

end partition

17

Partition: CACM

ALGORITHM 63
PARTITION
C. A. R. HoARrk

Elliott Brothers Ltd., Borehamwood, Hertfordshire, Eng.

procedure partition (A MN,1.J); value M,N;
array A; integer M N,1,J;

comment I and J are output variables, and A is the array (with
subscript bounds M:N) which i1s operated upon by this procedure.
Partition takes the value X of a random element of the array A,
and rearranges the values of the elements of the array in such a
way that there exist integers [and J with the following properties:

M=J<I= NprovidedM < N

AR s XforM =R =J

AR = XforJ <R <1

AR] =2 XforIZ R £ N
The procedure uses an integer procedure random (M,N) which
chooses equiprobably a random integer F between M and N, and
also a procedure exchange, which exchanges the values of its two
parameters;

L1

\%

Vol 4) July 1961

begin real X; iateger F;

F := random M, N): X := A[F];

. — J'JJ_, P - a

up: for I := I step 1 until N do
£ 20 < A [I] then go to down;
L= IN,
down: forJ:=J step —1 until M do
if A0 <X then go to change;
J = M;

change: if I < J then begin exchange (A[I], A[J]};

I:'=141;J:=J -1,

go to up
end ;
else if I < F then begin exchange (A[I], A[F]);
I:=1+1
end
else if F < Jthen begin exchange (A[F], AlJ]);
’ J:=J -1
end;

end partition

17

Partition: CACM (Vol 4) July 1961

ALGORITHM 63 begin real X; iateger F
PARTITION P = random (M N): X := AfF];
C. A. R. Hoare L= J.u., . u,
Elliott Brothers Ltd., Borehamwood, Hertfordshire, Eng. up: for I := I step 1 until N do
L uie v o .
procedure partition (A M,N,LJ); wvalue M,N; - u xS [I] then go to down;
array A; 3-,7?t;“"’-'\/[‘qIJ L= AN, |
commernii I and J are output variables, and A is the array (with down: forJ:=J ste‘pr ’_1 Y ntil M do
subseript bounds MM which i3 operated upon by this procedure. £ AlJj<X then go to change;
Partition takes the value X of a random element of the array A, J = M;

and rearranges the values of the elements of the array in such a

_ change: if I < J then begin exchange (A[I], A[J]};
way that there exist integers [and J with the following properties:

P= sJi=J = 1;
M=J<I= NprovidedM < N 1 __I+1’J J ’
AR s XforM =R =J go to up
AR] = XforJ <R <1 end ;
AR] z XforIZE R £ N else if I < F then begin exchange (A[I], A[F]);
The procedure uses an integer procedure random (M,N) which [:=1+41
chooses equiprobably a random integer F between M and N, and I
also a procedure exchange, which exchanges the values of its two end
parameters: else if F < Jthen begin exchange (A[F], AlJ]);
J:i=J -1
end;
end partition

17

Partition: CACM (Vol 4) July 1961

ALGORITHM 63 begin real X; iateger F;
PARTITION P o= random (M N): X := AfF];
C. A. R. HoARre L= JJ‘L, ; .n,
Elliott Brothers Ltd., Borehamwood, Hertfordshire, Eng. up: for I := I step 1 until N do
L uie v " .
procedure partition (A MN,1.J); value M,N; o u “aN [I] then go to down;
array A, integer M N, LJ; L= N, |
commerni [andJ are output variables, and A is the array (with down: forJ:=1J ste‘pr 7—1 u ntil M do
subseript bounds MoN) which iz onerated upon by this procedure. £ AlJi<X then go to change;
Partition takes the value X of a random element of the array A, J 1= 1\{;

and rearranges the values of the elements of the array in such a

_ change: if I < J then begin exchange (A[I], A[J]};
way that there exist integers [and J with the following properties:

M<J<IZNprovidedM <N Li=1+1LJ:=d -1
AR = XforM =R =1J go to up
AR] = XforJ <R <1 end ;
AR] z XforIZE R £ N else if I < F then begin exchange (A[I], A[F]);
The procedure uses an integer procedure random (M,N) which [:=71-41
chooses equiprobably a random integer F between M and N, and
also a procedure exchange, which exchanges the values of its two end
parameters: else if F < Jthen begin exchange (A[F], AlJ]);
J:i=J -1
end;

end partition

Important features:

1. random pivot 3. works in place

2. double-ended search 4. two outputs .

Hoare Partition

method partition(A, lo, hi) {
def pivotIndex = randomBetween(lo)and(hi)
def pivot = A[pivotIndex]

vari :=lo—-1
var j := hi+1
while {
do{i:=i+1}
while { (i <= hi).andAlso {A[i] <= pivot} }
do{j:=]-1}
while { (j >= lo).andAlso {A[j] >= pivot} }
| <]
} do { exchange(A, i, j) }
If (i < pivotIndex) then { exchange(A, i, pivotindex) ; i:=i+1}

elseif (j > pivotIndex) then { exchange(A, pivotindex, j);j:i=j—1}
list.with(i, j)
y

18

Before partition begins:

lo hi

Before partition begins:

lo hi
Leave elements that are already in the right place:
| J

lo hi

Before partition begins:

lo hi
Leave elements that are already in the right place:
| J

«—=pPp—> “«—=p—>

Before partition begins:

lo hi
Leave elements that are already in the right place:
| J

«—=pPp—> “«—=p—>

Before partition begins:

| .
lo hi

Leave elements that are already in the right place:
| j

hi

«—=pPp—> “«—=pD—>
Now a[i] = p = a[j], so swap ali] and a[j]:
| J

lo hi

Before partition begins:

lo hi

Leave elements that are already in the right place:
| j

hi

«—=pPp—> “«—=p—>

Now a[i] = p = a[j], so swap ali] and a[j]:

| J

L _p—s i

Before partition begins: |
|]

lo hi

Leave elements that are already in the right place:
| j

hi

«—=pPp—> “«—=pD—>
Now a[i] = p = a[j], so swap ali] and a[j]:
| J

|<O—sp—> <—2pﬂ>

Before partition begins:
|

lo hi

Leave elements that are already in the right place:
| j

lo hi

«—=pPp—> “«—=pD—>
Now ali] = p = a[j], so swap a[i] and a[j]:
| j

|<O—S p—— — = pﬁ»
And continue ...

‘

lo hi

when do we stop?

And continue ...

lo hi

until i and j cross!

lo hi
< >

20

when do we stop?

And continue ...
i j

lo hi

until i and j cross!

A —
@
=,

is this possible?

20

when do we stop?

And continue ...
i j

lo hi

until i and j cross!

20

when do we stop?

And continue ...
i j

lo hi

until i and j cross!

20

when do we stop?

And continue ...
i j

lo hi

until i and j cross!

20

when do we stop?

And continue ...
i j

lo hi

until i and j cross!

20

when do we stop?

And continue ...
i j

lo hi

until i and j cross!

A —
@)
=3

is this possible?

if i < f, exchange elements ati and f
and increment |

20

when do we stop?

And continue ...
i j

lo hi

until i and j cross!

A —
@)
=3

is this possible?

—p < >p .>

if i < f, exchange elements atiand f if j > f, exchange elements at j and f
and increment i and decrement j

20

Hoare’s Partition

4+ Classic algorithm!
+ beautiful and peculiarly efficient
+ It can (and has been) improved upon

4 To understand it better:

= code it up
= watch animations

21

12 Coins

< This problem is originally stated as:

= You have a balance scale and 12 coins, 1 of which is
counterfeit. The counterfeit weigh less or more than
the other coins. Can you determine the counterfeit in 3
weightings, and tell if it is heavier or lighter?

<A harder and more general problem is:

* For some given n > 1, there are (3" — 3)/2 coins, 1 of
which is counterfeit. The counterfeit weigh less or
more than the other coins. Can you state a priori #

weighting experiments with a balance, with which you
determine the counterfeit coin, and tell if it is heavier
or lighter?

22

Problem: Gray Code

Use the decrease-by-one technique (Algorithm BRGC) to
generate the binary reflected Gray code for n = 4.

23

Problem: Gray Code

Use the decrease-by-one technique (Algorithm BRGC) to
generate the binary reflected Gray code for n = 4.

110 > 111
/‘
10 < 11 100 101

<

010 < 011

0 1 00 01 000 001

23

Problem: Gray Code Algorithm

¢ Trace the following algorithm for
generating the Binary Gray Code of order 4.

Start with code = 0000
output code

fori =1 to 15 do:
b « position* of least significant 1 in binary rep of i
code < code XOR (bit b)
output code

*least significant bit is 1

24

Nim
<1 pile of n chips
< Players take turns removing 1<k<m chips
< The player removing the last chip wins

m=4

25

Nim
<1 pile of n chips
< Players take turns removing 1<k<m chips
< The player removing the last chip wins

m=4

O

25

Nim
<1 pile of n chips
< Players take turns removing 1<k<m chips
< The player removing the last chip wins

m=4

l

25

Nim
<1 pile of n chips
< Players take turns removing 1<k<m chips
< The player removing the last chip wins

m=4

l

26

Nim
<1 pile of n chips
< Players take turns removing 1<k<m chips
< The player removing the last chip wins

m=4

l 6

26

Nim
<1 pile of n chips
< Players take turns removing 1<k<m chips
< The player removing the last chip wins

m=4

l 6

26

Multiplication a la russe

n., 9
n.m_{z "

nl.9m+m

n m
50 65
25 130
12 260 (+130)

6 520

3 1,040

1 2,080 (+1040)

2, 080 +(130 + 1040) = 3, 250

if n 1s even

if n 1s odd

27

Multiplication a la russe

- 2m if n 1s even
n-m = » . .
= .2m +m if n 1s odd

n m n m
50 65 50 65
25 130 25 130 130
12 260 (+130) 12 260
6 520 6 520
3 1,040 3 1,040 1,040
1 2,080 (+1040) 1 2,080 2,080

2, 080 +(130 4+ 1040) = 3, 250 3,250

You try It!
> multiply 37 x 67

37 6’7

28

You try It!
> multiply 37 x 67

37 6’7
18

28

You try It!
> multiply 37 x 67

37 6’7
18 134

28

You try It!
> multiply 37 x 67

37 6’7
18 134 + 67

28

