CS 350 Algorithms and Complexity

Winter 2019

Lecture 8: Decrease & Conquer (continued)

Andrew P. Black

Department of Computer Science Portland State University

Finding the Median

- The Median of an array of numbers is the "middle" number, when sorted.
- \diamond We can obviously find the median by sorting the array, and then picking the $\left\lfloor \frac{n}{2} \right\rfloor$ the element
- How much work is that (in average case)?
- A. O(n)
- B. $O(n \lg n)$
- c. $O(n^2)$

Median in Linear Time?

- Can we do better?
 - After all, sorting the whole array is more work than is needed to find the median
- What <u>smaller problem</u> will help us?
- \diamond Key insight: generalize the problem! $\left\lfloor \frac{n}{2} \right\rfloor$
 - Rather than seeking an algorithm for the the element, lets look for the k^{th} element, $k \in [1..n]$

Suppose that we have a way of partitioning the array at element with value p:

$$\begin{array}{c|c} l & & r \\ \hline \leq p & p & \geq p \end{array}$$

How can this help?

- ♦ Suppose that we are looking for the 10th element, and:
 - $|A_{10}| = 5$
 - $\bullet |A_p| = 1$
 - Then we can seek the 4th element of A_{hi} instead
- ♦ We have reduced the problem size by a <u>variable</u> amount, in this case $|A_{lo}| + |A_p| = 6$

- Suppose that we are looking for the 10th element, and:
 - $|A_{lo}| = 28$
 - Then we can seek the 10^{th} element of A_{lo} instead
- ♦ We have reduced the problem size by a <u>variable</u> amount, in this case $|A_p| + |A_{hi}|$

- Suppose that we are looking for the 8th element, and:
 - $|A_{lo}| = 6$
 - $|A_p| = 2$
 - Then we can seek the 2^{nd} element of A_p instead.
- \diamond We have now <u>solved the problem</u>, because all the elements of A_p are p

- What's the connection?
 - we would like to be able to find the n^{th} element
 - instead, partitioning lets us
 - pick an element, and, in linear time,
 - find its index (the s such that it is the sth elem)
 - If n = s, we win!
 - if n < s, we continue in the left part, or
 - if n > s, we continue in the right part

- Example
 - suppose that we have A[1:20] and are looking for the 7th-smallest element:
 - run partition, find s = 9, say
 - Where do we look for the 7th-smallest element?

D: *A*[10..20]

- A different run of the same example:
 - suppose that we have A[1:20] and are looking for the 7th-smallest element:
 - run partition, find s = 3, say
 - Where do we look for the 7th-smallest element?

C:
$$A[3...20]$$

D:
$$A[4..20]$$

What's the Efficiency?

- Dasgupta's analysis shows that:
 if we can do the partition in O(n) time, and
 the two parts are of roughly equal size
 then we can select the kth element in O(n) time
- \diamond How can we do partition in O(n) time?
 - → Lomuto Partition
 - → Hoare Partition

Lomuto Partition

- While algorithm is running:
- ♦ Invariant:

```
\begin{vmatrix} l & s & i & r \\ p & \langle p & \geq p & ? \end{vmatrix}
```

- Establish invariant initially:
 - $p \leftarrow A[l]$; $s \leftarrow l$; $i \leftarrow s+1$ // makes < p interval and $\geq p$ intervals both empty

$$\begin{array}{c|cc}
l = s & i & & r \\
\hline
p & ? & & \end{array}$$

I don't like Lomuto Partition

I don't like Lomuto Partition

It does more swaps than necessary

I don't like Lomuto Partition

It does more swaps than necessary

- "half of the swap" is wasted
- It confuses students!
 - Quicksort does <u>not</u> use the Lumuto Partition
- ♦ It does not randomize the choice of p

Lomuto Partition:

Just forget about it!

How to pick the pivot?

- The choice is <u>crucial</u>
 - must be picked quickly
 - should shrink the sub-array substantially
 - ideally, [l..s] and [s..h] should be $\approx \frac{1}{2}[l..h]$
 - if we can guarantee this, then T(n) = T(n/2) + O(n)
 - but that would require that the pivot be the median!
 - Instead, pick the pivot <u>randomly</u>

Efficiency analysis for random pivot

- ❖ If we are unlucky, and repeatedly choose the smallest element for the pivot, the array would shrink by just one element (the worst case)
- So we would be performing

$$n + (n-1) + (n-2) + \dots + \frac{n}{2} = \Theta(n^2)$$

operations — but this is unlikely.

- It's also unlikely that we would stumble on the median each time (the best case).
- ♦ A "reasonably good" pivot is one between the 25th and 75th percentile. That's <u>half</u> of the available candidates. So we will get one, on average, after two random selections.
- ♦ After two partitions, we will shrink the problem to ¾ of its size, so $T(n) \le T\left(\frac{3n}{4}\right) + O(n)$

15

Efficiency analysis for random pivot

- If we are unlucky, and repeatedly choose the smallest element for the pivot, the array would shrink by just one element (the worst case)
- So we would be performing

$$n + (n-1) + (n-2) + \dots + \frac{n}{2} = \Theta(n^2)$$

operations — but this is unlikely.

- It's also unlikely that we would stumble on the median each time (the best case).
- ♦ A "reasonably good" pivot is one between the 25th and 75th percentile. That's half of the available candidates. So we will get one, on average, after two random selections.
- ♦ After two partitions, we will shrink the problem to ¾ of its size, so $T(n) \le T\left(\frac{3n}{4}\right) + O(n)$ see reading on Medians

Hoare Partition

- Classic algorithm of computing
- Developed in 1959, published in 1961.

- Not only linear, but peculiarly efficient!
- ◆ Tony Hoare won the Turing Award for Quicksort, which is based on this algorithm ... and some other things!

ALGORITHM 63 PARTITION

C. A. R. HOARE

Elliott Brothers Ltd., Borehamwood, Hertfordshire, Eng.

procedure partition (A,M,N,I,J); value M,N; array A; integer M,N,I,J;

comment I and J are output variables, and A is the array (with subscript bounds M:N) which is operated upon by this procedure. Partition takes the value X of a random element of the array A, and rearranges the values of the elements of the array in such a way that there exist integers I and J with the following properties:

```
M \le J < I \le N provided M < N

A[R] \le X for M \le R \le J

A[R] = X for J < R < I

A[R] \ge X for I \le R \le N
```

```
real X; integer F;
begin
        F := random(M,N); X := A[F];
        I := M; \quad J := N;
        for I := I step 1 until N do
up:
                   if X < A [I] then go to down;
        I := N;
        for J := J step -1 until M do
down:
                   if A[J] < X then go to change;
        J := M;
change: if I < J then begin exchange (A[I], A[J]);
                             I := I + 1; J := J - 1;
                             go to up
                       end
        if I < F then begin exchange (A[I], A[F]);
else
                             I := I + 1
                       end
else
        if F < J then begin exchange (A[F], A[J]);
                             J := J - 1
                       end:
        partition
end
```

ALGORITHM 63 PARTITION

C. A. R. HOARE

Elliott Brothers Ltd., Borehamwood, Hertfordshire, Eng.

procedure partition (A,M,N,I,J); value M,N; array A; integer M,N,I,J;

comment I and J are output variables, and A is the array (with subscript bounds M:N) which is operated upon by this procedure. Partition takes the value X of a random element of the array A, and rearranges the values of the elements of the array in such a way that there exist integers I and J with the following properties:

```
M \le J < I \le N provided M < N

A[R] \le X for M \le R \le J

A[R] = X for J < R < I

A[R] \ge X for I \le R \le N
```

```
real X; integer F;
begin
        F := \text{random } (M,N); X := A[F];
        I := M, J := N;
        for I := I step 1 until N do
up:
                   if X < A [I] then go to down;
        I := N;
        for J := J step -1 until M do
down:
                   if A[J] < X then go to change;
        J := M;
change: if I < J then begin exchange (A[I], A[J]);
                             I := I + 1; J := J - 1;
                             go to up
                       end
        if I < F then begin exchange (A[I], A[F]);
else
                             I := I + 1
                       end
else
        if F < J then begin exchange (A[F], A[J]);
                             J := J - 1
                       end:
        partition
end
```

ALGORITHM 63 PARTITION

C. A. R. HOARE

Elliott Brothers Ltd., Borehamwood, Hertfordshire, Eng.

comment I and J are output variables, and A is the array (with subscript bounds M:N) which is operated upon by this procedure. Partition takes the value X of a random element of the array A, and rearranges the values of the elements of the array in such a way that there exist integers I and J with the following properties:

```
M \le J < I \le N provided M < N

A[R] \le X for M \le R \le J

A[R] = X for J < R < I

A[R] \ge X for I \le R \le N
```

```
real X; integer F;
begin
        F := random(M,N); X := A[F];
        T:=M; J:=N;
        for I := I step I ntil N do
up:
               if X < A [I] then go to down;
        1 := N;
        for J := J step -1 until M do
down:
                 if A[J] < X then go to change;
        J := M;
change: if I < J then begin exchange (A[I], A[J]);
                            I := I + 1; J := J - 1;
                            go to up
                      end
        if I < F then begin exchange (A[I], A[F]);
else
                            I := I + 1
                      end
else
        if F < J then begin exchange (A[F], A[J]);
                            J := J - 1
                      end:
        partition
end
```

ALGORITHM 63 PARTITION

C. A. R. HOARE

Elliott Brothers Ltd., Borehamwood, Hertfordshire, Eng.

procedure partition (A,M,N,I,J); value M,N; array A; integer M,N,I,J;

comment I and J are output variables, and A is the array (with subscript bounds M:N) which is operated upon by this procedure. Partition takes the value X of a random element of the array A, and rearranges the values of the elements of the array in such a way that there exist integers I and J with the following properties:

```
M \le J < I \le N provided M < N

A[R] \le X for M \le R \le J

A[R] = X for J < R < I

A[R] \ge X for I \le R \le N
```

```
real X; integer F;
begin
        F := random(M,N); X := A[F];
        T:=M; J:=N;
        for I := I step I ntil N do
up:
               if X < A [I] then go to down;
        1 := N;
        for J := J step -1 until M do
down:
                 if A[J] < X then go to change;
        J := M;
change: if I < J then begin exchange (A[I], A[J]);
                            I := I + 1; J := J - 1;
                            go to up
                      end
        if I < F then begin exchange (A[I], A[F]);
else
                            I := I + 1
                      end
else
        if F < J then begin exchange (A[F], A[J]);
                            J := J - 1
                      end:
        partition
end
```

ALGORITHM 63 PARTITION

C. A. R. HOARE

Elliott Brothers Ltd., Borehamwood, Hertfordshire, Eng.

procedure partition (A,M,N,I,J); value M,N; array A, integer M,N,I,J;

comment I and J are output variables, and A is the array (with subscript bounds M:N) which is operated upon by this procedure. Partition takes the value X of a random element of the array A, and rearranges the values of the elements of the array in such a way that there exist integers I and J with the following properties:

```
M \le J < I \le N provided M < N

A[R] \le X for M \le R \le J

A[R] = X for J < R < I

A[R] \ge X for I \le R \le N
```

The procedure uses an integer procedure random (M,N) which chooses equiprobably a random integer F between M and N, and also a procedure exchange, which exchanges the values of its two parameters;

```
real X; integer F;
begin
        F := random(M,N); X := A[F];
        I := M, J := N,
        for I := I step Intil N do
up:
               if X < A [I] then go to down;
        1 := N
        for J := J step -1 until M do
down:
                 if A[J] < X then go to change;
        J := M;
change: if I < J then begin exchange (A[I], A[J]);
                            I := I + 1; J := J - 1;
                            go to up
                      end
        if I < F then begin exchange (A[I], A[F]);
else
                            I := I + 1
                      end
else
        if F < J then begin exchange (A[F], A[J]);
                            J := J - 1
                      end:
        partition
end
```

Important features:

- 1. random pivot
- 2. double-ended search

- 3. works in place
- 4. two outputs

Hoare Partition

```
method partition(A, lo, hi) {
  def pivotIndex = randomBetween(lo)and(hi)
  def pivot = A[pivotIndex]
  var i := |o-1|
  var j := hi+1
  while {
     do \{ i := i + 1 \}
        while \{ (i \le hi).andAlso \{A[i] \le pivot \} \}
     do\{j := j - 1\}
        while \{ (j \ge lo).andAlso \{A[j] \ge lo) \}
     i < j
  } do { exchange(A, i, j) }
  if (i < pivotIndex) then { exchange(A, i, pivotIndex); i := i + 1 }
     elseif (j > pivotIndex) then { exchange(A, pivotIndex, j) ; j := j - 1 }
  list.with(i, j)
```


Leave elements that are already in the right place:

Leave elements that are already in the right place:

Leave elements that are already in the right place:

Leave elements that are already in the right place:

Now $a[i] \ge p \ge a[j]$, so swap a[i] and a[j]:

Leave elements that are already in the right place:

Now $a[i] \ge p \ge a[j]$, so swap a[i] and a[j]:

Leave elements that are already in the right place:

Now $a[i] \ge p \ge a[j]$, so swap a[i] and a[j]:

Leave elements that are already in the right place:

Now $a[i] \ge p \ge a[j]$, so swap a[i] and a[j]:

And continue ...

when do we stop?

when do we stop?

if i < f, exchange elements at i and f and increment i

if i < f, exchange elements at i and f and increment i

if j > f, exchange elements at j and f and decrement j

Hoare's Partition

- Classic algorithm!
- beautiful and peculiarly efficient
- It can (and has been) improved upon
- → To understand it better:
 - code it up
 - watch animations

12 Coins

This problem is originally stated as:

You have a balance scale and 12 coins, 1 of which is counterfeit. The counterfeit weigh less or more than the other coins. Can you determine the counterfeit in 3 weightings, and tell if it is heavier or lighter?

A harder and more general problem is:

■ For some given n > 1, there are (3ⁿ - 3)/2 coins, 1 of which is counterfeit. The counterfeit weigh less or more than the other coins. Can you state a priori n weighting experiments with a balance, with which you determine the counterfeit coin, and tell if it is heavier or lighter?

Problem: Gray Code

Use the decrease-by-one technique ($Algorithm\ BRGC$) to generate the binary reflected Gray code for n = 4.

Problem: Gray Code

Use the decrease-by-one technique ($Algorithm\ BRGC$) to generate the binary reflected Gray code for n = 4.

Problem: Gray Code Algorithm

Trace the following algorithm for generating the Binary Gray Code of order 4.

```
Start with code = 0000
    output code

for i = 1 to 15 do:
    b ← position* of least significant 1 in binary rep of i code ← code XOR (bit b)
    output code
```

^{*}least significant bit is 1

- \diamond 1 pile of *n* chips
- → Players take turns removing 1≤k≤m chips
- The player removing the last chip wins

$$m = 4$$

- \diamond 1 pile of *n* chips
- → Players take turns removing 1≤k≤m chips
- The player removing the last chip wins

$$m = 4$$

- \diamond 1 pile of n chips
- → Players take turns removing 1≤k≤m chips
- The player removing the last chip wins

$$m = 4$$

- \diamond 1 pile of *n* chips
- → Players take turns removing 1≤k≤m chips
- The player removing the last chip wins

$$m = 4$$

- \diamond 1 pile of *n* chips
- → Players take turns removing 1≤k≤m chips
- The player removing the last chip wins

$$m = 4$$

- \diamond 1 pile of *n* chips
- → Players take turns removing 1≤k≤m chips
- The player removing the last chip wins

$$m = 4$$

Multiplication à la russe

$$n \cdot m = \begin{cases} \frac{n}{2} \cdot 2m & \text{if } n \text{ is even} \\ \frac{n-1}{2} \cdot 2m + m & \text{if } n \text{ is odd} \end{cases}$$

n	m	
50	65	
25	130	
12	260	(+130)
6	520	
3	1, 040	
1	2, 080	(+1040)
	2, 080	+(130 + 1040) = 3,250

Multiplication à la russe

$$n \cdot m = \begin{cases} \frac{n}{2} \cdot 2m & \text{if } n \text{ is even} \\ \frac{n-1}{2} \cdot 2m + m & \text{if } n \text{ is odd} \end{cases}$$

n	m	
50	65	
25	130	
12	260	(+130)
6	520	
3	1, 040	
1	2, 080	(+1040)
	2, 080	+(130 + 1040) = 3,250

n	m	
50	65	
25	130	130
12	260	
6	520	
3	1, 040	1, 040
1	2, 080	2, 080
		3, 250

↑ multiply 37 × 67

n	m	
37	67	

→ multiply 37 × 67

n	m	
37	67	
18		

→ multiply 37 × 67

n	m	
37	67	
18	134	

↑ multiply 37 × 67

n	m	
37	67	
18	134	+ 67