
CS 350 Algorithms and Complexity

Lecture 7: Decrease & Conquer

Andrew P. Black 

Department of Computer Science 

Portland State University

Winter 2019



What is Decrease-and-Conquer?

2



What is Decrease-and-Conquer?
Solves a problem instance of size n by:

2



What is Decrease-and-Conquer?
Solves a problem instance of size n by:

decreasing n by a constant, e.g., 1, or

2



What is Decrease-and-Conquer?
Solves a problem instance of size n by:

decreasing n by a constant, e.g., 1, or

decreasing n by a constant factor, often 2, or

2



What is Decrease-and-Conquer?
Solves a problem instance of size n by:

decreasing n by a constant, e.g., 1, or

decreasing n by a constant factor, often 2, or

decreasing n by a variable amount, e.g., Euclid’s algorithm

2



What is Decrease-and-Conquer?
Solves a problem instance of size n by:

decreasing n by a constant, e.g., 1, or

decreasing n by a constant factor, often 2, or

decreasing n by a variable amount, e.g., Euclid’s algorithm

2



What is Decrease-and-Conquer?
Solves a problem instance of size n by:

decreasing n by a constant, e.g., 1, or

decreasing n by a constant factor, often 2, or

decreasing n by a variable amount, e.g., Euclid’s algorithm

… to get a problem instance of size k < n 

2



What is Decrease-and-Conquer?
Solves a problem instance of size n by:

decreasing n by a constant, e.g., 1, or

decreasing n by a constant factor, often 2, or

decreasing n by a variable amount, e.g., Euclid’s algorithm

… to get a problem instance of size k < n 

1. Solve the instance of size k, using the same algorithm 
recursively.

2



What is Decrease-and-Conquer?
Solves a problem instance of size n by:

decreasing n by a constant, e.g., 1, or

decreasing n by a constant factor, often 2, or

decreasing n by a variable amount, e.g., Euclid’s algorithm

… to get a problem instance of size k < n 

1. Solve the instance of size k, using the same algorithm 
recursively.

2. Use that solution to arrive at the solution to the original 
problem.

2



What is Decrease-and-Conquer?
Solves a problem instance of size n by:

decreasing n by a constant, e.g., 1, or

decreasing n by a constant factor, often 2, or

decreasing n by a variable amount, e.g., Euclid’s algorithm

… to get a problem instance of size k < n 

1. Solve the instance of size k, using the same algorithm 
recursively.

2. Use that solution to arrive at the solution to the original 
problem.

2



Decrease-and-Conquer
!Also known as the inductive or incremental 

approach

! implement it iteratively or recursively


"how does the iterative method work?
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Decrease by a Constant: Examples
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Decrease by a Constant: Examples

# Exponentiation using an = an-1 × a 
# Insertion Sort 
# Ferrying Soldiers 
# Alternating Glasses 
# Generating the Powerset
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Exponentiation using an = an-1 × a
!How does the decrease-and-conquer 

algorithm differ from the Brute-force 
algorithm? 

A. the decrease-and conquer algorithm is more 
efficient 

B. the brute-force algorithm is more efficient 
C. the two algorithms are identical 
D. the two algorithms have the same asymptotic 

efficiency, but decrease-and conquer has a 
better constant.
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Insertion Sort
!To sort array A[1..n], sort A[1..n-1] recursively and then 

insert A[n] in its proper place among the sorted A[1..n-1] 
  

!Usually implemented bottom up (non-recursively) 

Example:   Sort  6,  5,  3,  1,  8,  7,  2,  4  

6Credit: Wikimedia Commons http://en.wikipedia.org/wiki/File:Insertion-sort-example-300px.gif
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recursive Insertion Sort
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Analysis of Insertion Sort

9



! Time efficiency

Analysis of Insertion Sort

9



! Time efficiency
 Cworst(n) = n(n-1)/2 ∈ Θ(n2)

Analysis of Insertion Sort

9

A. Θ(n) B. Θ(n2) C. Θ(n lg n) D. something else



! Time efficiency
 Cworst(n) = n(n-1)/2 ∈ Θ(n2)

 Cavg(n)  ≈ n2/4 ∈ Θ(n2)

Analysis of Insertion Sort

9

A. Θ(n) B. Θ(n2) C. Θ(n lg n) D. something else

A. Θ(n) B. Θ(n2) C. Θ(n lg n) D. something else



! Time efficiency
 Cworst(n) = n(n-1)/2 ∈ Θ(n2)

 Cavg(n)  ≈ n2/4 ∈ Θ(n2)

 Cbest(n) = n - 1 ∈ Θ(n)  (also fast on almost-sorted arrays) 

Analysis of Insertion Sort

9

A. Θ(n) B. Θ(n2) C. Θ(n lg n) D. something else

 
A. Θ(n) B. Θ(n2) C. Θ(n lg n) D. something else  

A. Θ(n) B. Θ(n2) C. Θ(n lg n) D. something else



! Time efficiency
 Cworst(n) = n(n-1)/2 ∈ Θ(n2)

 Cavg(n)  ≈ n2/4 ∈ Θ(n2)

 Cbest(n) = n - 1 ∈ Θ(n)  (also fast on almost-sorted arrays) 

! Space efficiency (in addition to input):  

Analysis of Insertion Sort

9

A. Θ(n) B. Θ(n2) C. Θ(n lg n) D. something else

A. Θ(n) B. Θ(n2) C. Θ(n lg n) D. something else

 
A. Θ(n) B. Θ(n2) C. Θ(n lg n) D. something else  

A. Θ(n) B. Θ(n2) C. Θ(n lg n) D. something else



! Time efficiency
 Cworst(n) = n(n-1)/2 ∈ Θ(n2)

 Cavg(n)  ≈ n2/4 ∈ Θ(n2)

 Cbest(n) = n - 1 ∈ Θ(n)  (also fast on almost-sorted arrays) 

! Space efficiency (in addition to input):  

! Stability: ?  

Analysis of Insertion Sort

9

A. Θ(n) B. Θ(n2) C. Θ(n lg n) D. something else

A. Θ(n) B. Θ(n2) C. Θ(n lg n) D. something else

 
A. Θ(n) B. Θ(n2) C. Θ(n lg n) D. something else  

A. Θ(n) B. Θ(n2) C. Θ(n lg n) D. something else



!Which is the best of the following sorting 
algorithms? 

A. Selection Sort 
B. Bubble Sort 
C. Insertion Sort

10



Analysis of Insertion Sort
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!Time efficiency
 Cworst(n) = n(n-1)/2 ∈ Θ(n

2
)

 Cavg(n)  ≈ n
2
/4 ∈ Θ(n

2
)

 Cbest(n) = n - 1 ∈ Θ(n)  (also fast on almost-sorted arrays) 

!Space efficiency (in addition to input): Θ(1)  

!Stability: Stable  

!Insertion sort is the best elementary sorting algorithm overall

Analysis of Insertion Sort
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Insertion Sort with Sentinel
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Wirth’s Insertion Sort
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Moral of the Story …
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Moral of the Story …
!Asymptotic efficiencies don't tell the whole 

story!
!Getting an expensive operation out of a 

loop can make a real-life difference
!You have to measure to find out 
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On my Pharo System:
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On my Pharo System:
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Insertion Sort 2481 2361 2644 2290

Recursive Insertion Sort 2364 2413 2569 2258

Sentinel Insertion Sort 2187 2347 2088 1944

Wirth's Insertion Sort 2348 2527 2245 2219



Ferrying Soldiers
!A detachment of n soldiers must cross a 

wide and deep river with no bridge in 
sight. They notice two 12-year-old boys 
playing in a rowboat by the shore. The 
boat is so tiny, that it can hold just two 
boys or one soldier.  
# How can the soldiers get across the river and 

leave the boys in joint possession of the boat? 
# How many times need the boat pass from 

shore to shore?
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Ferrying Soldiers
!Apply decrease-by-1 process:

# Ferry one soldier to the far side, leaving boat and 
boys back at their initial positions

# If no soldiers remain, we have finished,
# otherwise, ferry remaining n−1 soldiers

!How many (one way) boat trips will it take 
to ferry one soldier?

A.  1     B.  2     C.  3      D.  4      E.  5     F.  6       
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Alternating Glasses
!There are 2n glasses standing in a row, the 

first n of them filled with beer, while the 
remaining n glasses are empty. Make the 
glasses alternate in a filled-empty-filled-empty 
pattern in the minimum number of moves.  
# Interchanging two glasses is one move
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Alternating Glasses
!There are 2n glasses standing in a row, the first n of them filled with 

beer, while the remaining n glasses are empty. Make the glasses 
alternate in a filled-empty-filled-empty pattern in the minimum 
number of moves.  
# Interchanging (any) two glasses is one move 

!Apply decrease by-a-constant: 
# What smaller problem can we solve that will help?
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Depth-first Search
!Levitin says: Depth-first Search uses a 

Stack, Breadth-first search uses a queue
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126 Brute Force and Exhaustive Search
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FIGURE 3.11 Example of a BFS traversal. (a) Graph. (b) Traversal queue, with the
numbers indicating the order in which the vertices are visited, i.e., added
to (and removed from) the queue. (c) BFS forest with the tree and cross
edges shown with solid and dotted lines, respectively.

Here is pseudocode of the breadth-first search.

ALGORITHM BFS(G)

//Implements a breadth-first search traversal of a given graph
//Input: Graph G = ⟨V, E⟩
//Output: Graph G with its vertices marked with consecutive integers
// in the order they are visited by the BFS traversal
mark each vertex in V with 0 as a mark of being “unvisited”
count ← 0
for each vertex v in V do

if v is marked with 0
bfs(v)

bfs(v)

//visits all the unvisited vertices connected to vertex v

//by a path and numbers them in the order they are visited
//via global variable count

count ← count + 1; mark v with count and initialize a queue with v

while the queue is not empty do
for each vertex w in V adjacent to the front vertex do

if w is marked with 0
count ← count + 1; mark w with count

add w to the queue
remove the front vertex from the queue



Depth-first Search
!Levitin says: Depth-first Search uses a 

Stack, Breadth-first search uses a queue 

!Where’s the stack?
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DFS with explicit stack
!dfs(r) 

S ← Stack.empty 
S.push r 
{S.notEmpty} whileTrue { 

u ← S pop 
u hasBeenVisited ifFalse { 
 u markVisited 
 u adjacentVerticesDo { v → S.push v }}}
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Example: DFS traversal of undirected graph

a b

e f

c d

g h

DFS traversal stack: DFS tree:

26

dfs(r) 
S ← Stack.empty 
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{S.notEmpty} whileTrue { 
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u hasBeenVisited ifFalse { 
 u markVisited 
 u adjacentVerticesDo { v → S.push v }}}
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Example: BFS traversal of undirected graph
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bfs(r) 
Q ← Queue.empty; count ← 0 
G.allVerticesDo { v → v.markNotVisited } 
Q.add r 
{Q.notEmpty} whileTrue { 

f ← Q.remove 
f.adjacentVerticesDo { a →  

if (a.isNotVisited) then { a.markWith(count++) }  
Q.add(a) } 

}  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bfs(r) 
Q ← Queue.empty; count ← 0 
G.allVerticesDo { v → v.markNotVisited } 
Q.add r 
{Q.notEmpty} whileTrue { 

f ← Q.remove 
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Topological Sorting Example
Order the following items in a food chain

fish

human

shrimp

sheep

wheatplankton

tiger
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Topological Sort using decrease-by-one
!Basic idea: 

# topsort a graph with one less vertex 
# combine the additional vertex with the sorted 

graph 
!Problem: 

# How to choose a vertex that can be easily re-
combined?
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Which vertex should we remove?
A. fish 
B. shrimp 
C. plankton 
D. wheat 
E. sheep 
F. human 
G. tiger

fish

human

shrimp

sheep

wheatplankton

tiger
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Decrease by a Constant Factor
!binary search and bisection method 

(§12.4) 
!exponentiation by squaring 
!multiplication à la russe  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Variable-size decrease
!Euclid’s algorithm 
! selection by partition 
!Nim-like games
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