
CS 350 Algorithms and Complexity

Lecture 7: Decrease & Conquer

Andrew P. Black

Department of Computer Science

Portland State University

Winter 2019

What is Decrease-and-Conquer?

2

What is Decrease-and-Conquer?
Solves a problem instance of size n by:

2

What is Decrease-and-Conquer?
Solves a problem instance of size n by:

decreasing n by a constant, e.g., 1, or

2

What is Decrease-and-Conquer?
Solves a problem instance of size n by:

decreasing n by a constant, e.g., 1, or

decreasing n by a constant factor, often 2, or

2

What is Decrease-and-Conquer?
Solves a problem instance of size n by:

decreasing n by a constant, e.g., 1, or

decreasing n by a constant factor, often 2, or

decreasing n by a variable amount, e.g., Euclid’s algorithm

2

What is Decrease-and-Conquer?
Solves a problem instance of size n by:

decreasing n by a constant, e.g., 1, or

decreasing n by a constant factor, often 2, or

decreasing n by a variable amount, e.g., Euclid’s algorithm

2

What is Decrease-and-Conquer?
Solves a problem instance of size n by:

decreasing n by a constant, e.g., 1, or

decreasing n by a constant factor, often 2, or

decreasing n by a variable amount, e.g., Euclid’s algorithm

… to get a problem instance of size k < n

2

What is Decrease-and-Conquer?
Solves a problem instance of size n by:

decreasing n by a constant, e.g., 1, or

decreasing n by a constant factor, often 2, or

decreasing n by a variable amount, e.g., Euclid’s algorithm

… to get a problem instance of size k < n

1. Solve the instance of size k, using the same algorithm
recursively.

2

What is Decrease-and-Conquer?
Solves a problem instance of size n by:

decreasing n by a constant, e.g., 1, or

decreasing n by a constant factor, often 2, or

decreasing n by a variable amount, e.g., Euclid’s algorithm

… to get a problem instance of size k < n

1. Solve the instance of size k, using the same algorithm
recursively.

2. Use that solution to arrive at the solution to the original
problem.

2

What is Decrease-and-Conquer?
Solves a problem instance of size n by:

decreasing n by a constant, e.g., 1, or

decreasing n by a constant factor, often 2, or

decreasing n by a variable amount, e.g., Euclid’s algorithm

… to get a problem instance of size k < n

1. Solve the instance of size k, using the same algorithm
recursively.

2. Use that solution to arrive at the solution to the original
problem.

2

Decrease-and-Conquer
!Also known as the inductive or incremental

approach

! implement it iteratively or recursively

"how does the iterative method work?

3

Decrease by a Constant: Examples

4

Decrease by a Constant: Examples

Exponentiation using an = an-1 × a
Insertion Sort
Ferrying Soldiers
Alternating Glasses
Generating the Powerset

4

Exponentiation using an = an-1 × a
!How does the decrease-and-conquer

algorithm differ from the Brute-force
algorithm?

A. the decrease-and conquer algorithm is more
efficient

B. the brute-force algorithm is more efficient
C. the two algorithms are identical
D. the two algorithms have the same asymptotic

efficiency, but decrease-and conquer has a
better constant.

5

Insertion Sort
!To sort array A[1..n], sort A[1..n-1] recursively and then

insert A[n] in its proper place among the sorted A[1..n-1] 

!Usually implemented bottom up (non-recursively) 

Example: Sort 6, 5, 3, 1, 8, 7, 2, 4  

6Credit: Wikimedia Commons http://en.wikipedia.org/wiki/File:Insertion-sort-example-300px.gif

Insertion Sort
!To sort array A[1..n], sort A[1..n-1] recursively and then

insert A[n] in its proper place among the sorted A[1..n-1] 

!Usually implemented bottom up (non-recursively) 

Example: Sort 6, 5, 3, 1, 8, 7, 2, 4  

6Credit: Wikimedia Commons http://en.wikipedia.org/wiki/File:Insertion-sort-example-300px.gif

Insertion Sort

7

Insertion Sort

7

Insertion Sort

7

recursive Insertion Sort

8

Analysis of Insertion Sort

9

! Time efficiency

Analysis of Insertion Sort

9

! Time efficiency
 Cworst(n) = n(n-1)/2 ∈ Θ(n2)

Analysis of Insertion Sort

9

A. Θ(n) B. Θ(n2) C. Θ(n lg n) D. something else

! Time efficiency
 Cworst(n) = n(n-1)/2 ∈ Θ(n2)

 Cavg(n) ≈ n2/4 ∈ Θ(n2)

Analysis of Insertion Sort

9

A. Θ(n) B. Θ(n2) C. Θ(n lg n) D. something else

A. Θ(n) B. Θ(n2) C. Θ(n lg n) D. something else

! Time efficiency
 Cworst(n) = n(n-1)/2 ∈ Θ(n2)

 Cavg(n) ≈ n2/4 ∈ Θ(n2)

 Cbest(n) = n - 1 ∈ Θ(n) (also fast on almost-sorted arrays) 

Analysis of Insertion Sort

9

A. Θ(n) B. Θ(n2) C. Θ(n lg n) D. something else

 
A. Θ(n) B. Θ(n2) C. Θ(n lg n) D. something else  

A. Θ(n) B. Θ(n2) C. Θ(n lg n) D. something else

! Time efficiency
 Cworst(n) = n(n-1)/2 ∈ Θ(n2)

 Cavg(n) ≈ n2/4 ∈ Θ(n2)

 Cbest(n) = n - 1 ∈ Θ(n) (also fast on almost-sorted arrays) 

! Space efficiency (in addition to input):  

Analysis of Insertion Sort

9

A. Θ(n) B. Θ(n2) C. Θ(n lg n) D. something else

A. Θ(n) B. Θ(n2) C. Θ(n lg n) D. something else

 
A. Θ(n) B. Θ(n2) C. Θ(n lg n) D. something else  

A. Θ(n) B. Θ(n2) C. Θ(n lg n) D. something else

! Time efficiency
 Cworst(n) = n(n-1)/2 ∈ Θ(n2)

 Cavg(n) ≈ n2/4 ∈ Θ(n2)

 Cbest(n) = n - 1 ∈ Θ(n) (also fast on almost-sorted arrays) 

! Space efficiency (in addition to input):  

! Stability: ?

Analysis of Insertion Sort

9

A. Θ(n) B. Θ(n2) C. Θ(n lg n) D. something else

A. Θ(n) B. Θ(n2) C. Θ(n lg n) D. something else

 
A. Θ(n) B. Θ(n2) C. Θ(n lg n) D. something else  

A. Θ(n) B. Θ(n2) C. Θ(n lg n) D. something else

!Which is the best of the following sorting
algorithms?

A. Selection Sort
B. Bubble Sort
C. Insertion Sort

10

Analysis of Insertion Sort

11

!Time efficiency

Analysis of Insertion Sort

11

!Time efficiency
 Cworst(n) = n(n-1)/2 ∈ Θ(n

2
)

Analysis of Insertion Sort

11

!Time efficiency
 Cworst(n) = n(n-1)/2 ∈ Θ(n

2
)

 Cavg(n) ≈ n
2
/4 ∈ Θ(n

2
)

Analysis of Insertion Sort

11

!Time efficiency
 Cworst(n) = n(n-1)/2 ∈ Θ(n

2
)

 Cavg(n) ≈ n
2
/4 ∈ Θ(n

2
)

 Cbest(n) = n - 1 ∈ Θ(n) (also fast on almost-sorted arrays) 

Analysis of Insertion Sort

11

!Time efficiency
 Cworst(n) = n(n-1)/2 ∈ Θ(n

2
)

 Cavg(n) ≈ n
2
/4 ∈ Θ(n

2
)

 Cbest(n) = n - 1 ∈ Θ(n) (also fast on almost-sorted arrays) 

!Space efficiency (in addition to input): Θ(1)  

Analysis of Insertion Sort

11

!Time efficiency
 Cworst(n) = n(n-1)/2 ∈ Θ(n

2
)

 Cavg(n) ≈ n
2
/4 ∈ Θ(n

2
)

 Cbest(n) = n - 1 ∈ Θ(n) (also fast on almost-sorted arrays) 

!Space efficiency (in addition to input): Θ(1)  

!Stability: Stable  

Analysis of Insertion Sort

11

!Time efficiency
 Cworst(n) = n(n-1)/2 ∈ Θ(n

2
)

 Cavg(n) ≈ n
2
/4 ∈ Θ(n

2
)

 Cbest(n) = n - 1 ∈ Θ(n) (also fast on almost-sorted arrays) 

!Space efficiency (in addition to input): Θ(1)  

!Stability: Stable  

!Insertion sort is the best elementary sorting algorithm overall

Analysis of Insertion Sort

11

Insertion Sort with Sentinel

12

Wirth’s Insertion Sort

13

Moral of the Story …

14

Moral of the Story …
!Asymptotic efficiencies don't tell the whole

story!

14

Moral of the Story …
!Asymptotic efficiencies don't tell the whole

story!
!Getting an expensive operation out of a

loop can make a real-life difference

14

Moral of the Story …
!Asymptotic efficiencies don't tell the whole

story!
!Getting an expensive operation out of a

loop can make a real-life difference
!You have to measure to find out

14

On my Pharo System:

15

On my Pharo System:

15

Insertion Sort 2481 2361 2644 2290

Recursive Insertion Sort 2364 2413 2569 2258

Sentinel Insertion Sort 2187 2347 2088 1944

Wirth's Insertion Sort 2348 2527 2245 2219

Ferrying Soldiers
!A detachment of n soldiers must cross a

wide and deep river with no bridge in
sight. They notice two 12-year-old boys
playing in a rowboat by the shore. The
boat is so tiny, that it can hold just two
boys or one soldier.
How can the soldiers get across the river and

leave the boys in joint possession of the boat?
How many times need the boat pass from

shore to shore?

16

Ferrying Soldiers

17

Ferrying Soldiers
!Apply decrease-by-1 process:

17

Ferrying Soldiers
!Apply decrease-by-1 process:

Ferry one soldier to the far side, leaving boat and
boys back at their initial positions

17

Ferrying Soldiers
!Apply decrease-by-1 process:

Ferry one soldier to the far side, leaving boat and
boys back at their initial positions

If no soldiers remain, we have finished,

17

Ferrying Soldiers
!Apply decrease-by-1 process:

Ferry one soldier to the far side, leaving boat and
boys back at their initial positions

If no soldiers remain, we have finished,
otherwise, ferry remaining n−1 soldiers

17

Ferrying Soldiers
!Apply decrease-by-1 process:

Ferry one soldier to the far side, leaving boat and
boys back at their initial positions

If no soldiers remain, we have finished,
otherwise, ferry remaining n−1 soldiers

!How many (one way) boat trips will it take
to ferry one soldier?

17

Ferrying Soldiers
!Apply decrease-by-1 process:

Ferry one soldier to the far side, leaving boat and
boys back at their initial positions

If no soldiers remain, we have finished,
otherwise, ferry remaining n−1 soldiers

!How many (one way) boat trips will it take
to ferry one soldier?

A. 1 B. 2 C. 3 D. 4 E. 5 F. 6

17

Alternating Glasses
!There are 2n glasses standing in a row, the

first n of them filled with beer, while the
remaining n glasses are empty. Make the
glasses alternate in a filled-empty-filled-empty
pattern in the minimum number of moves.
Interchanging two glasses is one move

18

Alternating Glasses
!There are 2n glasses standing in a row, the

first n of them filled with beer, while the
remaining n glasses are empty. Make the
glasses alternate in a filled-empty-filled-empty
pattern in the minimum number of moves.
Interchanging two glasses is one move

18

Alternating Glasses
!There are 2n glasses standing in a row, the

first n of them filled with beer, while the
remaining n glasses are empty. Make the
glasses alternate in a filled-empty-filled-empty
pattern in the minimum number of moves.
Interchanging two glasses is one move

18

Alternating Glasses
!There are 2n glasses standing in a row, the first n of them filled with

beer, while the remaining n glasses are empty. Make the glasses
alternate in a filled-empty-filled-empty pattern in the minimum
number of moves.
Interchanging two glasses is one move

!Apply decrease by-a-constant:
What smaller problem can we solve that will help?

19

Alternating Glasses
!There are 2n glasses standing in a row, the first n of them filled with

beer, while the remaining n glasses are empty. Make the glasses
alternate in a filled-empty-filled-empty pattern in the minimum
number of moves.
Interchanging two glasses is one move

!Apply decrease by-a-constant:
What smaller problem can we solve that will help?

19

Alternating Glasses
!There are 2n glasses standing in a row, the first n of them filled with

beer, while the remaining n glasses are empty. Make the glasses
alternate in a filled-empty-filled-empty pattern in the minimum
number of moves.
Interchanging two glasses is one move

!Apply decrease by-a-constant:
What smaller problem can we solve that will help?

19

Alternating Glasses
!There are 2n glasses standing in a row, the first n of them filled with

beer, while the remaining n glasses are empty. Make the glasses
alternate in a filled-empty-filled-empty pattern in the minimum
number of moves.
Interchanging two glasses is one move

!Apply decrease by-a-constant:
What smaller problem can we solve that will help?

19

Alternating Glasses
!There are 2n glasses standing in a row, the first n of them filled with

beer, while the remaining n glasses are empty. Make the glasses
alternate in a filled-empty-filled-empty pattern in the minimum
number of moves.
Interchanging (any) two glasses is one move

!Apply decrease by-a-constant:
What smaller problem can we solve that will help?

20

Depth-first Search
!Levitin says: Depth-first Search uses a

Stack, Breadth-first search uses a queue

21

22

126 Brute Force and Exhaustive Search

g

a

d

e

b

c f

j

h

h

i

j

ga

c d

f b

e

i

(a) (b) (c)

a1 c2 d3 e4 f5 b6
g7 h8 j9 i10

FIGURE 3.11 Example of a BFS traversal. (a) Graph. (b) Traversal queue, with the
numbers indicating the order in which the vertices are visited, i.e., added
to (and removed from) the queue. (c) BFS forest with the tree and cross
edges shown with solid and dotted lines, respectively.

Here is pseudocode of the breadth-first search.

ALGORITHM BFS(G)

//Implements a breadth-first search traversal of a given graph
//Input: Graph G = ⟨V, E⟩
//Output: Graph G with its vertices marked with consecutive integers
// in the order they are visited by the BFS traversal
mark each vertex in V with 0 as a mark of being “unvisited”
count ← 0
for each vertex v in V do

if v is marked with 0
bfs(v)

bfs(v)

//visits all the unvisited vertices connected to vertex v

//by a path and numbers them in the order they are visited
//via global variable count

count ← count + 1; mark v with count and initialize a queue with v

while the queue is not empty do
for each vertex w in V adjacent to the front vertex do

if w is marked with 0
count ← count + 1; mark w with count

add w to the queue
remove the front vertex from the queue

Depth-first Search
!Levitin says: Depth-first Search uses a

Stack, Breadth-first search uses a queue

!Where’s the stack?

24

DFS with explicit stack
!dfs(r)

S ← Stack.empty
S.push r
{S.notEmpty} whileTrue {

u ← S pop
u hasBeenVisited ifFalse {
 u markVisited 
 u adjacentVerticesDo { v → S.push v }}}

25

Example: DFS traversal of undirected graph

a b

e f

c d

g h

DFS traversal stack: DFS tree:

26

dfs(r)
S ← Stack.empty
S.push r
{S.notEmpty} whileTrue {

u ← S pop
u hasBeenVisited ifFalse {
 u markVisited 
 u adjacentVerticesDo { v → S.push v }}}

Example: DFS traversal of undirected graph

a b

e f

c d

g h

DFS traversal stack: DFS tree:

26

a

dfs(r)
S ← Stack.empty
S.push r
{S.notEmpty} whileTrue {

u ← S pop
u hasBeenVisited ifFalse {
 u markVisited 
 u adjacentVerticesDo { v → S.push v }}}

Example: BFS traversal of undirected graph

a b

e f

c d

g h

BFS traversal queue: BFS tree:

27

bfs(r)
Q ← Queue.empty; count ← 0
G.allVerticesDo { v → v.markNotVisited }
Q.add r
{Q.notEmpty} whileTrue {

f ← Q.remove
f.adjacentVerticesDo { a →

if (a.isNotVisited) then { a.markWith(count++) }
Q.add(a) }

}  

Example: BFS traversal of undirected graph

a b

e f

c d

g h

BFS traversal queue: BFS tree:

27

a

bfs(r)
Q ← Queue.empty; count ← 0
G.allVerticesDo { v → v.markNotVisited }
Q.add r
{Q.notEmpty} whileTrue {

f ← Q.remove
f.adjacentVerticesDo { a →

if (a.isNotVisited) then { a.markWith(count++) }
Q.add(a) }

}  

Topological Sorting Example
Order the following items in a food chain

fish

human

shrimp

sheep

wheatplankton

tiger

28

Topological Sort using decrease-by-one
!Basic idea:

topsort a graph with one less vertex
combine the additional vertex with the sorted

graph
!Problem:

How to choose a vertex that can be easily re-
combined?

29

Which vertex should we remove?
A. fish
B. shrimp
C. plankton
D. wheat
E. sheep
F. human
G. tiger

fish

human

shrimp

sheep

wheatplankton

tiger

30

Decrease by a Constant Factor
!binary search and bisection method

(§12.4)
!exponentiation by squaring
!multiplication à la russe  

31

Variable-size decrease
!Euclid’s algorithm
! selection by partition
!Nim-like games

32

