CS 350 Algorithms and Complexity

Winter 2019

Lecture /: Decrease & Conquer

Andrew P. Black

Department of Computer Science
Portland State University

What is Decrease-and-Conquer?

What is Decrease-and-Conquer?

Solves a problem instance of size n by:

What is Decrease-and-Conquer?

Solves a problem instance of size n by:

decreasing n by a constant, e.g., 1, or

What is Decrease-and-Conquer?

Solves a problem instance of size n by:
decreasing n by a constant, e.g., 1, or

decreasing n by a constant factor, often 2, or

What is Decrease-and-Conquer?

Solves a problem instance of size n by:
decreasing n by a constant, e.g., 1, or
decreasing n by a constant factor, often 2, or

decreasing n by a variable amount

What is Decrease-and-Conquer?

Solves a problem instance of size n by:
decreasing n by a constant, e.g., 1, or
decreasing n by a constant factor, often 2, or

decreasing n by a variable amount, e.g., Euclid’s algorithm

What is Decrease-and-Conquer?

Solves a problem instance of size n by:
decreasing n by a constant, e.g., 1, or
decreasing n by a constant factor, often 2, or

decreasing n by a variable amount, e.g., Euclid’s algorithm

... to get a problem instance of size £k < n

What is Decrease-and-Conquer?

Solves a problem instance of size n by:

decreasing n by a constant, e.g., 1, or

decreasing n by a constant factor, often 2, or

decreasing n by a variable amount, e.g., Euclid’s algorithm
... to get a problem instance of size £k < n

1. Solve the instance of size k, using the same algorithm
recursively.

What is Decrease-and-Conquer?

Solves a problem instance of size n by:
decreasing n by a constant, e.g., 1, or
decreasing n by a constant factor, often 2, or

decreasing n by a variable amount, e.g., Euclid’s algorithm

... to get a problem instance of size £k < n

1. Solve the instance of size k, using the same algorithm
recursively.

2. Use that solution to arrive at the solution to the original
problem.

What is Decrease-and-Conquer?

Solves a problem instance of size n by:
decreasing n by a constant, e.g., 1, or
decreasing n by a constant factor, often 2, or

decreasing n by a variable amount, e.g., Euclid’s algorithm

... to get a problem instance of size £k < n

1. Solve the instance of size k, using the same algorithm
recursively.

2. Use that solution to arrive at the solution to the original
problem.

Decrease-and-Conquer

< Also KkKnown as the inductive or incremental
approach

< Implement it iteratively or recursively
* how does the iterative method work??

Decrease by a Constant: Examples

Decrease by a Constant: Examples

= Exponentiation using a” = a"' x a
® [nsertion Sort

® Ferrying Soldiers

= Alternating Glasses

= Generating the Powerset

Exponentiation using a” = a"*! x a

<~ How does the decrease-and-conquer
algorithm differ from the Brute-force
algorithm?

a. the decrease-and conquer algorithm is more
efficient

. the brute-force algorithm is more efficient
c. the two algorithms are identical

p. the two algorithms have the same asymptotic
efficiency, but decrease-and conquer has a
better constant.

Insertion Sort

<~To sort array A[1..n], sort A[1..n-1] recursively and then
insert A[n] in its proper place among the sorted A[1..n-1]

< Usually implemented bottom up (non-recursively)

Example: Sort 6, 5, 3, 1, 8, 7, 2, 4

6 5 3 1 8 7 2 4

Credit: Wikimedia Commons http://en.wikipedia.org/wiki/File:Insertion-sort-example-300px.gif 6

Insertion Sort

<~To sort array A[1..n], sort A[1..n-1] recursively and then
insert A[n] in its proper place among the sorted A[1..n-1]

< Usually implemented bottom up (non-recursively)

Example: Sort 6, 5, 3, 1, 8, 7, 2, 4

6 5 3 1 8 7 2 4

Credit: Wikimedia Commons http://en.wikipedia.org/wiki/File:Insertion-sort-example-300px.gif 6

Insertion Sort

insertionSort
"Sort me using insertion sort.

lvnjA|
A « self.
n « self size.
2 to:ndo:[7]
v « A at: .
| <.
[(>1)and:[(A at:J-1)>v]]
whileTrue: [
A at:j put: (A at: J-1).
j<j-11
A at:j put:v]

Insertion Sort

insertionSort
"Sort me using }'nsertion sort. Levitin §4.1"

lvnjA|
A « self.
n « self size.
2 to:ndo:[7]
v < A at: .
| .
[(>1)and: [(A at:J-1)gt:v]]
whileTrue: [
A at:j put: (A at: J-1).
je<j-11
A at:j put:v]

Insertion Sort

insertionSort
"Sort me using }'nsertion sort. Levitin §4.1"

lvnjA]|
A « self.
n « self size.
2to:ndo:[7]
v < A at .
| <.
[(>1)and: [(A at:J-1)gt:v]]
whileTrue: [
A at:j put: (A at: J-1).
je<j-11
A at:j put:v]

gt: aNumber
ComparisonCount « ComparisonCount + 1.
T self >aNumber

recursive Insertion Sort

insertionSortRecursive
"Sort me using insertion sort, using recursion rather than iteration"

self insertionSortFirst: (self size).
T self

insertionSortFirst: n
"Perform insertion sort on my first n elements”

v/l

(n < 2)ifTrue:[T self].

self insertionSortFirst: (n-1).

v « self at:n.

J < n.

[>1) and: [(self at: J-1) gt: v]]

whileTrue: [

self at:) put: (self at: J-1).
j «<J-11]

self at: j put: v.

T self

Analysis of Insertion Sort

Analysis of Insertion Sort

< Time efficiency

Analysis of Insertion Sort

< Time efficiency
Cworst(n) A-©(N) B.O(n?) C.O(nIgn) D.something else

Analysis of Insertion Sort

< Time efficiency
Cworst(n) A-©(N) B.O(n?) C.O(nIgn) D.something else

Cag(n) A-©(n) B.O(n?) C.6(nlgn) D.something else

Analysis of Insertion Sort

< Time efficiency
Cworst(n) A-©(N) B.O(n?) C.O(nIgn) D.something else

Cavg(n) A-©(n) B.O(n?) C.6(nlgn) D.something else
Coest(n) =A-©(n) B.O(n?) C.O(nlgn) D.something else

Analysis of Insertion Sort

< Time efficiency

Cuworst(n) A-©(N) B.O(n?) C.O(nIgn) D.something else

Cavg(n) :A-©(n) B.O(n%) C.O(nIgn) D.something else

Coest(n) =A-©(n) B.O(n?) C.O(nlgn) D.something else

< Space efficiency (in addition to input):
A.O(n) B.O©(N%) C.06(nlgn) D.something else

Analysis of Insertion Sort

< Time efficiency

Cuworst(n) A-©(N) B.O(n?) C.O(nIgn) D.something else

Cavg(n) :A-©(n) B.O(n%) C.O(nIgn) D.something else

Coest(n) =A-©(n) B.O(n?) C.O(nlgn) D.something else

< Space efficiency (in addition to input):
A.O(n) B.O©(N%) C.06(nlgn) D.something else

< Stability: ?

~Which is the best of the following sorting
algorithms?

A. Selection Sort
B. Bubble Sort
C. Insertion Sort

10

Analysis of Insertion Sort

Analysis of Insertion Sort

< Time efficiency

11

Analysis of Insertion Sort

< Time efficiency
2
Cuworst(n) = n(n-1)/2 € O(n)

11

Analysis of Insertion Sort
< Time efficiency

Cworst(n) = n(n-1)/2 € @(nz)

C. (n) = n’/4 € O(n)

avg

11

Analysis of Insertion Sort
< Time efficiency

Cworst(n) = n(n-1)/2 € @(nz)

Covo(n) = n'/4 € O(n")

Chest(n) = n -1 € O(n) (also fast on almost-sorted arrays)

11

Analysis of Insertion Sort

< Time efficiency
2
Cuworst(n) = n(n-1)/2 € O(n)
C. (n) = n’/4 € O(n)

avg

Chest(n) = n -1 € O(n) (also fast on almost-sorted arrays)

< Space efficiency (in addition to input): ©(1)

11

Analysis of Insertion Sort

< Time efficiency
2
Cuworst(n) = n(n-1)/2 € O(n)

Covo(n) = n'/4 € O(n")

Chest(n) = n -1 € O(n) (also fast on almost-sorted arrays)

< Space efficiency (in addition to input): ©(1)

< Stability: Stable

11

Analysis of Insertion Sort

< Time efficiency
2
Cuworst(n) = n(n-1)/2 € O(n)

Covo(n) = n'/4 € O(n")

Chest(n) = n -1 € O(n) (also fast on almost-sorted arrays)

< Space efficiency (in addition to input): ©(1)
< Stability: Stable

< Insertion sort is the best elementary sorting algorithm overall

11

Insertion Sort with Sentinel

sentinalinsertionSort

"Sort me using insertion sort, using a sentinal instead of a bounds check.

[vnjA|
A « self.
n « self size.
A addFirst: -100000.
3to:n+l do:[7|
v « A at:i.
| <.
[(Aat:/-1)>v]
whileTrue: [

A at:j put: (A at: j-1).

J<J-11
A at:j put:v].
A removeFirst

insertionSort

"Sort me using insertion sort.

lvnjA|
A « self.
n « self size.
2to:ndo:[7]
v « A at: .
| <.
[(>1)and:[(A at:j-1)>Vv]]
whileTrue: [
A at:j put: (A at: j-1).
J«<J-11
A at:j put:v]
12

Wirth’s Insertion Sort

wirthsinsertionSort
"Sort me using N.Wirth's version of insertion sort, using an internal sentinel instead

of a bounds check. H. Thimbleby, Software P&E Vol 19 Nr 3, pp303-307, March 1989"

lvnjA]|
A « self.
n « self size. _ _
A addFirst: nil. "make room for sentinal" sef,‘;",‘.ta““se'.t'°.“s°r:.t ;
3 t()' n+1 dO' [_] I ort me using insertion sort, us
v «< A at: . L\vn}ll\fl
« Selr.
Aatl putv. n « self size.
J 1. A addFirst: -100000.
[(Aat:j—1)>v] 3to:n+l do:[17|
. v « A at: .
whileTrue: [i i
A at:j put: (A at: /-1). [Aat)-1)>v]
—j-1] whileTrue: [
,l J ' A at:j put: (A at: j-1).
A at:j put:v]. jej-11.
A at:j put:v].

A removeFirst _
A removeFirst

Moral of the Story ...

Moral of the Story ...

<~ Asymptotic efficiencies don't tell the whole
story!

14

Moral of the Story ...

<~ Asymptotic efficiencies don't tell the whole
story!

< Getting an expensive operation out of a
loop can make a real-life difference

14

Moral of the Story ...

<~ Asymptotic efficiencies don't tell the whole
story!

< Getting an expensive operation out of a
loop can make a real-life difference

<~ You have to measure to find out

14

On my Pharo System:

testinsertionSorts
| anArray0 anArrayl anArrayS anArrayW n |
n « 10000.
anArray0 « (1 to: n) asOrderedCollection shuffled.
anArrayl « anArray0O copy.
anArrayS « anArray0 copy.
anArrayW < anArrayO copy.
Transcript show: ‘Insertion Sort: ', show: (Time millisecondsToRun: [anArray0 insertionSort]); cr.
Transcript show: 'Rec Insertion Sort: '; show: (Time millisecondsToRun: [anArrayl insertionSortRecursive]); cr.
Transcript show: 'Sentinal Insertion Sort: ', show: (Time millisecondsToRun: [anArrayS sentinellnsertionSort]); cr.
Transcript show: 'Wirth"s Insertion Sort: ', show: (Time millisecondsToRun: [anArrayW wirthsinsertionSort]); cr.

15

On my Pharo System:

testinsertionSorts
| anArray0 anArrayl anArrayS anArrayW n |
n « 10000.
anArray0 « (1 to: n) asOrderedCollection shuffled.
anArrayl « anArray0O copy.
anArrayS « anArray0 copy.
anArrayW < anArrayO copy.
Transcript show: ‘Insertion Sort: ', show: (Time millisecondsToRun: [anArray0 insertionSort]); cr.
Transcript show: 'Rec Insertion Sort: '; show: (Time millisecondsToRun: [anArrayl insertionSortRecursive]); cr.
Transcript show: 'Sentinal Insertion Sort: ', show: (Time millisecondsToRun: [anArrayS sentinellnsertionSort]); cr.
Transcript show: 'Wirth"s Insertion Sort: ', show: (Time millisecondsToRun: [anArrayW wirthsinsertionSort]); cr.

Insertion Sort 2481 2361 2644 2290
Recursive Insertion Sort 2364 2413 2569 2258
Sentinel Insertion Sort 2187 2347 2088 1944
Wirth's Insertion Sort 2348 2527 2245 2219

15

Ferrying Soldiers

<~ A detachment of 7 soldiers must cross a

wide and deep river with no bridge in
sight. They notice two 12-year-old boys
playing in a rowboat by the shore. The
boat is so tiny, that it can hold just two
boys or one soldier.

= How can the soldiers get across the river and
leave the boys in joint possession of the boat?

= How many times need the boat pass from
shore to shore?

16

Ferrying Soldiers

Ferrying Soldiers
< Apply decrease-by-1 process:

17

Ferrying Soldiers

< Apply decrease-by-1 process:

® Ferry one soldier to the far side, leaving boat and
boys back at their initial positions

17

Ferrying Soldiers

< Apply decrease-by-1 process:

® Ferry one soldier to the far side, leaving boat and
boys back at their initial positions

= If no soldiers remain, we have finished,

17

Ferrying Soldiers

< Apply decrease-by-1 process:

® Ferry one soldier to the far side, leaving boat and
boys back at their initial positions

= If no soldiers remain, we have finished,
= otherwise, ferry remaining n—1 soldiers

17

Ferrying Soldiers

< Apply decrease-by-1 process:

® Ferry one soldier to the far side, leaving boat and
boys back at their initial positions

= If no soldiers remain, we have finished,
= otherwise, ferry remaining n—1 soldiers

~How many (one way) boat trips will it take
to ferry one soldier?

17

Ferrying Soldiers

< Apply decrease-by-1 process:

® Ferry one soldier to the far side, leaving boat and
boys back at their initial positions

= If no soldiers remain, we have finished,
= otherwise, ferry remaining n—1 soldiers

~How many (one way) boat trips will it take
to ferry one soldier?

A.1 B. 2 C. 3 D. 4 E. 5 F 6

17

Alternating Glasses

There are 2n glasses standing in a row, the
first n of them filled with beer, while the

remaining n glasses are empty. Make the

glasses alternate in a filled-empty-filled-empty
pattern in the minimum number of moves.

= Interchanging two glasses is one move

wwwww

18

Alternating Glasses

There are 2n glasses standing in a row, the
first n of them filled with beer, while the
remaining n glasses are empty. Make the

glasses alternate in a filled-empty-filled-empty
pattern in the minimum number of moves.

= Interchanging two glasses is one move

wwwww

18

Alternating Glasses

There are 2n glasses standing in a row, the
first n of them filled with beer, while the
remaining n glasses are empty. Make the

glasses alternate in a filled-empty-filled-empty
pattern in the minimum number of moves.

= Interchanging two glasses is one move

wewww /L
L e

Alternating Glasses

< There are 2n glasses standing in a row, the first n of them filled with
beer, while the remaining n glasses are empty. Make the glasses

alternate in a filled-empty-filled-empty pattern in the minimum
number of moves.

= Interchanging two glasses is one move

< Apply decrease by-a-constant:
= \What smaller problem can we solve that will help?

wwwww

19

Alternating Glasses

< There are 2n glasses standing in a row, the first n of them filled with
beer, while the remaining n glasses are empty. Make the glasses

alternate in a filled-empty-filled-empty pattern in the minimum
number of moves.

= Interchanging two glasses is one move

< Apply decrease by-a-constant:
= \What smaller problem can we solve that will help?

wwwww

19

Alternating Glasses

< There are 2n glasses standing in a row, the first n of them filled with
beer, while the remaining n glasses are empty. Make the glasses

alternate in a filled-empty-filled-empty pattern in the minimum
number of moves.

= Interchanging two glasses is one move

< Apply decrease by-a-constant:
= \What smaller problem can we solve that will help?

wwwww

v L,

Alternating Glasses

< There are 2n glasses standing in a row, the first n of them filled with
beer, while the remaining n glasses are empty. Make the glasses

alternate in a filled-empty-filled-empty pattern in the minimum
number of moves.

= Interchanging two glasses is one move

< Apply decrease by-a-constant:
= \What smaller problem can we solve that will help?

wwwww

v

wew /| /]

L,

Alternating Glasses

< There are 2n glasses standing in a row, the first n of them filled with
beer, while the remaining n glasses are empty. Make the glasses

alternate in a filled-empty-filled-empty pattern in the minimum
number of moves.

= Interchanging (any) two glasses is one move

< Apply decrease by-a-constant:
= \What smaller problem can we solve that will help?

wwwww

W

wew /| /]

w

Depth-first Search

< Levitin says: Depth-first Search uses a
Stack, Breadth-first search uses a queue

21

ALGORITHM DFS(G)

/Implements a depth-first search traversal of a given graph
/[Input: Graph G = (V, E)
/[/Output: Graph G with its vertices marked with consecutive integers
//in the order they’ve been first encountered by the DFS traversal
mark each vertex in V with 0 as a mark of being “unvisited”
count < ()
for each vertex vin V do
if v 1s marked with O

dfs(v)

dfs(v)
/Ivisits recursively all the unvisited vertices connected to vertex v by a path
/fand numbers them in the order they are encountered
/Ivia global variable count
count < count + 1; mark v with count
for each vertex w in V adjacent to v do
if w 1s marked with 0

dfs(w) &

ALGORITHM BFS(G)

[ITmplements a breadth-first search traversal of a given graph
/Input: Graph G = (V, E)
//Output: Graph G with its vertices marked with consecutive integers

//in the order they have been visited by the BFS traversal
mark each vertex in V with 0 as a mark of being “unvisited™

count < ()
for each vertex v in V do

if v 1s marked with O

Dfs(v)

bfsiv)
/ivisits all the unvisited vertices connected to vertex v by a path
/land assigns them the numbers in the order they are visited
/Ivia global variable count
count < count + 1; mark v with counr and 1nitialize a queue with v
while the queue 1s not empty do

for cach vertex w in V adjacent to the front vertex do

if w is marked with O
count < count + 1; mark w with count

add w to the queue
remove the front vertex from the queue

Depth-first Search

< Levitin says: Depth-first Search uses a
Stack, Breadth-first search uses a queue

<~ Where's the stack?

24

DFS with explicit stack
< dfs(r)

S « Stack.empty
S.push r
{S.notEmpty} whileTrue {
u < S pop
u hasBeenVisited ifFalse {

u markVisited
u adjacentVerticesDo { v — S.push v }}}

25

Example: DFS traversal of undirected graph

e ff\@ 0

DFS traversal stack: DFS tree:

dfs(r)
S « Stack.empty
S.push r
{S.notEmpty} whileTrue {
u+ S pop
u hasBeenVisited ifFalse {
u markVisited
u adjacentVerticesDo { v — S.push v }}} 6

Example: DFS traversal of undirected graph

e ff\@ 0

DFS traversal stack: DFS tree:
d

dfs(r)
S « Stack.empty
S.push r
{S.notEmpty} whileTrue {
u+ S pop
u hasBeenVisited ifFalse {
u markVisited
u adjacentVerticesDo { v — S.push v }}} 6

Example: BFS traversal of undirected graph

o @

@\@ c)
(e) ®\@ (h)

BFS traversal queue: BFS tree:

bs(r)
Q + Queue.empty; count « 0
G.allVerticesDo { v — v.markNotVisited }
Q.add r
{Q.notEmpty} whileTrue {
f « Q.remove
f.adjacentVerticesDo { a —
if (a.isNotVisited) then { a.markWith(count++) }

} Q.add(a) } 27

Example: BFS traversal of undirected graph

o @

@\@ c)
(e) ®\@ (h)

BFS traversal queue: BFS tree:
d

bs(r)
Q + Queue.empty; count « 0
G.allVerticesDo { v — v.markNotVisited }
Q.add r
{Q.notEmpty} whileTrue {
f « Q.remove
f.adjacentVerticesDo { a —
if (a.isNotVisited) then { a.markWith(count++) }

} Q.add(a) } 27

Topological Sorting Example
Order the following items in a food chain

Topological Sort using decrease-by-one

< Basic idea:
= topsort a graph with one less vertex

= combine the additional vertex with the sorted
graph

< Problem:

= How to choose a vertex that can be easily re-
combined?

29

Which vertex should we remove?

A. fish
. shri
e ken
/ D. wheat
\ E. sheep
F. human
& n heep
l/
/
wheat

tiger

30

Decrease by a Constant Factor

< binary search and bisection method
(§12.4)

< exponentiation by squaring
¢ multiplication a la russe

31

Variable-size decrease

< Euclid’s algorithm
< selection by partition
<~ Nim-like games

32

