CS 350 Algorithms and Complexity

Winter 2019

Lecture 7: Decrease & Conquer

Andrew P. Black

Department of Computer Science Portland State University

Solves a problem instance of size *n* by:

decreasing *n* by a **constant**, *e.g.*, 1, or

Solves a problem instance of size *n* by:

decreasing *n* by a **constant**, *e.g.*, 1, or

decreasing *n* by a **constant factor**, *often* 2, or

- decreasing *n* by a **constant**, *e.g.*, 1, or
- decreasing *n* by a **constant factor**, *often* 2, or
- decreasing *n* by a variable amount

- decreasing *n* by a **constant**, *e.g.*, 1, or
- decreasing *n* by a **constant factor**, *often* 2, or
- decreasing n by a variable amount, e.g., Euclid's algorithm

- decreasing *n* by a **constant**, *e.g.*, **1**, or
- decreasing *n* by a **constant factor**, *often* 2, or
- decreasing *n* by a variable amount, *e.g.*, Euclid's algorithm
- ... to get a problem instance of size k < n

- Solves a problem instance of size *n* by:
 - decreasing *n* by a **constant**, *e.g.*, 1, or
 - decreasing *n* by a **constant factor**, *often* 2, or
 - decreasing *n* by a variable amount, *e.g.*, Euclid's algorithm
- ... to get a problem instance of size k < n
 - 1. Solve the instance of size *k*, using the same algorithm recursively.

- Solves a problem instance of size *n* by:
 - decreasing *n* by a **constant**, *e.g.*, 1, or
 - decreasing *n* by a **constant factor**, *often* 2, or
 - decreasing *n* by a variable amount, *e.g.*, Euclid's algorithm
- ... to get a problem instance of size k < n
 - 1. Solve the instance of size *k*, using the same algorithm recursively.
 - 2. Use that solution to arrive at the solution to the original problem.

- Solves a problem instance of size *n* by:
 - decreasing *n* by a **constant**, *e.g.*, 1, or
 - decreasing *n* by a **constant factor**, *often* 2, or
 - decreasing *n* by a variable amount, *e.g.*, Euclid's algorithm
- ... to get a problem instance of size k < n
 - 1. Solve the instance of size *k*, using the same algorithm recursively.
 - 2. Use that solution to arrive at the solution to the original problem.

Decrease-and-Conquer

- Also known as the inductive or incremental approach
- - how does the iterative method work?

Decrease by a Constant: Examples

Decrease by a Constant: Examples

- Exponentiation using $a^n = a^{n-1} \times a$
- Insertion Sort
- Ferrying Soldiers
- Alternating Glasses
- Generating the Powerset

Exponentiation using $a^n = a^{n-1} \times a$

- How does the decrease-and-conquer algorithm differ from the Brute-force algorithm?
- A. the decrease-and conquer algorithm is more efficient
- B. the brute-force algorithm is more efficient
- c. the two algorithms are identical
- D. the two algorithms have the same asymptotic efficiency, but decrease-and conquer has a better constant.

To sort array A[1..n], sort A[1..n-1] recursively and then insert A[n] in its proper place among the sorted A[1..n-1]

Usually implemented bottom up (non-recursively)

Example: Sort 6, 5, 3, 1, 8, 7, 2, 4

6 5 3 1 8 7 2 4

To sort array A[1..n], sort A[1..n-1] recursively and then insert A[n] in its proper place among the sorted A[1..n-1]

Usually implemented bottom up (non-recursively)

Example: Sort 6, 5, 3, 1, 8, 7, 2, 4

6 5 3 1 8 7 2 4

insertionSort

"Sort me using insertion sort.

```
|v n j A|

A \leftarrow \text{self.}

n \leftarrow \text{self size.}

2 \text{ to: } n \text{ do: } [i]

v \leftarrow A \text{ at: } i.

j \leftarrow i.

[(j > 1) \text{ and: } [(A \text{ at: } j-1) > v]]

while True: [

A \text{ at: } j \text{ put: } (A \text{ at: } j-1).

j \leftarrow j - 1].

A \text{ at: } j \text{ put: } v]
```

insertionSort

"Sort me using insertion sort. Levitin §4.1"

```
|v n j A|

A \leftarrow \text{self.}

n \leftarrow \text{self size.}

2 to: n do: [ :i |

v \leftarrow A at: i.

j \leftarrow i.

[ (j > 1) and: [ (A at: j-1) gt: v ] ]

while True: [

A at: j put: (A at: j-1).

j \leftarrow j - 1 ].

A at: j put: v ]
```

insertionSort

"Sort me using insertion sort. Levitin §4.1"

```
|v n j A|

A \leftarrow \text{self.}

n \leftarrow \text{self size.}

2 to: n do: [ i |

v \leftarrow A at: i.

j \leftarrow i.

[ (j > 1) and: [ (A at: j-1) gt: v ] ]

while True: [

A at: j put: (A at: j-1).

j \leftarrow j - 1 ].

A at: j put: v ]
```

gt: aNumber

ComparisonCount ← ComparisonCount + 1. ↑ self > aNumber

recursive Insertion Sort

insertionSortRecursive

"Sort me using insertion sort, using recursion rather than iteration"

```
self insertionSortFirst: (self size).
1 self
```

insertionSortFirst: n

"Perform insertion sort on my first n elements"

```
\begin{array}{l} |v j| \\ (n < 2) \text{ if True: [} \texttt{f self ].} \\ \text{self insertionSortFirst: (n-1).} \\ v \leftarrow \text{self at: } n. \\ j \leftarrow n. \\ [(j > 1) \text{ and: [ (self at: j-1) gt: v]]} \\ \text{ while True: [} \\ \text{ self at: } j \text{ put: (self at: } j-1). \\ j \leftarrow j - 1 \text{ ].} \\ \text{self at: } j \text{ put: } v. \\ \texttt{f self} \end{array}
```

♦ Time efficiency

Time efficiency

 $C_{worst}(n)$ A. $\Theta(n)$ B. $\Theta(n^2)$ C. $\Theta(n \lg n)$ D. something else

Time efficiency

 $C_{worst}(n)$ A. $\Theta(n)$ B. $\Theta(n^2)$ C. $\Theta(n \lg n)$ D. something else

 $C_{avg}(n)$ A. $\Theta(n)$ B. $\Theta(n^2)$ C. $\Theta(n \lg n)$ D. something else

Time efficiency

- $C_{worst}(n)$ A. $\Theta(n)$, B. $\Theta(n^2)$, C. $\Theta(n \lg n)$ D. something else $C_{avg}(n)$; A. $\Theta(n)$ B. $\Theta(n^2)$ C. $\Theta(n \lg n)$ D. something else
- $C_{best}(n) = A. \Theta(n)$ B. $\Theta(n^2)$ C. $\Theta(n \lg n)$ D. something else

Time efficiency

- $C_{worst}(n)$ A. $\Theta(n)$ B. $\Theta(n^2)$ C. $\Theta(n \lg n)$ D. something else $C_{avg}(n)$ $A. \Theta(n)$ B. $\Theta(n^2)$ C. $\Theta(n \lg n)$ D. something else $C_{best}(n) = A. \Theta(n)$ B. $\Theta(n^2)$ C. $\Theta(n \lg n)$ D. something else
- Space efficiency (in addition to input):
 A. Θ(n) B. Θ(n²) C. Θ(n lg n) D. something else

Time efficiency

- $C_{worst}(n)$ A. $\Theta(n)$ B. $\Theta(n^2)$ C. $\Theta(n \lg n)$ D. something else $C_{avg}(n)$ $A. \Theta(n)$ B. $\Theta(n^2)$ C. $\Theta(n \lg n)$ D. something else $C_{best}(n) = A. \Theta(n)$ B. $\Theta(n^2)$ C. $\Theta(n \lg n)$ D. something else
- Space efficiency (in addition to input):

 A. Θ(n)
 B. Θ(n²)
 C. Θ(n lg n)
 D. something else

 Stability: ?

Which is the best of the following sorting algorithms?

- A. Selection Sort
- B. Bubble Sort
- C. Insertion Sort

♦ Time efficiency

Time efficiency

 $C_{\text{worst}}(n) = n(n-1)/2 \in \Theta(n^2)$

Time efficiency

 $C_{\text{worst}}(n) = n(n-1)/2 \in \Theta(n^2)$ $C_{\text{avg}}(n) \approx n^2/4 \in \Theta(n^2)$

♦ Time efficiency

 $C_{\text{worst}}(n) = n(n-1)/2 \in \Theta(n^2)$ $C_{\text{avg}}(n) \approx n^2/4 \in \Theta(n^2)$

 $C_{\text{best}}(n) = n - 1 \in \Theta(n)$ (also fast on almost-sorted arrays)

♦ Time efficiency

$$C_{\text{worst}}(n) = n(n-1)/2 \in \Theta(n^2)$$

$$C_{\text{avg}}(n) \approx n^2/4 \in \Theta(n^2)$$

$$C_{\text{best}}(n) = n - 1 \in \Theta(n) \text{ (also fast on almost-sorted arrays)}$$

 \diamond Space efficiency (in addition to input): $\Theta(1)$

♦ Time efficiency

$$C_{\text{worst}}(n) = n(n-1)/2 \in \Theta(n^2)$$

$$C_{\text{avg}}(n) \approx n^2/4 \in \Theta(n^2)$$

$$C_{\text{best}}(n) = n - 1 \in \Theta(n) \text{ (also fast on almost-sorted arrays)}$$

 \diamond Space efficiency (in addition to input): $\Theta(1)$

Stability: Stable

Analysis of Insertion Sort

♦ Time efficiency

$$C_{\text{worst}}(n) = n(n-1)/2 \in \Theta(n^2)$$

$$C_{\text{avg}}(n) \approx n^2/4 \in \Theta(n^2)$$

$$C_{\text{best}}(n) = n - 1 \in \Theta(n) \text{ (also fast on almost-sorted arrays)}$$

 \diamond Space efficiency (in addition to input): $\Theta(1)$

Stability: Stable

Insertion sort is the best elementary sorting algorithm overall

Insertion Sort with Sentinel

sentinalInsertionSort

"Sort me using insertion sort, using a sentinal instead of a bounds check.

```
|vnjA|
A \leftarrow self.
n \leftarrow self size.
A addFirst: -100000.
3 to: n+1 do: [ : i |
    v \leftarrow A \text{ at: } i.
    i ← i.
    [(A \text{ at: } j-1) > v]
         whileTrue: [
             A at: j put: (A at: j-1).
             j \leftarrow j - 1].
    A at: j put: v ].
A removeFirst
```

```
insertionSort
```

"Sort me using insertion sort.

```
|v n j A|

A \leftarrow \text{self.}

n \leftarrow \text{self size.}

2 to: n do: [i|

v \leftarrow A at: i.

j \leftarrow i.

[(j > 1) and: [(A at: j-1) > v]]

while True: [

A at: j put: (A at: j-1).

j \leftarrow j - 1].

A at: j put: v]
```

Wirth's Insertion Sort

wirthsInsertionSort

"Sort me using N.Wirth's version of insertion sort, using an internal sentinel instead of a bounds check. H. Thimbleby, Software P&E Vol 19 Nr 3, pp303-307, March 1989"

|vnjA| $A \leftarrow self.$ $n \leftarrow self size.$ A addFirst: nil. "make room for sentinal" 3 to: n+1 do: [i] $v \leftarrow A \text{ at: } i$. A at: 1 put: v. į ← į. [(A at: j-1) > v]whileTrue: [A at: j put: (A at: j-1). *j* ← *j* - 1]. A at: j put: v]. A removeFirst

sentinalInsertionSort

"Sort me using insertion sort, us

```
|v n j A|

A \leftarrow \text{self.}

n \leftarrow \text{self size.}

A \text{ addFirst: -100000.}

3 \text{ to: } n+1 \text{ do: } [i]

v \leftarrow A \text{ at: } i.

j \leftarrow i.

[(A \text{ at: } j-1) > v]

whileTrue: [

A \text{ at: } j \text{ put: } (A \text{ at: } j-1).

j \leftarrow j - 1].

A \text{ at: } j \text{ put: } v].

A \text{ removeFirst}
```

Asymptotic efficiencies don't tell the whole story!

- Asymptotic efficiencies don't tell the whole story!
- Getting an expensive operation out of a loop can make a real-life difference

- Asymptotic efficiencies don't tell the whole story!
- Getting an expensive operation out of a loop can make a real-life difference
- You have to measure to find out

On my Pharo System:

testInsertionSorts

| anArray0 anArray1 anArrayS anArrayW n | n ← 10000. anArray0 ← (1 to: n) asOrderedCollection shuffled. anArray1 ← anArray0 copy. anArrayS ← anArray0 copy. anArrayW ← anArray0 copy. Transcript show: 'Insertion Sort: '; show: (Time millisecondsToRun: [anArray0 insertionSort]); cr. Transcript show: 'Rec Insertion Sort: '; show: (Time millisecondsToRun: [anArray1 insertionSortRecursive]); cr. Transcript show: 'Sentinal Insertion Sort: '; show: (Time millisecondsToRun: [anArray1 insertionSortRecursive]); cr. Transcript show: 'Sentinal Insertion Sort: '; show: (Time millisecondsToRun: [anArray5 sentinelInsertionSort]); cr. Transcript show: 'Wirth''s Insertion Sort: '; show: (Time millisecondsToRun: [anArray5 sentinelInsertionSort]); cr.

On my Pharo System:

testInsertionSorts

| anArray0 anArrayI anArrayS anArrayW n | n ← 10000. anArray0 ← (1 to: n) asOrderedCollection shuffled. anArray1 ← anArray0 copy. anArrayS ← anArray0 copy. anArrayW ← anArray0 copy. Transcript show: 'Insertion Sort: '; show: (Time millisecondsToRun: [anArray0 insertionSort]); cr. Transcript show: 'Rec Insertion Sort: '; show: (Time millisecondsToRun: [anArray1 insertionSortRecursive]); cr. Transcript show: 'Sentinal Insertion Sort: '; show: (Time millisecondsToRun: [anArray1 insertionSortRecursive]); cr. Transcript show: 'Sentinal Insertion Sort: '; show: (Time millisecondsToRun: [anArrayV wirthsInsertionSort]); cr.

Insertion Sort	2481	2361	2644	2290	
Recursive Insertion Sort	2364	2413	2569	2258	
Sentinel Insertion Sort	2187	2347	2088	1944	
Wirth's Insertion Sort	2348	2527	2245	2219	

- A detachment of *n* soldiers must cross a wide and deep river with no bridge in sight. They notice two 12-year-old boys playing in a rowboat by the shore. The boat is so tiny, that it can hold just two boys or one soldier.
 - How can the soldiers get across the river and leave the boys in joint possession of the boat?
 - How many times need the boat pass from shore to shore?

Apply decrease-by-1 process:

- Apply decrease-by-1 process:
 - Ferry one soldier to the far side, <u>leaving boat and</u> <u>boys back at their initial positions</u>

- Apply decrease-by-1 process:
 - Ferry one soldier to the far side, <u>leaving boat and</u> <u>boys back at their initial positions</u>
 - If no soldiers remain, we have finished,

- Apply decrease-by-1 process:
 - Ferry one soldier to the far side, <u>leaving boat and</u> <u>boys back at their initial positions</u>
 - If no soldiers remain, we have finished,
 - otherwise, ferry remaining n-1 soldiers

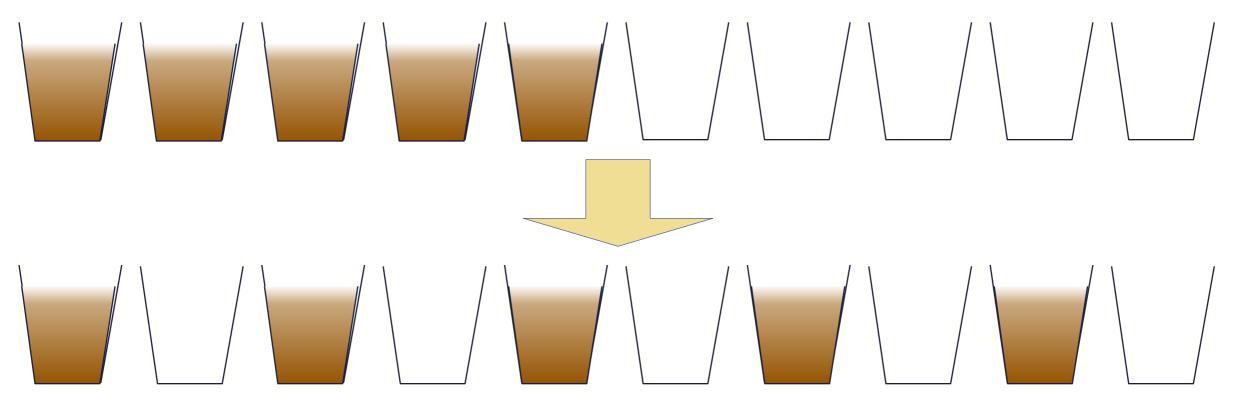
- Apply decrease-by-1 process:
 - Ferry one soldier to the far side, <u>leaving boat and</u> <u>boys back at their initial positions</u>
 - If no soldiers remain, we have finished,
 - otherwise, ferry remaining n-1 soldiers
- How many (one way) boat trips will it take to ferry **one** soldier?

- Apply decrease-by-1 process:
 - Ferry one soldier to the far side, <u>leaving boat and</u> <u>boys back at their initial positions</u>
 - If no soldiers remain, we have finished,
 - otherwise, ferry remaining n-1 soldiers
- How many (one way) boat trips will it take to ferry **one** soldier?
 - A. 1 B. 2 C. 3 D. 4 E. 5 F. 6

- There are 2n glasses standing in a row, the first n of them filled with beer, while the remaining n glasses are empty. Make the glasses alternate in a filled-empty-filled-empty pattern in the minimum number of moves.
 - Interchanging two glasses is one move

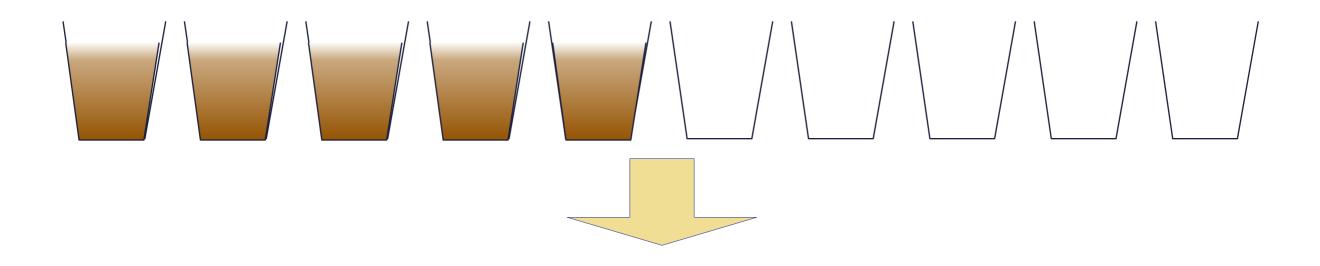
- There are 2n glasses standing in a row, the first n of them filled with beer, while the remaining n glasses are empty. Make the glasses alternate in a filled-empty-filled-empty pattern in the minimum number of moves.
 - Interchanging two glasses is one move

- There are 2n glasses standing in a row, the first n of them filled with beer, while the remaining n glasses are empty. Make the glasses alternate in a filled-empty-filled-empty pattern in the minimum number of moves.
 - Interchanging two glasses is one move

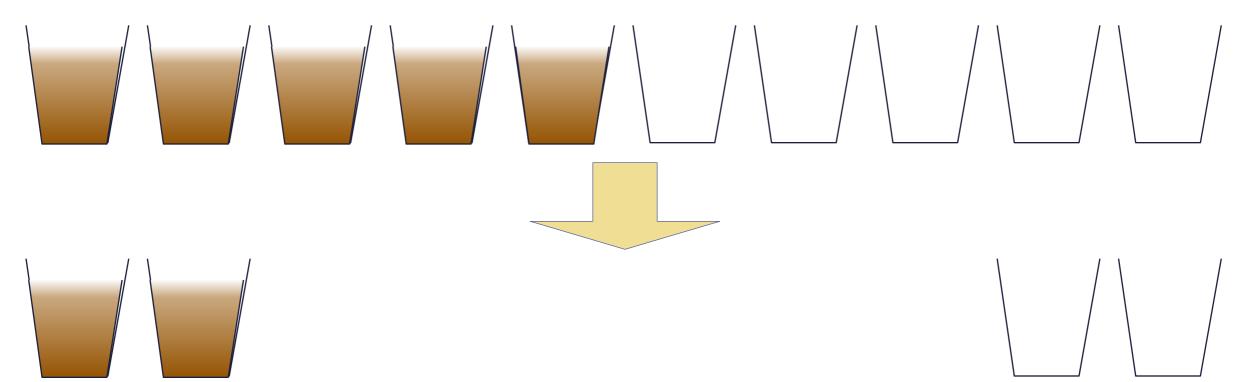


- There are 2n glasses standing in a row, the first n of them filled with beer, while the remaining n glasses are empty. Make the glasses alternate in a filled-empty-filled-empty pattern in the minimum number of moves.
 - Interchanging two glasses is one move
- Apply decrease by-a-constant:
 - What smaller problem can we solve that will help?

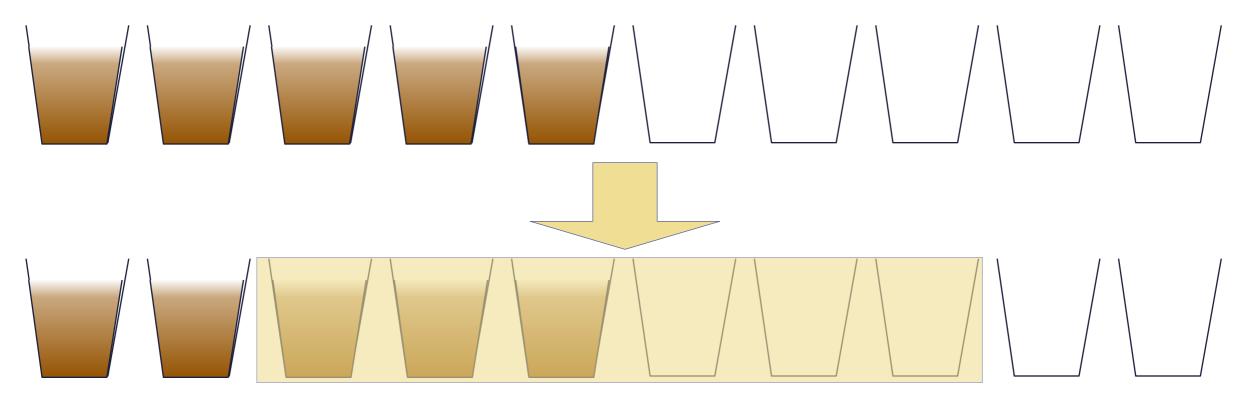
- There are 2n glasses standing in a row, the first n of them filled with beer, while the remaining n glasses are empty. Make the glasses alternate in a filled-empty-filled-empty pattern in the minimum number of moves.
 - Interchanging two glasses is one move
- Apply decrease by-a-constant:
 - What smaller problem can we solve that will help?



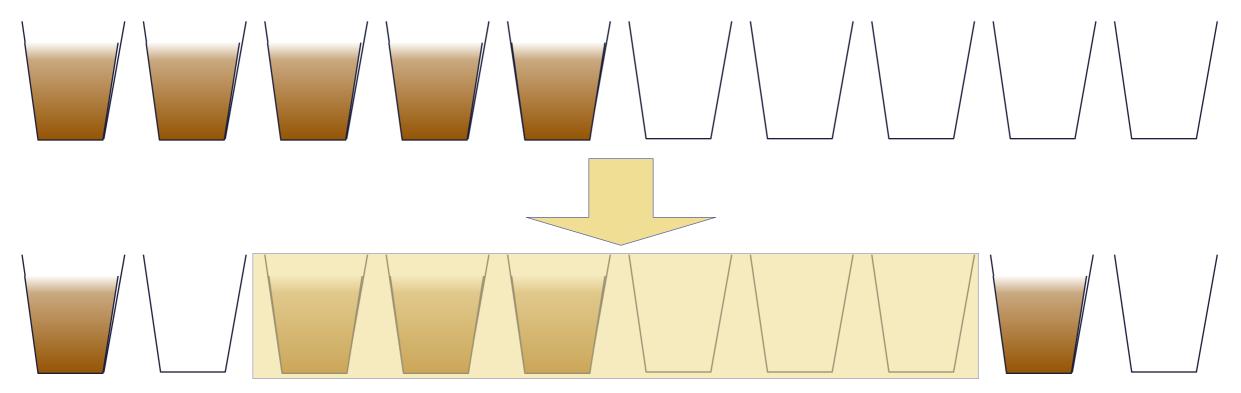
- There are 2n glasses standing in a row, the first n of them filled with beer, while the remaining n glasses are empty. Make the glasses alternate in a filled-empty-filled-empty pattern in the minimum number of moves.
 - Interchanging two glasses is one move
- Apply decrease by-a-constant:
 - What smaller problem can we solve that will help?



- There are 2n glasses standing in a row, the first n of them filled with beer, while the remaining n glasses are empty. Make the glasses alternate in a filled-empty-filled-empty pattern in the minimum number of moves.
 - Interchanging two glasses is one move
- Apply decrease by-a-constant:
 - What smaller problem can we solve that will help?



- There are 2n glasses standing in a row, the first n of them filled with beer, while the remaining n glasses are empty. Make the glasses alternate in a filled-empty-filled-empty pattern in the minimum number of moves.
 - Interchanging (any) two glasses is one move
- Apply decrease by-a-constant:
 - What smaller problem can we solve that will help?



Depth-first Search

 Levitin says: Depth-first Search uses a Stack, Breadth-first search uses a queue **ALGORITHM** DFS(G)

//Implements a depth-first search traversal of a given graph //Input: Graph $G = \langle V, E \rangle$

//Output: Graph G with its vertices marked with consecutive integers //in the order they've been first encountered by the DFS traversal mark each vertex in V with 0 as a mark of being "unvisited"

 $count \leftarrow 0$

```
for each vertex v in V do
```

if v is marked with 0

dfs(v)

dfs(v)

//visits recursively all the unvisited vertices connected to vertex v by a path //and numbers them in the order they are encountered //via global variable *count count* \leftarrow *count* + 1; mark v with *count* **for** each vertex w in V adjacent to v **do if** w is marked with 0 *dfs(w)* 22 **ALGORITHM** BFS(G)

//Implements a breadth-first search traversal of a given graph //Input: Graph $G = \langle V, E \rangle$

//Output: Graph G with its vertices marked with consecutive integers //in the order they have been visited by the BFS traversal mark each vertex in V with 0 as a mark of being "unvisited"

 $count \leftarrow 0$

for each vertex v in V do

```
if v is marked with 0
```

bfs(v)

bfs(v)

//visits all the unvisited vertices connected to vertex v by a path
//and assigns them the numbers in the order they are visited
//via global variable count

count \leftarrow *count* + 1; mark v with *count* and initialize a queue with v while the queue is not empty **do**

for each vertex w in V adjacent to the front vertex do

if w is marked with 0

 $count \leftarrow count + 1$; mark w with count

add w to the queue

remove the front vertex from the queue

Depth-first Search

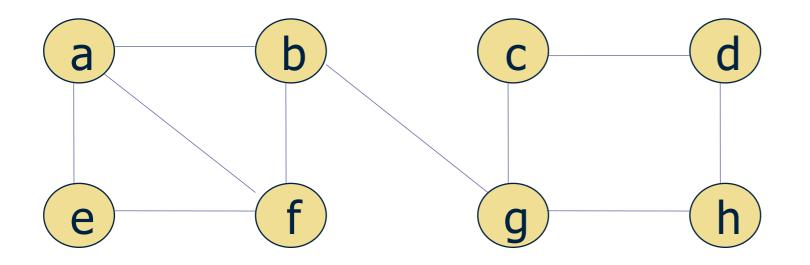
 Levitin says: Depth-first Search uses a Stack, Breadth-first search uses a queue

Where's the stack?

DFS with explicit stack

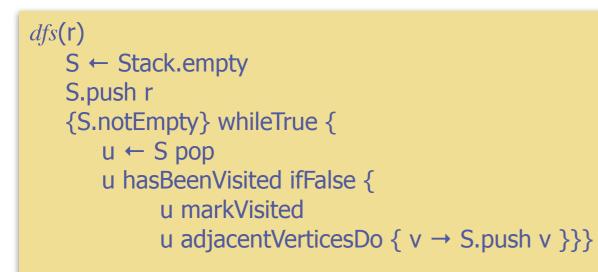
 $\diamond dfs(\mathbf{r})$ S ← Stack.empty S.push r {S.notEmpty} whileTrue { u ← S pop u hasBeenVisited ifFalse { u markVisited u adjacentVerticesDo { $v \rightarrow S.push v }$ }

Example: DFS traversal of undirected graph

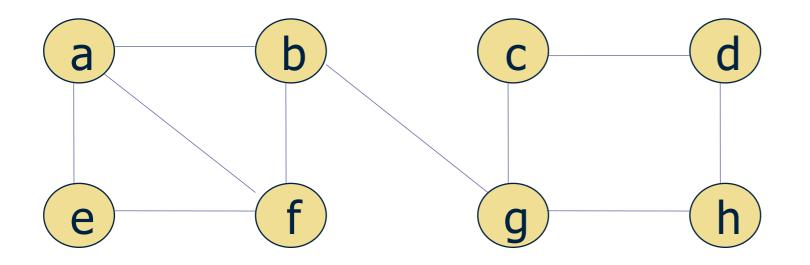


DFS traversal stack:

DFS tree:



Example: DFS traversal of undirected graph



DFS traversal stack:

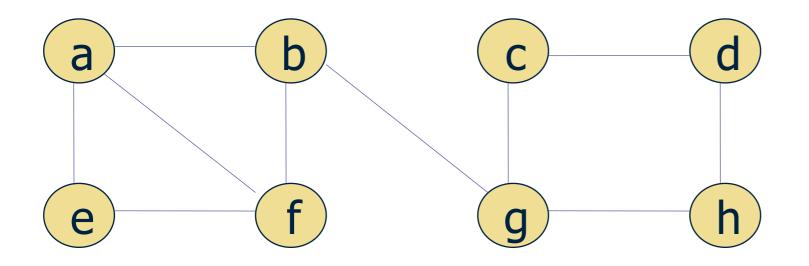
DFS tree:

a

dfs(r)

```
S ← Stack.empty
S.push r
{S.notEmpty} whileTrue {
    u ← S pop
    u hasBeenVisited ifFalse {
        u markVisited
        u adjacentVerticesDo { v → S.push v }}}
```

Example: BFS traversal of undirected graph

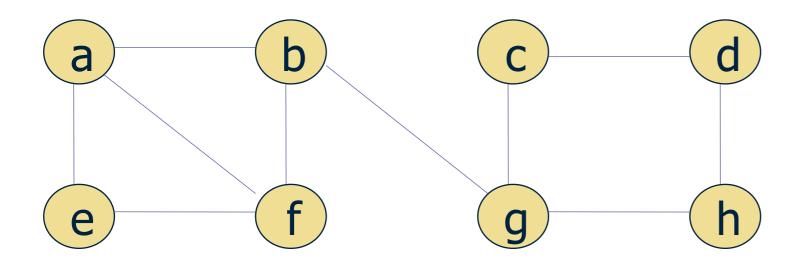


BFS traversal queue:

BFS tree:

```
 bfs(r) 
Q \leftarrow Queue.empty; count \leftarrow 0 
G.allVerticesDo { v → v.markNotVisited } 
Q.add r 
{Q.notEmpty} whileTrue { 
f ← Q.remove 
f.adjacentVerticesDo { a → 
if (a.isNotVisited) then { a.markWith(count++) } 
Q.add(a) } 
}
```

Example: BFS traversal of undirected graph



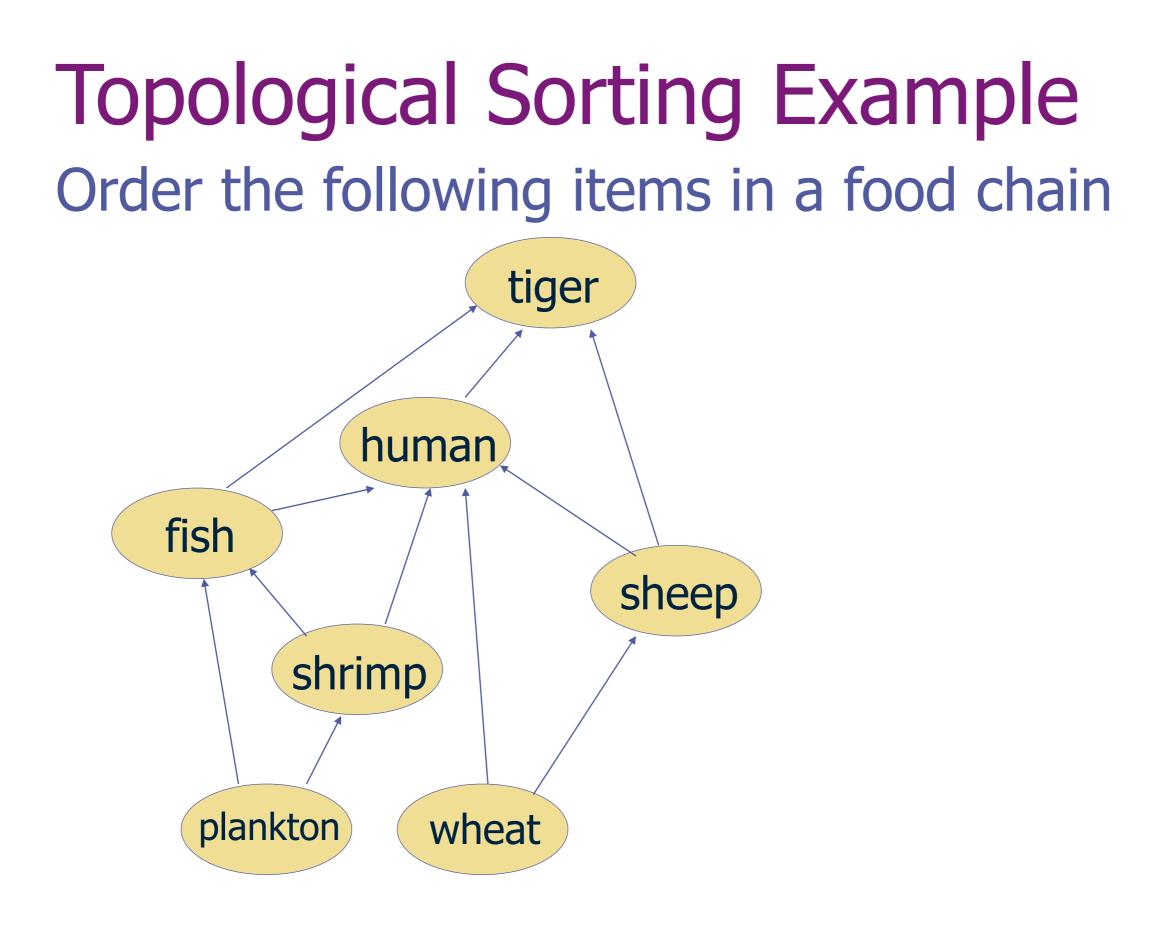
BFS traversal queue:

a

bfs(r) $Q \leftarrow Queue.empty; count \leftarrow 0$ $G.allVerticesDo { v → v.markNotVisited }$ Q.add r ${Q.notEmpty} whileTrue {$ f ← Q.remove $f.adjacentVerticesDo { a →$ $if (a.isNotVisited) then { a.markWith(count++) }$ $Q.add(a) }$ $}$

BFS tree:

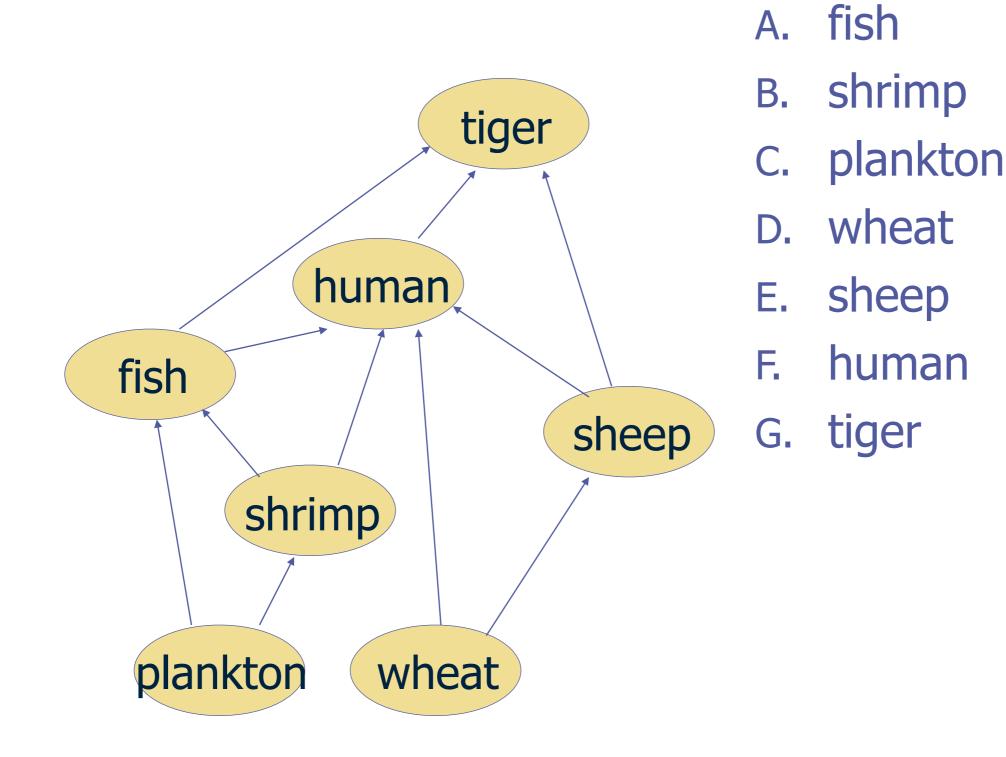
27



Topological Sort using decrease-by-one

- Basic idea:
 - topsort a graph with one less vertex
 - combine the additional vertex with the sorted graph
- Problem:
 - How to choose a vertex that can be easily recombined?

Which vertex should we remove?



Decrease by a Constant Factor

- binary search and bisection method
 (§12.4)
- exponentiation by squaring
 ...
- multiplication à la russe

Variable-size decrease

- Euclid's algorithm
- Selection by partition
- Nim-like games