Brute Force

- A straightforward approach, usually based directly on the problem’s statement and definitions of the concepts involved

- Examples:

 Computing a^n ($a > 0$, n a nonnegative integer) by repeated multiplication

 Computing $n!$ by repeated multiplication

 Multiplying two matrices following the definition

 Searching for a key in a list sequentially
Examples of Brute-Force String Matching

• Pattern: 001011
 Text: 10010101101001100101111010

• Pattern: happy
 Text: It is never too late to have a happy childhood.
Examples of Brute-Force String Matching

- **Pattern:** 001011
 Text: 10010101101001100101111010

- **Pattern:** happy
 Text: It is never too late to have a happy childhood.
Examples of Brute-Force String Matching

- Pattern: 001011
 Text: 10010101101001100101111010

- Pattern: happy
 Text: It is never too late to have a happy childhood.
Examples of Brute-Force String Matching

• Pattern: 001011
 Text: 10010101101001100101111010

• Pattern: happy
 Text: It is never too late to have a happy childhood.
Examples of Brute-Force String Matching

• Pattern: 001011
 Text: 10010101101001100101111010

• Pattern: happy
 Text: It is never too late to have a happy childhood.
Examples of Brute-Force String Matching

• Pattern: 001011
 Text: 10010101101001100101111010

• Pattern: happy
 Text: It is never too late to have a happy childhood.
Examples of Brute-Force String Matching

• Pattern: 001011
 Text: 10010101101001100101111010

• Pattern: happy
 Text: It is never too late to have a happy childhood.
Examples of Brute-Force String Matching

• Pattern: 001011
 Text: 10010101101001100101111010

• Pattern: happy
 Text: It is never too late to have a happy childhood.
Examples of Brute-Force String Matching

- Pattern: 001011
 Text: 10010101101001100101111010

- Pattern: happy
 Text: It is never too late to have a happy childhood.
Examples of Brute-Force String Matching

- Pattern: 001011
 Text: 10010101101001100101111010

- Pattern: happy
 Text: It is never too late to have a happy childhood.
Examples of Brute-Force String Matching

• Pattern: 001011
 Text: 10010101101001100101111010

• Pattern: happy
 Text: It is never too late to have a happy childhood.
Pseudocode and Efficiency
ALGORITHM BruteForceStringMatch(T[0..n – 1], P[0..m – 1])

// Implements brute-force string matching
// Input: An array T[0..n – 1] of n characters representing a text and
// an array P[0..m – 1] of m characters representing a pattern
// Output: The index of the first character in the text that starts a
// matching substring or -1 if the search is unsuccessful
for i ← 0 to n – m do
 j ← 0
 while j < m and P[j] = T[i + j] do
 j ← j + 1
 if j = m return i
return -1
Pseudocode and Efficiency

ALGORITHM \(\text{BruteForceStringMatch}(T[0..n-1], P[0..m-1]) \)

//Implements brute-force string matching

//Input: An array \(T[0..n-1] \) of \(n \) characters representing a text and
//an array \(P[0..m-1] \) of \(m \) characters representing a pattern

//Output: The index of the first character in the text that starts a
//matching substring or \(-1\) if the search is unsuccessful

for \(i \leftarrow 0 \) to \(n-m \) do
 \(j \leftarrow 0 \)
 \(\text{while } j < m \) and \(P[j] = T[i+j] \) do
 \(j \leftarrow j + 1 \)
 if \(j = m \) return \(i \)
return \(-1\)

Efficiency: A: \(O(n) \) B: \(O(m(n-m)) \) C: \(O(m) \) D: \(O(m^2) \)
Brute-Force Polynomial Evaluation
Brute-Force Polynomial Evaluation

- Problem: Find the value of polynomial

\[p(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 \] at a point \(x = x_0 \)
Brute-Force Polynomial Evaluation

• Problem: Find the value of polynomial

\[p(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x^1 + a_0 \] at a point \(x = x_0 \)

• Brute-force algorithm

\[
\begin{align*}
p & \leftarrow 0.0 \\
\text{for } i & \leftarrow n \text{ downto } 0 \text{ do} \\
& \quad \text{power } \leftarrow 1 \\
& \quad \text{for } j \leftarrow 1 \text{ to } i \text{ do} \quad // \text{compute } x^i \\
& \quad \quad \text{power } \leftarrow \text{power } \ast x \\
& \quad \quad p \leftarrow p + a[i] \ast \text{power} \\
\text{return } p
\end{align*}
\]
Brute-Force Polynomial Evaluation

- Problem: Find the value of polynomial
 \[p(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x^1 + a_0 \] at a point \(x = x_0 \)

- Brute-force algorithm

  ```
  p ← 0.0
  for i ← n downto 0 do
    power ← 1
    for j ← 1 to i do //compute \( x^i \)
      power ← power * x
    p ← p + a[i] * power
  return p
  ```

- Efficiency:
Brute-Force Polynomial Evaluation

• Problem: Find the value of polynomial

\[p(x) = a_nx^n + a_{n-1}x^{n-1} + \ldots + a_1x + a_0 \] at a point \(x = x_0 \)

• Brute-force algorithm

\[
\begin{align*}
\text{p} & \leftarrow 0.0 \\
\text{for } i \leftarrow n \text{ downto } 0 \text{ do} \\
& \quad \text{power} \leftarrow 1 \\
& \quad \text{for } j \leftarrow 1 \text{ to } i \text{ do} \quad \text{//compute } x^i \\
& \quad & \quad \text{power} \leftarrow \text{power} \ast x \\
& \quad & \quad \text{p} \leftarrow \text{p} + a[i] \ast \text{power} \\
\text{return } \text{p}
\end{align*}
\]

• Efficiency: A: \(O(n) \) B: \(O(n^2) \) C: \(O(lg n) \) D: \(O(n^3) \)
Polynomial Evaluation: Improvement
Polynomial Evaluation: Improvement

• We can do better by evaluating from right to left:
Polynomial Evaluation: Improvement

• We can do better by evaluating from right to left:

• Better brute-force algorithm:
Polynomial Evaluation: Improvement

• We can do better by evaluating from right to left:

• Better brute-force algorithm:
Polynomial Evaluation: Improvement

• We can do better by evaluating from right to left:

• Better brute-force algorithm:

\[
p \leftarrow a[0] \\
\text{power} \leftarrow 1 \\
\text{for } i \leftarrow 1 \text{ to } n \text{ do} \\
\quad \text{power} \leftarrow \text{power} \times x \\
\quad p \leftarrow p + a[i] \times \text{power} \\
\text{return } p
\]
Polynomial Evaluation: Improvement

• We can do better by evaluating from right to left:

• Better brute-force algorithm:

\[
\begin{align*}
p & \leftarrow a[0] \\
power & \leftarrow 1 \\
\text{for } i & \leftarrow 1 \text{ to } n \text{ do} \\
& \quad \text{power } \leftarrow \text{power } \times x \\
& \quad p \leftarrow p + a[i] \times \text{power} \\
\text{return } p
\end{align*}
\]
Polynomial Evaluation: Improvement

• We can do better by evaluating from right to left:

• Better brute-force algorithm:

```plaintext
p ← a[0]
power ← 1
for i ← 1 to n do
    power ← power * x
    p ← p + a[i] * power
return p
```

• Efficiency:
Polynomial Evaluation: Improvement

• We can do better by evaluating from right to left:

• Better brute-force algorithm:

\[
\begin{align*}
p & \leftarrow a[0] \\
\text{power} & \leftarrow 1 \\
\text{for } i & \leftarrow 1 \text{ to } n \text{ do} \\
\quad & \text{power} \leftarrow \text{power} \ast x \\
\quad & p \leftarrow p + a[i] \ast \text{power} \\
\text{return } p
\end{align*}
\]

• Efficiency: A: $O(n)$ B: $O(n^2)$ C: $O(lg\ n)$ D: $O(n^3)$
Closest-Pair Problem

• Find the two closest points in a set of n points (in the two-dimensional Cartesian plane).

• Brute-force algorithm:
 ▶ Compute the distance between every pair of distinct points
 ◦ and return the indices of the points for which the distance is the smallest.
ALGORITHM \(\text{BruteForceClosestPoints}(P) \)

//Finds two closest points in the plane by brute force
//Input: A list \(P \) of \(n \) \((n \geq 2)\) points \(P_1 = (x_1, y_1), \ldots, P_n = (x_n, y_n) \)
//Output: Indices index1 and index2 of the closest pair of points
\(d_{\text{min}} \leftarrow \infty \)
\textbf{for} \(i \leftarrow 1 \) \textbf{to} \(n - 1 \) \textbf{do}
\hspace{1em} \textbf{for} \(j \leftarrow i + 1 \) \textbf{to} \(n \) \textbf{do}
\hspace{2em} \(d \leftarrow \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2} \) //\(\sqrt{\text{sqrt}} \) is the square root function
\hspace{2em} \textbf{if} \(d < d_{\text{min}} \)
\hspace{3em} \(d_{\text{min}} \leftarrow d; \text{index1} \leftarrow i; \text{index2} \leftarrow j \)
\textbf{return} index1, index2
Closest-Pair Brute-Force Algorithm (cont.)

ALGORITHM
`BruteForceClosestPoints(P)`

// Finds two closest points in the plane by brute force
// Input: A list `P` of `n` (`n ≥ 2`) points `P_i = (x_i, y_i), ..., P_n = (x_n, y_n)`
// Output: Indices `index1` and `index2` of the closest pair of points

```plaintext
d_{min} ← \infty
for i ← 1 to n - 1 do
    for j ← i + 1 to n do
        d ← sqrt((x_i - x_j)^2 + (y_i - y_j)^2) // `sqrt` is the square root function
        if d < d_{min}
            d_{min} ← d; index1 ← i; index2 ← j
return index1, index2
```

- **Efficiency:**
Closest-Pair Brute-Force Algorithm (cont.)

ALGORITHM \(\text{BruteForceClosestPoints}(P) \)

//Finds two closest points in the plane by brute force
//Input: A list \(P \) of \(n \) (\(n \geq 2 \)) points \(P_1 = (x_1, y_1), \ldots, P_n = (x_n, y_n) \)
//Output: Indices \(\text{index1} \) and \(\text{index2} \) of the closest pair of points

\[
d_{\text{min}} \leftarrow \infty
\]

\[
\text{for } i \leftarrow 1 \text{ to } n - 1 \text{ do}
\]

\[
\text{for } j \leftarrow i + 1 \text{ to } n \text{ do}
\]

\[
d \leftarrow \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2} \quad \text{//} \sqrt{\text{ is the square root function}}
\]

\[
\text{if } d < d_{\text{min}}
\]

\[
d_{\text{min}} \leftarrow d; \text{index1} \leftarrow i; \text{index2} \leftarrow j
\]

\[
\text{return index1, index2}
\]

- **Efficiency:** \(\text{A: O(n)} \) \(\text{B: O(n^2)} \) \(\text{C: O(lg n)} \) \(\text{D: O(n^3)} \)
Closest-Pair Brute-Force Algorithm (cont.)

ALGORITHM \texttt{BruteForceClosestPoints}(P)

//Finds two closest points in the plane by brute force
//Input: A list \(P \) of \(n \) \((n \geq 2)\) points \(P_1 = (x_1, y_1), \ldots, P_n = (x_n, y_n) \)
//Output: Indices \texttt{index1} and \texttt{index2} of the closest pair of points
\[d_{\text{min}} \leftarrow \infty \]
\[
\text{for } i \leftarrow 1 \text{ to } n - 1 \text{ do }
\]
\[
\text{for } j \leftarrow i + 1 \text{ to } n \text{ do }
\]
\[
d \leftarrow \text{sqrt}((x_i - x_j)^2 + (y_i - y_j)^2) \quad \text{//sqrt is the square root function}
\]
\[
\text{if } d < d_{\text{min}}
\]
\[
d_{\text{min}} \leftarrow d; \texttt{index1} \leftarrow i; \texttt{index2} \leftarrow j
\]
\[
\text{return } \texttt{index1}, \texttt{index2}
\]

- **Efficiency:** A: O(n) B: O(n^2) C: O(lg n) D: O(n^3)

- **How to make it faster?**
Problem:

If \(\sqrt{\text{ }} \) is 10 x slower than \(\times \) and +, by how much will \(\text{BruteForceClosestPoints} \) speed up when we take out the \(\sqrt{\text{ }} \)?

A. \(\sim 10 \) times
B. \(\sim 100 \) times
C. \(\sim 1000 \) times
Problem:

Can you design a more efficient algorithm than the one based on the brute-force strategy to solve the closest-pair problem for \(n \) points \(x_1, \ldots, x_n \) on the real line?
Brute Force Closest Pair

• An Example of a particular kind of Brute Force Algorithm based on:

Exhaustive search
Exhaustive Search

• A brute force solution to a problem involving search for an element with a special property, usually among combinatorial objects such as permutations, combinations, or subsets of a set.

• Method:
 ▶ generate a list of all potential solutions to the problem in a systematic manner (see algorithms in Sec. 4.3)
 ▶ evaluate potential solutions one by one, disqualifying infeasible ones and, for an optimization problem, keeping track of the best one found so far
 ▶ when search ends, announce the solution(s) found
Example 1: Traveling Salesman Problem

- Given \(n \) cities with known distances between each pair, find the shortest tour that passes through all the cities exactly once before returning to the starting city.
- Alternatively: find shortest Hamiltonian circuit in a weighted connected graph.
- Example:
TSP by Exhaustive Search

<table>
<thead>
<tr>
<th>Tour</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>a→b→c→d→a</td>
<td>2+3+7+5 = 17</td>
</tr>
<tr>
<td>a→b→d→c→a</td>
<td>2+4+7+8 = 21</td>
</tr>
<tr>
<td>a→c→b→d→a</td>
<td>8+3+4+5 = 20</td>
</tr>
<tr>
<td>a→c→d→b→a</td>
<td>8+7+4+2 = 21</td>
</tr>
<tr>
<td>a→d→b→c→a</td>
<td>5+4+3+8 = 20</td>
</tr>
<tr>
<td>a→d→c→b→a</td>
<td>5+7+3+2 = 17</td>
</tr>
</tbody>
</table>

More tours?
Less tours?
Efficiency:

![Graph with nodes and edges showing the tours with their respective costs.](image)
TSP by Exhaustive Search

<table>
<thead>
<tr>
<th>Tour</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>a→b→c→d→a</td>
<td>2+3+7+5 = 17</td>
</tr>
<tr>
<td>a→b→d→c→a</td>
<td>2+4+7+8 = 21</td>
</tr>
<tr>
<td>a→c→b→d→a</td>
<td>8+3+4+5 = 20</td>
</tr>
<tr>
<td>a→c→d→b→a</td>
<td>8+7+4+2 = 21</td>
</tr>
<tr>
<td>a→d→b→c→a</td>
<td>5+4+3+8 = 20</td>
</tr>
<tr>
<td>a→d→c→b→a</td>
<td>5+7+3+2 = 17</td>
</tr>
</tbody>
</table>

More tours?
Less tours?
Efficiency:

A: O(n)
B: O(n^2)
C: O(n^3)
D: O((n-1)!)
E: O(n!)
Example 2: Knapsack Problem

- Given n items:
 - weights: \(w_1 \), \(w_2 \), \ldots, \(w_n \)
 - values: \(v_1 \), \(v_2 \), \ldots, \(v_n \)
 - a knapsack of capacity \(W \)

- Find most valuable subset of the items that fit into the knapsack

- Example: Knapsack capacity \(W=16 \)

<table>
<thead>
<tr>
<th>item</th>
<th>weight</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>2</td>
<td>$20</td>
</tr>
<tr>
<td>2.</td>
<td>5</td>
<td>$30</td>
</tr>
<tr>
<td>3.</td>
<td>10</td>
<td>$50</td>
</tr>
<tr>
<td>4.</td>
<td>5</td>
<td>$10</td>
</tr>
</tbody>
</table>
Knapsack Problem by Exhaustive Search

<table>
<thead>
<tr>
<th>Subset</th>
<th>Total weight</th>
<th>Total value</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1}</td>
<td>2</td>
<td>$20</td>
</tr>
<tr>
<td>{2}</td>
<td>5</td>
<td>$30</td>
</tr>
<tr>
<td>{3}</td>
<td>10</td>
<td>$50</td>
</tr>
<tr>
<td>{4}</td>
<td>5</td>
<td>$10</td>
</tr>
<tr>
<td>{1,2}</td>
<td>7</td>
<td>$50</td>
</tr>
<tr>
<td>{1,3}</td>
<td>12</td>
<td>$70</td>
</tr>
<tr>
<td>{1,4}</td>
<td>7</td>
<td>$30</td>
</tr>
<tr>
<td>{2,3}</td>
<td>15</td>
<td>$80</td>
</tr>
<tr>
<td>{2,4}</td>
<td>10</td>
<td>$40</td>
</tr>
<tr>
<td>{3,4}</td>
<td>15</td>
<td>$60</td>
</tr>
<tr>
<td>{1,2,3}</td>
<td>17</td>
<td>infeasible</td>
</tr>
<tr>
<td>{1,2,4}</td>
<td>12</td>
<td>$60</td>
</tr>
<tr>
<td>{1,3,4}</td>
<td>17</td>
<td>infeasible</td>
</tr>
<tr>
<td>{2,3,4}</td>
<td>20</td>
<td>infeasible</td>
</tr>
<tr>
<td>{1,2,3,4}</td>
<td>22</td>
<td>infeasible</td>
</tr>
</tbody>
</table>

item	weight	value
1. | 2 | $20 |
2. | 5 | $30 |
3. | 10 | $50 |
4. | 5 | $10 |

Knapsack capacity W=16
Knapsack Problem by Exhaustive Search

<table>
<thead>
<tr>
<th>Subset</th>
<th>Total weight</th>
<th>Total value</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1}</td>
<td>2</td>
<td>$20</td>
</tr>
<tr>
<td>{2}</td>
<td>5</td>
<td>$30</td>
</tr>
<tr>
<td>{3}</td>
<td>10</td>
<td>$50</td>
</tr>
<tr>
<td>{4}</td>
<td>5</td>
<td>$10</td>
</tr>
<tr>
<td>{1,2}</td>
<td>7</td>
<td>$50</td>
</tr>
<tr>
<td>{1,3}</td>
<td>12</td>
<td>$70</td>
</tr>
<tr>
<td>{1,4}</td>
<td>7</td>
<td>$30</td>
</tr>
<tr>
<td>{2,3}</td>
<td>15</td>
<td>$80</td>
</tr>
<tr>
<td>{2,4}</td>
<td>10</td>
<td>$40</td>
</tr>
<tr>
<td>{3,4}</td>
<td>15</td>
<td>$60</td>
</tr>
<tr>
<td>{1,2,3}</td>
<td>17</td>
<td>infeasible</td>
</tr>
<tr>
<td>{1,2,4}</td>
<td>12</td>
<td>$60</td>
</tr>
<tr>
<td>{1,3,4}</td>
<td>17</td>
<td>infeasible</td>
</tr>
<tr>
<td>{2,3,4}</td>
<td>20</td>
<td>infeasible</td>
</tr>
<tr>
<td>{1,2,3,4}</td>
<td>22</td>
<td>infeasible</td>
</tr>
</tbody>
</table>

Knapsack capacity $W = 16$

<table>
<thead>
<tr>
<th>item</th>
<th>weight</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>2</td>
<td>$20</td>
</tr>
<tr>
<td>2.</td>
<td>5</td>
<td>$30</td>
</tr>
<tr>
<td>3.</td>
<td>10</td>
<td>$50</td>
</tr>
<tr>
<td>4.</td>
<td>5</td>
<td>$10</td>
</tr>
</tbody>
</table>

Portland State University
Knapsack Problem by Exhaustive Search

<table>
<thead>
<tr>
<th>Subset</th>
<th>Total weight</th>
<th>Total value</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1}</td>
<td>2</td>
<td>$20</td>
</tr>
<tr>
<td>{2}</td>
<td>5</td>
<td>$30</td>
</tr>
<tr>
<td>{3}</td>
<td>10</td>
<td>$50</td>
</tr>
<tr>
<td>{4}</td>
<td>5</td>
<td>$10</td>
</tr>
<tr>
<td>{1,2}</td>
<td>7</td>
<td>$50</td>
</tr>
<tr>
<td>{1,3}</td>
<td>12</td>
<td>$70</td>
</tr>
<tr>
<td>{1,4}</td>
<td>7</td>
<td>$30</td>
</tr>
<tr>
<td>{2,3}</td>
<td>15</td>
<td>$80</td>
</tr>
<tr>
<td>{2,4}</td>
<td>10</td>
<td>$40</td>
</tr>
<tr>
<td>{3,4}</td>
<td>15</td>
<td>$60</td>
</tr>
<tr>
<td>{1,2,3}</td>
<td>17</td>
<td>infeasible</td>
</tr>
<tr>
<td>{1,2,4}</td>
<td>12</td>
<td>$60</td>
</tr>
<tr>
<td>{1,3,4}</td>
<td>17</td>
<td>infeasible</td>
</tr>
<tr>
<td>{2,3,4}</td>
<td>20</td>
<td>infeasible</td>
</tr>
<tr>
<td>{1,2,3,4}</td>
<td>22</td>
<td>infeasible</td>
</tr>
</tbody>
</table>

Knapsack capacity \(W = 16 \)

Item List

<table>
<thead>
<tr>
<th>Item</th>
<th>Weight</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>$20</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>$30</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>$50</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>$10</td>
</tr>
</tbody>
</table>

Efficiency?

- A: \(O(n^2) \)
- B: \(O(2^n) \)
- C: \(O(n!) \)
- D: \(O((n-1)!) \)
Example 3: The Assignment Problem

• There are \(n \) people who need to be assigned to \(n \) jobs, one person per job. The cost of assigning person \(p \) to job \(j \) is \(C[i, j] \). Find an assignment that minimizes the total cost.

<table>
<thead>
<tr>
<th></th>
<th>Job 1</th>
<th>Job 2</th>
<th>Job 3</th>
<th>Job 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Person 1</td>
<td>9</td>
<td>2</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Person 2</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>Person 3</td>
<td>5</td>
<td>8</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Person 4</td>
<td>7</td>
<td>6</td>
<td>9</td>
<td>4</td>
</tr>
</tbody>
</table>

• Algorithmic Plan: Generate all legitimate assignments, compute their costs, and select the cheapest one.

• How many assignments are there …
Example 3: The Assignment Problem

- There are n people who need to be assigned to n jobs, one person per job. The cost of assigning person p to job j is $C[i, j]$. Find an assignment that minimizes the total cost.

<table>
<thead>
<tr>
<th></th>
<th>Job 1</th>
<th>Job 2</th>
<th>Job 3</th>
<th>Job 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Person 1</td>
<td>9</td>
<td>2</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Person 2</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>Person 3</td>
<td>5</td>
<td>8</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Person 4</td>
<td>7</td>
<td>6</td>
<td>9</td>
<td>4</td>
</tr>
</tbody>
</table>

- Algorithmic Plan: Generate all legitimate assignments, compute their costs, and select the cheapest one.

- How many assignments are there ...
Example 3: The Assignment Problem

- There are n people who need to be assigned to n jobs, one person per job. The cost of assigning person p to job j is $C[i, j]$. Find an assignment that minimizes the total cost.

<table>
<thead>
<tr>
<th></th>
<th>Job 1</th>
<th>Job 2</th>
<th>Job 3</th>
<th>Job 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Person 1</td>
<td>9</td>
<td>2</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Person 2</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>Person 3</td>
<td>5</td>
<td>8</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Person 4</td>
<td>7</td>
<td>6</td>
<td>9</td>
<td>4</td>
</tr>
</tbody>
</table>

- Algorithmic Plan: Generate all legitimate assignments, compute their costs, and select the cheapest one.

- How many assignments are there …
Example 3: The Assignment Problem

- There are n people who need to be assigned to n jobs, one person per job. The cost of assigning person p to job j is $C[i, j]$. Find an assignment that minimizes the total cost.

<table>
<thead>
<tr>
<th>Person 1</th>
<th>9</th>
<th>2</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Person 2</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>Person 3</td>
<td>5</td>
<td>8</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Person 4</td>
<td>7</td>
<td>6</td>
<td>9</td>
<td>4</td>
</tr>
</tbody>
</table>

- Algorithmic Plan: Generate all legitimate assignments, compute their costs, and select the cheapest one.

- How many assignments are there ...
Example 3: The Assignment Problem

- There are \(n \) people who need to be assigned to \(n \) jobs, one person per job. The cost of assigning person \(p \) to job \(j \) is \(C[i, j] \). Find an assignment that minimizes the total cost.

<table>
<thead>
<tr>
<th></th>
<th>Job 1</th>
<th>Job 2</th>
<th>Job 3</th>
<th>Job 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Person 1</td>
<td>9</td>
<td>2</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Person 2</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>Person 3</td>
<td>5</td>
<td>8</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Person 4</td>
<td>7</td>
<td>6</td>
<td>9</td>
<td>4</td>
</tr>
</tbody>
</table>

- Algorithmic Plan: Generate all legitimate assignments, compute their costs, and select the cheapest one.

- How many assignments are there …

an assignment \(\langle a_1, a_2, a_3, a_4 \rangle \) means that person \(i \) gets job \(a_i \)
Example 3: The Assignment Problem

- There are n people who need to be assigned to n jobs, one person per job. The cost of assigning person p to job j is $C[i,j]$. Find an assignment that minimizes the total cost.

<table>
<thead>
<tr>
<th></th>
<th>Job 1</th>
<th>Job 2</th>
<th>Job 3</th>
<th>Job 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Person 1</td>
<td>9</td>
<td>2</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Person 2</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>Person 3</td>
<td>5</td>
<td>8</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Person 4</td>
<td>7</td>
<td>6</td>
<td>9</td>
<td>4</td>
</tr>
</tbody>
</table>

- Algorithmic Plan: Generate all legitimate assignments, compute their costs, and select the cheapest one.

- How many assignments are there ...

- *an assignment* $\langle a_1, a_2, a_3, a_4 \rangle$ means that person i gets job a_i
Example 3: The Assignment Problem

- There are \(n \) people who need to be assigned to \(n \) jobs, one person per job. The cost of assigning person \(p \) to job \(j \) is \(C[i, j] \). Find an assignment that minimizes the total cost.

<table>
<thead>
<tr>
<th></th>
<th>Job 1</th>
<th>Job 2</th>
<th>Job 3</th>
<th>Job 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Person 1</td>
<td>9</td>
<td>2</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Person 2</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>Person 3</td>
<td>5</td>
<td>8</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Person 4</td>
<td>7</td>
<td>6</td>
<td>9</td>
<td>4</td>
</tr>
</tbody>
</table>

- Algorithmic Plan: Generate all legitimate assignments, compute their costs, and select the cheapest one.

- How many assignments are there …
Example 3: The Assignment Problem

- There are n people who need to be assigned to n jobs, one person per job. The cost of assigning person p to job j is $C[i, j]$. Find an assignment that minimizes the total cost.

<table>
<thead>
<tr>
<th></th>
<th>Job 1</th>
<th>Job 2</th>
<th>Job 3</th>
<th>Job 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Person 1</td>
<td>9</td>
<td>2</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Person 2</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>Person 3</td>
<td>5</td>
<td>8</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Person 4</td>
<td>7</td>
<td>6</td>
<td>9</td>
<td>4</td>
</tr>
</tbody>
</table>

- Algorithmic Plan: Generate all legitimate assignments, compute their costs, and select the cheapest one.

- How many assignments are there …
Assignment Problem by Exhaustive Search
Assignment Problem by Exhaustive Search

• Consider the problem in terms of the Cost Matrix C

$$C = \begin{bmatrix}
9 & 2 & 7 & 8 \\
6 & 4 & 3 & 7 \\
5 & 8 & 1 & 8 \\
7 & 6 & 9 & 4 \\
\end{bmatrix}$$
Assignment Problem by Exhaustive Search

Consider the problem in terms of the Cost Matrix C

<table>
<thead>
<tr>
<th>Assignment (col.#s)</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2, 3, 4</td>
<td>9+4+1+4=18</td>
</tr>
<tr>
<td>1, 2, 4, 3</td>
<td>9+4+8+9=30</td>
</tr>
</tbody>
</table>

$C = \begin{bmatrix}
9 & 2 & 7 & 8 \\
6 & 4 & 3 & 7 \\
5 & 8 & 1 & 8 \\
7 & 6 & 9 & 4
\end{bmatrix}$
Assignment Problem by Exhaustive Search

• Consider the problem in terms of the Cost Matrix C

<table>
<thead>
<tr>
<th>Assignment (col.#s)</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2, 3, 4</td>
<td>9+4+1+4=18</td>
</tr>
<tr>
<td>1, 2, 4, 3</td>
<td>9+4+8+9=30</td>
</tr>
<tr>
<td>1, 3, 2, 4</td>
<td>9+3+8+4=24</td>
</tr>
</tbody>
</table>

$$C = \begin{bmatrix} 9 & 2 & 7 & 8 \\ 6 & 4 & 3 & 7 \\ 5 & 8 & 1 & 8 \\ 7 & 6 & 9 & 4 \end{bmatrix}$$
Assignment Problem by Exhaustive Search

- Consider the problem in terms of the Cost Matrix C

<table>
<thead>
<tr>
<th>Assignment (col.#s)</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2, 3, 4</td>
<td>9+4+1+4=18</td>
</tr>
<tr>
<td>1, 2, 4, 3</td>
<td>9+4+8+9=30</td>
</tr>
<tr>
<td>1, 3, 2, 4</td>
<td>9+3+8+4=24</td>
</tr>
<tr>
<td>1, 3, 4, 2</td>
<td>9+3+8+6=26</td>
</tr>
</tbody>
</table>

$$C = \begin{bmatrix}
9 & 2 & 7 & 8 \\
6 & 4 & 3 & 7 \\
5 & 8 & 1 & 8 \\
7 & 6 & 9 & 4
\end{bmatrix}$$
Assignment Problem by Exhaustive Search

- Consider the problem in terms of the Cost Matrix C

<table>
<thead>
<tr>
<th>Assignment (col.#s)</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2, 3, 4</td>
<td>9+4+1+4=18</td>
</tr>
<tr>
<td>1, 2, 4, 3</td>
<td>9+4+8+9=30</td>
</tr>
<tr>
<td>1, 3, 2, 4</td>
<td>9+3+8+4=24</td>
</tr>
<tr>
<td>1, 3, 4, 2</td>
<td>9+3+8+6=26</td>
</tr>
<tr>
<td>1, 4, 2, 3</td>
<td>9+7+8+9=33</td>
</tr>
</tbody>
</table>

$$
C = \begin{bmatrix}
9 & 2 & 7 & 8 \\
6 & 4 & 3 & 7 \\
5 & 8 & 1 & 8 \\
7 & 6 & 9 & 4
\end{bmatrix}
$$
Assignment Problem by Exhaustive Search

- Consider the problem in terms of the Cost Matrix C

<table>
<thead>
<tr>
<th>Assignment (col.#s)</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2, 3, 4</td>
<td>9+4+1+4=18</td>
</tr>
<tr>
<td>1, 2, 4, 3</td>
<td>9+4+8+9=30</td>
</tr>
<tr>
<td>1, 3, 2, 4</td>
<td>9+3+8+4=24</td>
</tr>
<tr>
<td>1, 3, 4, 2</td>
<td>9+3+8+6=26</td>
</tr>
<tr>
<td>1, 4, 2, 3</td>
<td>9+7+8+9=33</td>
</tr>
<tr>
<td>1, 4, 3, 2</td>
<td>9+7+1+6=23</td>
</tr>
</tbody>
</table>

\[
C = \begin{bmatrix}
9 & 2 & 7 & 8 \\
6 & 4 & 3 & 7 \\
5 & 8 & 1 & 8 \\
7 & 6 & 9 & 4 \\
\end{bmatrix}
\]
Assignment Problem by Exhaustive Search

Consider the problem in terms of the **Cost Matrix** C

<table>
<thead>
<tr>
<th>Assignment (col.#s)</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2, 3, 4</td>
<td>$9+4+1+4=18$</td>
</tr>
<tr>
<td>1, 2, 4, 3</td>
<td>$9+4+8+9=30$</td>
</tr>
<tr>
<td>1, 3, 2, 4</td>
<td>$9+3+8+4=24$</td>
</tr>
<tr>
<td>1, 3, 4, 2</td>
<td>$9+3+8+6=26$</td>
</tr>
<tr>
<td>1, 4, 2, 3</td>
<td>$9+7+8+9=33$</td>
</tr>
<tr>
<td>1, 4, 3, 2</td>
<td>$9+7+1+6=23$</td>
</tr>
<tr>
<td>etc.</td>
<td></td>
</tr>
</tbody>
</table>

$C = \begin{bmatrix} 9 & 2 & 7 & 8 \\ 6 & 4 & 3 & 7 \\ 5 & 8 & 1 & 8 \\ 7 & 6 & 9 & 4 \end{bmatrix}$
Assignment Problem by Exhaustive Search

Consider the problem in terms of the Cost Matrix C

<table>
<thead>
<tr>
<th>Assignment (col.#s)</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2, 3, 4</td>
<td>9+4+1+4=18</td>
</tr>
<tr>
<td>1, 2, 4, 3</td>
<td>9+4+8+9=30</td>
</tr>
<tr>
<td>1, 3, 2, 4</td>
<td>9+3+8+4=24</td>
</tr>
<tr>
<td>1, 3, 4, 2</td>
<td>9+3+8+6=26</td>
</tr>
<tr>
<td>1, 4, 2, 3</td>
<td>9+7+8+9=33</td>
</tr>
<tr>
<td>1, 4, 3, 2</td>
<td>9+7+1+6=23</td>
</tr>
<tr>
<td>etc.</td>
<td></td>
</tr>
</tbody>
</table>

How many assignments are there?

$$C = \begin{bmatrix}
9 & 2 & 7 & 8 \\
6 & 4 & 3 & 7 \\
5 & 8 & 1 & 8 \\
7 & 6 & 9 & 4 \\
\end{bmatrix}$$
Assignment Problem by Exhaustive Search

- Consider the problem in terms of the Cost Matrix C

<table>
<thead>
<tr>
<th>Assignment (col.#s)</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2, 3, 4</td>
<td>9+4+1+4=18</td>
</tr>
<tr>
<td>1, 2, 4, 3</td>
<td>9+4+8+9=30</td>
</tr>
<tr>
<td>1, 3, 2, 4</td>
<td>9+3+8+4=24</td>
</tr>
<tr>
<td>1, 3, 4, 2</td>
<td>9+3+8+6=26</td>
</tr>
<tr>
<td>1, 4, 2, 3</td>
<td>9+7+8+9=33</td>
</tr>
<tr>
<td>1, 4, 3, 2</td>
<td>9+7+1+6=23</td>
</tr>
<tr>
<td>etc.</td>
<td></td>
</tr>
</tbody>
</table>

How many assignments are there?

A: $O(n)$ B: $O(n^2)$ C: $O(n^3)$ D: $O(n!)$
Convex Hulls

• What is a Convex Hull?

A. A bad design for a boat
B. A good design for a boat
C. A set of points without any concavities
D. None of the above
Convex Hulls

• What is a Convex Set?

A. A bad design for a boat
B. A good design for a boat
C. A set of points without any concavities
D. None of the above
Convex Hulls

• What is a Convex Set?
Convex Hulls

- What is a Convex Set?
Convex Hulls

• What is a Convex Set?
Convex Hulls

- What is a Convex Set?
Convex Hulls

- What is a Convex Set?
Convex Hulls

- What is a Convex Set?
Convex Hulls

• What is a Convex Set?
Convex Hulls

• What is a Convex Set?
Convex Hulls

• What is a Convex Set?
Convex Hulls

- What is a Convex Set?
Convex Hulls

- What is a Convex Set?
Convex Hulls

• What is a Convex Set?
Convex Hulls

- What is a Convex Set?
Convex Hulls

A set of points C is *convex* iff $\forall \ a, b \in C$, all points on the line segment ab are entirely in C
Convex Hulls
Convex Hulls

• Given an arbitrary set of points S, the convex hull of S is the smallest convex set that contain all the points in S.
Convex Hulls

• Given an arbitrary set of points S, the convex hull of S is the smallest convex set that contain all the points in S.

 ▶ Barricading sleeping tigers
Convex Hulls

- Given an arbitrary set of points S, the convex hull of S is the smallest convex set that contain all the points in S.
 - Barricading sleeping tigers
 - Rubber-band around nails
Applications of Convex Hull

- Collision-detection in video games
Applications of Convex Hull

- Collision-detection in video games
- Robot motion planning
Theorems about Convex Hulls

- The convex hull of a set S is a convex polygon all of whose vertices are at some of the points of S.
- A line segment ab is part of the boundary of the convex hull of S iff all the points of S lie on the same side of ab (or on ab).
Theorems about Convex Hulls

• The convex hull of a set S is a convex polygon all of whose vertices are at some of the points of S.

• A line segment ab is part of the boundary of the convex hull of S iff all the points of S lie on the same side of ab (or on ab)
Theorems about Convex Hulls

- The convex hull of a set S is a convex polygon all of whose vertices are at some of the points of S.
- A line segment ab is part of the boundary of the convex hull of S iff all the points of S lie on the same side of ab (or on ab)
Theorems about Convex Hulls

- The convex hull of a set S is a convex polygon all of whose vertices are at some of the points of S.

- A line segment ab is part of the boundary of the convex hull of S iff all the points of S lie on the same side of ab (or on ab).
Brute-Force Algorithm for Convex Hull

- write it down!
 - Assume that you have a method for ascertaining if a point \(r\) is on a line \(pq\), on the -ve side of line \(pq\), or on the +ve side of \(pq\)
Brute-Force Algorithm for Convex Hull

• write it down!
 ▶ Assume that you have a method for ascertaining if a point \(r \) is on a line \(pq \), on the –ve side of line \(pq \), or on the +ve side of \(pq \)

\[
r.\text{whichSideOfLine}(pq)
\]
Brute-Force Algorithm for Convex Hull

• write it down!
 ▶ Assume that you have a method for ascertaining if a point \(r \) is on a line \(pq \), on the –ve side of line \(pq \), or on the +ve side of \(pq \)

\[r\.\text{whichSideOfLine}(pq) \]
Brute-Force Algorithm for Convex Hull

- write it down!
 - Assume that you have a method for ascertaining if a point \(r \) is on a line \(pq \), on the \(-ve\) side of line \(pq \), or on the \(+ve\) side of line \(pq \)

\[
\begin{align*}
\text{r.whichSideOfLine}(pq) \\
= \begin{cases}
1 & \text{if } r \text{ is on the } +ve \text{ side of } pq \\
0 & \text{if } r \text{ is on the line } pq \\
-1 & \text{if } r \text{ is on the } -ve \text{ side of } pq
\end{cases}
\end{align*}
\]

\[
ax + by = c
\]

\[
c = pxqy - qxpy
\]
Brute-Force Algorithm for Convex Hull

\[
\text{edgeSet} \leftarrow \{\}
\]

P: for \(p \) in \(S \) do:

Q: for \(q \) in \(S \), \(q \neq p \) do:

\[
goodSide \leftarrow 0
\]

R: for \(r \) in \(S \), \(r \neq p \land r \neq q \) do:

\[
side \leftarrow r \cdot \text{whichSideOfLine}(pq)
\]

if \(side \neq 0 \) then

\[
\text{if} \ goodSide = 0 \text{ then } goodSide \leftarrow side
\]

\[
\text{if} \ goodSide \neq side \text{ then exit Q.}
\]

\[
\text{edgeSet} \leftarrow \text{edgeSet} \cup \{pq\}
\]
Final Comments on Exhaustive Search

- Exhaustive-search algorithms run in a realistic amount of time *only on very small* instances.
- In some cases, there are *much* better alternatives!
 - Euler circuits
 - shortest paths
 - minimum spanning tree
 - assignment problem
- However, in many cases, exhaustive search (or a variation) is the only known way to find an exact solution.
Searching in Graphs

Exhaustively search a graph, by traversing the edges, visiting every node once

Two approaches:

- Depth-first search and
- Breadth-first search
ALGORITHM \textit{DFS}(G)
\begin{verbatim}
//Implements a depth-first search traversal of a given graph
//Input: Graph \(G = \langle V, E \rangle\)
//Output: Graph \(G\) with its vertices marked with consecutive integers
// in the order they are first encountered by the DFS traversal
mark each vertex in \(V\) with 0 as a mark of being “unvisited”
\(\text{count} \leftarrow 0\)
\textbf{for} each vertex \(v\) in \(V\) \textbf{do}
 \textbf{if} \(v\) is marked with 0
 \(\text{dfs}(v)\)
\end{verbatim}
\hspace{1cm} \(\text{dfs}(v)\)
\begin{verbatim}
//visits recursively all the unvisited vertices connected to vertex \(v\)
//by a path and numbers them in the order they are encountered
//via global variable \textit{count}
\(\text{count} \leftarrow \text{count} + 1; \quad \text{mark} \ v \ \text{with} \ \text{count}\)
\textbf{for} each vertex \(w\) in \(V\) adjacent to \(v\) \textbf{do}
 \textbf{if} \(w\) is marked with 0
 \(\text{dfs}(w)\)
\end{verbatim}
Example

dfs(1)
Example

dfs(1)
dfs(2)
Example

dfs(1)
dfs(2)
dfs(7)
Example

dfs(1)
dfs(2)
dfs(7)
dfs(5)
Example

dfs(1)
dfs(2)
dfs(7)
dfs(5)
dfs(4)
Example

dfs(1)
dfs(2)
dfs(7)
dfs(5)
dfs(4)
dfs(3)
Example

$dfs(1)$
$dfs(2)$
$dfs(7)$
$dfs(5)$
$dfs(4)$
Example

dfs(1)
dfs(2)
dfs(7)
dfs(5)
dfs(4)
Example

\[dfs(1)\]
\[dfs(2)\]
\[dfs(7)\]
\[dfs(5)\]
\[dfs(4)\]
Example

\[\text{dfs}(1) \]
\[\text{dfs}(2) \]
\[\text{dfs}(7) \]
\[\text{dfs}(5) \]
Example

dfs(1)
dfs(2)
dfs(7)
dfs(5)
Example

dfs(1)
dfs(2)
dfs(7)
dfs(5)
dfs(6)
Example

dfs(1)
dfs(2)
dfs(7)
dfs(5)
dfs(6)
Example

dfs(1)
dfs(2)
dfs(7)
dfs(5)
Example

dfs(1)
dfs(2)
dfs(7)
Example

dfs(1)
dfs(2)
Example

$dfs(1)$
Example

dfs(8)
Example

dfs(8)
dfs(9)
Example

dfs(8)
Example
Complexity?

• What's the basic operation?
 ▶ finding all the Vertices in the graph?
 ▶ making a mark?
 ▶ checking a mark?
 ▶ finding all the neighbors of a node?

• Cost depends on the data structure used to represent the graph
Two choices of data structure:

- Adjacency Matrix: $\Theta(|V|^2)$
- Adjacency List: $\Theta(|V| + |E|)$
One Last look at the Example
One Last look at the Example
One Last look at the Example

Blue edges form a spanning three
One Last look at the Example

Blue edges form a spanning three

Black edges lead back to an already-visited node
Applications

• Checking for connectivity
 ▶ How?

• Checking for Cycles
 ▶ How?