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Brute Force

* A straightforward approach, usually based
directly on the problem’s statement and
definitions of the concepts involved

e Examples:

Computing a” (a> 0, n a nonnegative integer) by
repeated multiplication

Computing n! by repeated multiplication
Multiplying two matrices following the definition

Searching for a key in a list sequentially
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Examples of Brute-Force String Matching

e Pattern: 001011
Text: 10010101101001100101111010

e Pattern: happy
Text: It is never too late to have a happy
childhood.
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Pseudocode and Efficiency
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Pseudocode and Efficiency

ALGORITHM BruteForceStringMatch(T[0..n — 1], P[0..m — 1])

//Implements brute-force string matching
/[Input: An array 7[0..n — 1] of n characters representing a text and

/] an array P[0..m — 1] of m characters representing a pattern
//Output: The index of the first character in the text that starts a
/ matching substring or —1 if the search is unsuccessful
fori <~ Oton —mdo

J <0

while j <m and P[j]=T[i + j]do

J<J+1

if j =m return i

return —1
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Pseudocode and Efficiency

ALGORITHM BruteForceStringMatch(T[0..n — 1], P[0..m — 1])

//Implements brute-force string matching
/[Input: An array 7[0..n — 1] of n characters representing a text and

/] an array P[0..m — 1] of m characters representing a pattern
//Output: The index of the first character in the text that starts a
/ matching substring or —1 if the search is unsuccessful
fori <~ Oton —mdo

J <0

while j <m and P[j]=T[i + j]do

J<J+1

if j =m return i

return —1

Efficiency: A: O(n) B: O(m(n-m)) C: O(m) D: O(m?2)
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Brute-Force Polynomial Evaluation
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Brute-Force Polynomial Evaluation

e Problem: Find the value of polynomial

p(x) =awx" + apxm1 +... + aix! + ao at a point x = xo
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Brute-Force Polynomial Evaluation

e Problem: Find the value of polynomial
p(x) = amxx" + apaxn! +... + aix! + ap at a point x = xo

e Brute-force algorithm p< 0.0

for i <~ n downto O do
power < 1
for j < 1 toido //compute x
pOWer <— POWer * X
p < p + a[1] * power
return p
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Brute-Force Polynomial Evaluation

e Problem: Find the value of polynomial
p(x) =awx" + apxm1 +... + aix! + ao at a point x = xo

e Brute-force algorithm p< 0.0

for i < n downto O do
power < 1
for j < 1 toido //compute x
POWET <— power * X
p < p + a[1] * power
return p

o Efficiency: A: O(n) B: O(n2) C:O(lgn) D: O(n3)
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Polynomial Evaluation: Improvement
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 We can do better by evaluating from right to
left:
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Polynomial Evaluation: Improvement

 We can do better by evaluating from right to
left:

* Better brute-force algorithm:

p < a[0]
power «— 1
fori<— 1tondo
POWET «— pOWer * X
p < p + a[i] * power
return p

e Efficiency: A:O(n) B:O(n2) C:O(lgn) D: O(n3)
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Closest-Pair Problem

* Find the two closest points in a set of n
points (in the two-dimensional
Cartesian plane).

e Brute-force algorithm:
» Compute the distance between every pair of
distinct points

o and return the indices of the points for which the
distance is the smallest.
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Closest-Pair Brute-Force Algorithm (cont.)

ALGORITHM BruteForceClosestPoints(P)

//Finds two closest points in the plane by brute force
/Mnput: A list P of n (n > 2) points Py = (x{, y). ..., P, = (x,,, ¥,,)

//Output: Indices index1 and index2 of the closest pair of points
dmin < o0

fori < 1ton —1do
for j i+ 1tondo
d < sqrt((x; — xj)2 + (y; — yj)z) /Isqrt is the square root function
if d < dmin
dmin <= d; index1 < 1i; index2 < j
return index1, index?2
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Closest-Pair Brute-Force Algorithm (cont.)

ALGORITHM BruteForceClosestPoints(P)

//Finds two closest points in the plane by brute force
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* Efficiency:
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Closest-Pair Brute-Force Algorithm (cont.)

ALGORITHM BruteForceClosestPoints(P)

//Finds two closest points in the plane by brute force
/Mnput: A list P of n (n > 2) points Py = (x{, y). ..., P, = (x,,, ¥,,)
//Output: Indices index1 and index2 of the closest pair of points
dmin < o0
fori < 1ton—1do
for j i+ 1tondo
d < sqrt((x; — ch)2 + (y; — yj)?‘) /Isqrt is the square root function
if d < dmin
dmin <= d; index1 < 1i; index2 < j

return index1, index?2

e Efficiency: A:O(n) B: O(n2) C:O(lgn) D: O(n3)
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Closest-Pair Brute-Force Algorithm (cont.)

ALGORITHM BruteForceClosestPoints(P)

//Finds two closest points in the plane by brute force
/Mnput: A list P of n (n > 2) points Py = (x{, y). ..., P, = (x,,, ¥,,)

//Output: Indices index1 and index2 of the closest pair of points
dmin < o0

fori < 1ton —1do
for j i+ 1tondo

d < sqrt((x; — x,j)‘2 + (y; — yj)z) /Isqrt is the square root function
ifd <dmin

dmin <= d; index1 < 1i; index2 < j
return index1, index?2

e Efficiency: A:O(n) B: O(n2) C:O(lgn) D: O(n3)

e How to make it faster?
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ALGORITHM  BruteForceClosestPoints(P)
//Finds two closest points in the plane by brute force
P ro b I e m = /Mnput: A list P of n (n > 2) points Py = (xq, ¥). ..., P, = (x,. y,)
. //Output: Indices index1 and index2 of the closest pair of points
dmin < o0
fori < 1ton—1do
forj —<i+1tondo
d < sqri((x; —x;)* + (y; — y;)%) /lsqrt is the square root function
ifd <dmin
dmin < d; index1 < i; index2 < j

return index1, index?2

It sqrt
iIs 10 x slower than x and +, by how much

Will BruteForceClosestPoints speed up when
we take out the sqgrt ?

A. ~ 10 times
B. ~ 100 times
C. ~ 1000 times
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Problem:

Can you design a more efficient algorithm
than the one based on the brute-force
strategy to solve the closest-pair problem
for n points xi, ... , x, on the real line?
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Brute Force Closest Pair

e An Example of a particular kind of Brute
Force Algorithm based on:

Exhaustive search
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Exhaustive Search

e A brute force solution to a problem involving
search for an element with a special property,
usually among combinatorial objects such as
permutations, combinations, or subsets of a set.

e Method:

> generate a list of all potential solutions to the problem in a
systematic manner (see algorithms in Sec. 4.3)

» evaluate potential solutions one by one, disqualifying
infeasible ones and, for an optimization problem, keeping
track of the best one found so far

> when search ends, announce the solution(s) found
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Example 1: Traveling Salesman Problem

* @Given ncities with known distances between each pair, find
the shortest tour that passes through all the cities exactly
once before returning to the starting city

* Alternatively: find shortest Hamiltonian circuit in a weighted
connected graph

e Example:

Portland State
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TSP by Exhaustive Search

Tour Cost
a—b—c—d—a 2+3+7+5 =17
a—b—d—c—a 2+4+7+8 = 21
a—c—b—d—a 8+3+4+5 = 20
a—c—d—b—a 8+7+4+2 = 21
a—d—b—c—a 5+4+3+8 = 20
a—d—c—b—a 5+7+3+2 =17

More tours?
Less tours?

Efficiency:
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TSP by Exhaustive Search

Tour
a—b—-c—d—a
a—b—d—c—a
a—c—b—-d—a
a—c—d—b—a
a—d—b—c—a
a—d—c—b—a
More tours?
Less tours?

Efficiency:
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Cost
2+3+7+5 =17
2+4+7+8 = 21
8+3+4+5 =20
8+7+4+2 = 21
5+4+3+8 = 20
S5+7+3+2 =17




Example 2: Knapsack Problem

e Given nitems:
> weights: wi w2 ... Wy
» values: Vi V2 ... Vn

> a knapsack of capacity W

 Find most valuable subset of the items that fit into the knapsack

« Example: Knapsack capacity W=16

item weight value
1. 2 $20
2. 5 $30
3. 10 $50
4, ) $10
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Knapsack Problem by Exhaustive Search

Subset Total weight Total value item weight value
{1} 2 $20
2} 5 $30 1. 2 $20
(3} 10 $50 2 5 $30
{4} 5 $10 3. 10 $50
{1,2} 7 $50 4 5 $10
{1,3} 12 $70
1.4; ! $30 Knapsack capacity W=16
{2,3} 15 $80
{2,4} 10 $40
{3,4} 15 $60
{1,2,3} 17 infeasible
{1,2,4} 12 $60
{1,3,4} 17 infeasible
{2,3,4} 20 infeasible
{1,2,3,4} 22 infeasible
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Knapsack Problem by Exhaustive Search

Subset Total weight

{1}
{2}
{3}
{4}
1.2}
{1,3}
1,4}
{2,3}
2,4}
(3,4}
{1,2,3}
{1,2,4}
{1,3,4}
{2,3,4}
{1,2,3,4}
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2

5
10

5

7
12

7

15
10
15
17
12
17
20
22

Total value
$20
$30
$50
$10
$50
$70
$30
$80
$40
$60
infeasible
$60
infeasible
infeasible
infeasible

item weight value

1. 2 $20
2. 5 $30
3. 10 $50
4. 5 $10

Knapsack capacity W=16




Example 3: The Assignment Problem

* There are n people who need to be assigned to n jobs, one
person per job. The cost of assigning person p to job jis
C[ /,j]. Find an assignment that minimizes the total cost.

Job1 Job2 Job 3 Job 4

Person 1 9 2 7 8
Person2| 6 4 3 7
Person3| 5 8 1 8
Person4| 7 6 9 4

e Algorithmic Plan: Generate all legitimate assignments, compute
their costs, and select the cheapest one.

* How many assignments are there ...

Portland State
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Assignment Problem by Exhaustive Search
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Assignment Problem by Exhaustive Search

Consider the problem in terms of the ) 2 78
L] I I
Cost Matrix C O — 6 4 3 7
5 8 1 8
7T 6 9 4
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Assignment Problem by Exhaustive Search

» Consider the problem in terms of the

Cost Matrix C
Assignment (col.#s) Total Cost
1,2,3,4 9+4+1+4=18
1,2,4,3 9+4+8+9=30

Portland State
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Assignment Problem by Exhaustive Search

| | 9 2 7 8
» Consider the problem in terms of the 6 4 3 7
Cost Matrix C C = 5 8 1 8§
Assignment (col.#s) Total Cost 7 6 9 4
1,2,3,4 9+4+1+4=18 ) ]
1,2,4,3 9+4+8+9=30
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Assignment Problem by Exhaustive Search

| | 9 2 7 8]
« Consider the problem in terms of the 6 4 3 7
Cost Matrix C C = 5 8 1 8§
Assignment (col.#s) Total Cost 7 6 9 4
1,2,3,4 9+4+1+4=18 ) ]
1,2,4,3 9+4+8+9=30
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Assignment Problem by Exhaustive Search

» Consider the problem in terms of the

Cost Matrix C
Assignment (col.#s)
1,2,3,4
1,2,4,3
1,3,2,4
1,3,4,2
1,4,2,3
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Total Cost
9+4+1+4=18
9+4+8+9=30
9+3+8+4=24
9+3+8+6=26
9+7+8+9=33

O —

9 2 7

6 4
5 8
76

O =

B~ 00 =3




Assignment Problem by Exhaustive Search

» Consider the problem in terms of the 2 Z g E;
Cost Matrix C C =
Assignment (col.#s) Total Cost 57) 2 é i
1,2,3,4 9+4+1+4=18 ) ]
1,2,4,3 9+4+8+9=30
1,3,2,4 9+3+8+4=24
1,3,4,2 9+3+8+6=26
1,4,2,3 9+7+8+9=33

1,4,3,2 9+7+1+6=23
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Assignment Problem by Exhaustive Search

» Consider the problem in terms of the 2 Z g E;
Cost Matrix C C =
Assignment (col.#s) Total Cost 57) 2 é i
1,2,3,4 9+4+1+4=18 ) ]
1,2,4,3 9+4+8+9=30
1,3,2,4 9+3+8+4=24
1,3,4,2 9+3+8+6=26
1,4,2,3 9+7+8+4+9=33
1,4,3,2 9+7+1+6=23

etc.
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Assignment Problem by Exhaustive Search

» Consider the problem in terms of the 2 Z g E;
Cost Matrix C C =
Assignment (col.#s) Total Cost 57) 2 é i

1,2,3,4 9+4+1+4=18 ) ]
1,2,4,3 9+4+8+9=30
1,3,2,4 9+3+8+4=24
1,3,4,2 9+3+8+6=26
1,4,2,3 9+7+8+9=33
1,4,3,2 9+7+1+6=23
etc.

How many assignments are there?
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Assignment Problem by Exhaustive Search

e Consider t.he problem in terms of the 2 421
Cost Matrix C C =
Assignment (col.#s) Total Cost E7) 2
1,2,3,4 9+4+1+4=18 )
1,2,4,3 9+4+8+9=30
1,3,2, 4 9+3+8+4=24
1,3,4,2 9+3+8+6=26
1,4,2,3 9+7+8+9=33
1,4, 3, 2 9+7+1+6=23
etc.

How many assignments are there?

A: O(n) B: O(n2) C:0O(n3) D:O(n!)
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Convex Hulls

e What is a Convex Hull?

A bad design for a boat
A good design for a boat
A set of points without any concavities

o0 w >

None of the above
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Convex Hulls

e What is a Convex Set?

A bad design for a boat
A good design for a boat
A set of points without any concavities

o0 w >

None of the above
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Convex Hulls

e What is a Convex Set?
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Convex Hulls

e What is a Convex Set?

H & x
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Convex Hulls

A set of points C is convexiff v a, b € C, all
points on the line segment ab are entirely in C

@ X

-

>
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e Given an arbitrary set of points S, the
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Convex Hulls

e Given an arbitrary set of points S, the
convex hull of S is the smallest convex
set that contain all the points in S.

> Barricading sleeping tigers

> Rubber-band around nails
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Applications of Convex Hull

e Collision-detection in video games

IIIIIIIIII

23



Applications of Convex Hull

e Collision-detection in video games

 Robot motion planning
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Theorems about Convex Hulls

e The convex hull of a set S is a convex
polygon all of whose vertices are at some
of the points of S.

e Aline segment ab is part of the boundary
of the convex hull of S iff all the points of
S lie on the same side of ab (or on ab)

Portland State 24
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Brute-Force Algorithm for Convex Hull

e write it down!

> Assume that you have a method for
ascertaining if a point r is on a line pg, on the

—ve side of line pg, or on the +ve side of pg

p tr

Portland State 25

IIIIIIIIII



Brute-Force Algorithm for Convex Hull

e write it down!

> Assume that you have a method for
ascertaining if a point r is on a line pg, on the

—ve side of line pg, or on the +ve side of pg
rwhichSideOfLine(pq)

p tr

Portland State 25

IIIIIIIIII



Brute-Force Algorithm for Convex Hull

e write it down!

> Assume that you have a method for
ascertaining if a point r is on a line pg, on the

—ve side of line pg, or on the +ve side of pg
rwhichSideOfLine(pq)

p tr

Portland State 25

IIIIIIIIII



Brute-Force Algorithm for Convex Hull

e write it down!

> Assume that you have a method for
ascertaining if a point r is on a line pg, on the

—ve side of line pg, or on the +ve side of pg
rwhichSideOfLine(pq)

p tr

Portland State 25

IIIIIIIIII



Brute-Force Algorithm for Convex Hull

edgeSet + {}
P: forpin S do:
Q:forqin S, g # p do:
goodSide < 0
R:forrin S, r£p A r£q do:
side « r.whichSideOfLine(pq)
If side # 0O then
if goodSide = 0 then goodSide « side
if goodSide # side then exit Q.
edgeSet < edgeSet u {pq}

Portland State 26
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Final Comments on Exhaustive Search

 Exhaustive-search algorithms run in a realistic
amount of time only on very small instances

e |n some cases, there are much better alternatives!

> Euler circuits

» shortest paths

> minimum spanning tree
> assignment problem

e However, in many cases, exhaustive search (or a
variation) is the only known way to find an exact

solution

Portland State 27

IIIIIIIIII



Searching in Graphs

Exhaustively search a graph, by traversing
the edges, visiting every node once

‘WO approaches:
> Depth-first search and

» Breadth-first search

Portland State 28
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ALGORITHM DFS(G)
/Tmplements a depth-first search traversal of a given graph
/Input: Graph G = (V, E)
//Output: Graph G with its vertices marked with consecutive integers
// in the order they are first encountered by the DFS traversal
mark each vertex in V with 0 as a mark of being “unvisited”
count < ()
for each vertex vin V do
if v 1s marked with 0

dfs(v)

dfs(v)
/Ivisits recursively all the unvisited vertices connected to vertex v
//by a path and numbers them in the order they are encountered
//via global variable count
count < count + 1; mark v with count
for each vertex w in V adjacent to v do

if w 1s marked with 0

dfs(w)

Portland State 29
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Example

dfs(1)
dfs(2)
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Complexity?

e What's the basic operation?
» finding all the Vertices in the graph?
> making a mark?
» checking a mark?
> finding all the neighbors of a node?

e (Cost depends on the data structure
used to represent the graph

Portland State 4
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Two choices of data structure:

e Adjacency Matrix: ©( |Vi2)
e Adjacency List: O(IVI+| E)

Portland State 48
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One Last look at the Example
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One Last look at the Example

Blue edges form a
spanning three
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One Last look at the Example

2

Blue edges form a
spanning three

Black edges lead back to
an already-visited node

Portland State 49

IIIIIIIIII



Applications

e Checking for connectivity

» How?

e Checking for Cycles

» How?

Portland State
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