CS 350 Algorithms and Complexity

Winter 2019

Lecture 6: Exhaustive Search Algorithms

Andrew P. Black

Department of Computer Science
Portland State University

Brute Force

* A straightforward approach, usually based
directly on the problem’s statement and
definitions of the concepts involved

e Examples:

Computing a” (a> 0, n a nonnegative integer) by
repeated multiplication

Computing n! by repeated multiplication
Multiplying two matrices following the definition

Searching for a key in a list sequentially

Portland State 2

IIIIIIIIII

Examples of Brute-Force String Matching

e Pattern: 001011
Text: 10010101101001100101111010

e Pattern: happy
Text: It is never too late to have a happy
childhood.

Portland State

IIIIIIIIII

Examples of Brute-Force String Matching

e Pattern: 001011
Text: 10010101101001100101111010

e Pattern: happy
Text: It is never too late to have a happy
childhood.

Portland State

IIIIIIIIII

Examples of Brute-Force String Matching

e Pattern: 001011
Text: @0010101101001100101111010

e Pattern: happy
Text: It is never too late to have a happy
childhood.

Portland State

IIIIIIIIII

Examples of Brute-Force String Matching

e Pattern: 001011
Text: 10010101101001100101111010

e Pattern: happy
Text: It is never too late to have a happy
childhood.

Portland State

IIIIIIIIII

Examples of Brute-Force String Matching

e Pattern: 001011
Text: 10010101101001100101111010

e Pattern: happy
Text: It is never too late to have a happy
childhood.

Portland State

IIIIIIIIII

Examples of Brute-Force String Matching

e Pattern: 001011
Text: 10010101101001100101111010

e Pattern: happy
Text: It is never too late to have a happy
childhood.

Portland State

IIIIIIIIII

Examples of Brute-Force String Matching

e Pattern: 001011
Text: 10010101101001100101111010

e Pattern: happy
Text: It is never too late to have a happy
childhood.

Portland State

IIIIIIIIII

Examples of Brute-Force String Matching

e Pattern: 001011
Text: 10010101101001100101111010

e Pattern: happy
Text: It is never too late to have a happy
childhood.

Portland State

IIIIIIIIII

Examples of Brute-Force String Matching

e Pattern: 001011
Text: 100@0101101001100101111010

e Pattern: happy
Text: It is never too late to have a happy
childhood.

Portland State

IIIIIIIIII

Examples of Brute-Force String Matching

e Pattern: 001011
Text: 10010101101001100101111010

e Pattern: happy
Text: It is never too late to have a happy
childhood.

Portland State

IIIIIIIIII

Examples of Brute-Force String Matching

e Pattern: 001011
Text: 10010101101001100101111010

e Pattern: happy
Text: It is never too late to have a happy
childhood.

Portland State

IIIIIIIIII

Pseudocode and Efficiency

IIIIIIIIII

Pseudocode and Efficiency

ALGORITHM BruteForceStringMatch(T[0..n — 1], P[0..m — 1])

//Implements brute-force string matching
/[Input: An array 7[0..n — 1] of n characters representing a text and

/] an array P[0..m — 1] of m characters representing a pattern
//Output: The index of the first character in the text that starts a
/ matching substring or —1 if the search is unsuccessful
fori <~ Oton —mdo

J <0

while j <m and P[j]=T[i + j]do

J<J+1

if j =m return i

return —1

Portland State

IIIIIIIIII

Pseudocode and Efficiency

ALGORITHM BruteForceStringMatch(T[0..n — 1], P[0..m — 1])

//Implements brute-force string matching
/[Input: An array 7[0..n — 1] of n characters representing a text and

/] an array P[0..m — 1] of m characters representing a pattern
//Output: The index of the first character in the text that starts a
/ matching substring or —1 if the search is unsuccessful
fori <~ Oton —mdo

J <0

while j <m and P[j]=T[i + j]do

J<J+1

if j =m return i

return —1

Efficiency: A: O(n) B: O(m(n-m)) C: O(m) D: O(m?2)

Portland State 4

IIIIIIIIII

Brute-Force Polynomial Evaluation

Portland State

IIIIIIIIII

Brute-Force Polynomial Evaluation

e Problem: Find the value of polynomial

p(x) =awx" + apxm1 +... + aix! + ao at a point x = xo

Portland State

IIIIIIIIII

Brute-Force Polynomial Evaluation

e Problem: Find the value of polynomial
p(x) = amxx" + apaxn! +... + aix! + ap at a point x = xo

e Brute-force algorithm p< 0.0

for i <~ n downto O do
power < 1
for j < 1 toido //compute x
pOWer <— POWer * X
p < p + a[1] * power
return p

Portland State

IIIIIIIIII

Brute-Force Polynomial Evaluation

e Problem: Find the value of polynomial
p(x) = amxx" + apaxn! +... + aix! + ap at a point x = xo

e Brute-force algorithm p< 0.0

for i <~ n downto O do
power < 1
for j < 1 toido //compute x
pOWer <— POWer * X
p < p + a[1] * power
return p

o Efficiency:

Portland State

IIIIIIIIII

Brute-Force Polynomial Evaluation

e Problem: Find the value of polynomial
p(x) =awx" + apxm1 +... + aix! + ao at a point x = xo

e Brute-force algorithm p< 0.0

for i < n downto O do
power < 1
for j < 1 toido //compute x
POWET <— power * X
p < p + a[1] * power
return p

o Efficiency: A: O(n) B: O(n2) C:O(lgn) D: O(n3)

Portland State >

IIIIIIIIII

Polynomial Evaluation: Improvement

Portland State

IIIIIIIIII

Polynomial Evaluation: Improvement

 We can do better by evaluating from right to
left:

Portland State

IIIIIIIIII

Polynomial Evaluation: Improvement

 We can do better by evaluating from right to
left:

* Better brute-force algorithm:

Portland State

IIIIIIIIII

Polynomial Evaluation: Improvement

 We can do better by evaluating from right to
left:

* Better brute-force algorithm:

Portland State

IIIIIIIIII

Polynomial Evaluation: Improvement

 We can do better by evaluating from right to
left:

* Better brute-force algorithm:

p < a[0]
power «— 1
fori<— 1tondo
POWET «— pOWer * X
p < p + a[i] * power
return p

Portland State

IIIIIIIIII

Polynomial Evaluation: Improvement

 We can do better by evaluating from right to
left:

* Better brute-force algorithm:

p < a[0]
power «— 1
fori<— 1tondo
POWET «— pOWer * X
p < p + a[i] * power
return p

Portland State

IIIIIIIIII

Polynomial Evaluation: Improvement

 We can do better by evaluating from right to
left:

* Better brute-force algorithm:

p < a[0]
power «— 1
fori<— 1tondo
POWET «— pOWer * X
p < p + a[i] * power
return p

e Efficiency:

Portland State

IIIIIIIIII

Polynomial Evaluation: Improvement

 We can do better by evaluating from right to
left:

* Better brute-force algorithm:

p < a[0]
power «— 1
fori<— 1tondo
POWET «— pOWer * X
p < p + a[i] * power
return p

e Efficiency: A:O(n) B:O(n2) C:O(lgn) D: O(n3)

Portland State 6

IIIIIIIIII

Closest-Pair Problem

* Find the two closest points in a set of n
points (in the two-dimensional
Cartesian plane).

e Brute-force algorithm:
» Compute the distance between every pair of
distinct points

o and return the indices of the points for which the
distance is the smallest.

Portland State

IIIIIIIIII

Closest-Pair Brute-Force Algorithm (cont.)

ALGORITHM BruteForceClosestPoints(P)

//Finds two closest points in the plane by brute force
/Mnput: A list P of n (n > 2) points Py = (x{, y). ..., P, = (x,,, ¥,,)

//Output: Indices index1 and index2 of the closest pair of points
dmin < o0

fori < 1ton —1do
for j i+ 1tondo
d < sqrt((x; — xj)2 + (y; — yj)z) /Isqrt is the square root function
if d < dmin
dmin <= d; index1 < 1i; index2 < j
return index1, index?2

Portland State 8

IIIIIIIIII

Closest-Pair Brute-Force Algorithm (cont.)

ALGORITHM BruteForceClosestPoints(P)

//Finds two closest points in the plane by brute force
/Mnput: A list P of n (n > 2) points Py = (x{, y). ..., P, = (x,,, ¥,,)

//Output: Indices index1 and index2 of the closest pair of points
dmin < o0

fori < 1ton —1do
for j i+ 1tondo
d < sqrt((x; — xj)2 + (y; — yj)z) /Isqrt is the square root function
if d < dmin
dmin <= d; index1 < 1i; index2 < j
return index1, index?2

* Efficiency:

Portland State 8

IIIIIIIIII

Closest-Pair Brute-Force Algorithm (cont.)

ALGORITHM BruteForceClosestPoints(P)

//Finds two closest points in the plane by brute force
/Mnput: A list P of n (n > 2) points Py = (x{, y). ..., P, = (x,,, ¥,,)
//Output: Indices index1 and index2 of the closest pair of points
dmin < o0
fori < 1ton—1do
for j i+ 1tondo
d < sqrt((x; — ch)2 + (y; — yj)?‘) /Isqrt is the square root function
if d < dmin
dmin <= d; index1 < 1i; index2 < j

return index1, index?2

e Efficiency: A:O(n) B: O(n2) C:O(lgn) D: O(n3)

Portland State 8

IIIIIIIIII

Closest-Pair Brute-Force Algorithm (cont.)

ALGORITHM BruteForceClosestPoints(P)

//Finds two closest points in the plane by brute force
/Mnput: A list P of n (n > 2) points Py = (x{, y). ..., P, = (x,,, ¥,,)

//Output: Indices index1 and index2 of the closest pair of points
dmin < o0

fori < 1ton —1do
for j i+ 1tondo

d < sqrt((x; — x,j)‘2 + (y; — yj)z) /Isqrt is the square root function
ifd <dmin

dmin <= d; index1 < 1i; index2 < j
return index1, index?2

e Efficiency: A:O(n) B: O(n2) C:O(lgn) D: O(n3)

e How to make it faster?

Portland State 8

IIIIIIIIII

ALGORITHM BruteForceClosestPoints(P)
//Finds two closest points in the plane by brute force
P ro b I e m = /Mnput: A list P of n (n > 2) points Py = (xq, ¥). ..., P, = (x,. y,)
. //Output: Indices index1 and index2 of the closest pair of points
dmin < o0
fori < 1ton—1do
forj —<i+1tondo
d < sqri((x; —x;)* + (y; — y;)%) /lsqrt is the square root function
ifd <dmin
dmin < d; index1 < i; index2 < j

return index1, index?2

It sqrt
iIs 10 x slower than x and +, by how much

Will BruteForceClosestPoints speed up when
we take out the sqgrt ?

A. ~ 10 times
B. ~ 100 times
C. ~ 1000 times

% Portland SEtReslltTeY:

Problem:

Can you design a more efficient algorithm
than the one based on the brute-force
strategy to solve the closest-pair problem
for n points xi, ... , x, on the real line?

IIIIIIIIII

Brute Force Closest Pair

e An Example of a particular kind of Brute
Force Algorithm based on:

Exhaustive search

Portland State

IIIIIIIIII

Exhaustive Search

e A brute force solution to a problem involving
search for an element with a special property,
usually among combinatorial objects such as
permutations, combinations, or subsets of a set.

e Method:

> generate a list of all potential solutions to the problem in a
systematic manner (see algorithms in Sec. 4.3)

» evaluate potential solutions one by one, disqualifying
infeasible ones and, for an optimization problem, keeping
track of the best one found so far

> when search ends, announce the solution(s) found

Portland State 12

IIIIIIIIII

Example 1: Traveling Salesman Problem

* @Given ncities with known distances between each pair, find
the shortest tour that passes through all the cities exactly
once before returning to the starting city

* Alternatively: find shortest Hamiltonian circuit in a weighted
connected graph

e Example:

Portland State

IIIIIIIIII

TSP by Exhaustive Search

Tour Cost
a—b—c—d—a 2+3+7+5 =17
a—b—d—c—a 2+4+7+8 = 21
a—c—b—d—a 8+3+4+5 = 20
a—c—d—b—a 8+7+4+2 = 21
a—d—b—c—a 5+4+3+8 = 20
a—d—c—b—a 5+7+3+2 =17

More tours?
Less tours?

Efficiency:

Portland State 4

IIIIIIIIII

TSP by Exhaustive Search

Tour
a—b—-c—d—a
a—b—d—c—a
a—c—b—-d—a
a—c—d—b—a
a—d—b—c—a
a—d—c—b—a
More tours?
Less tours?

Efficiency:

Portland State

IIIIIIIIII

Cost
2+3+7+5 =17
2+4+7+8 = 21
8+3+4+5 =20
8+7+4+2 = 21
5+4+3+8 = 20
S5+7+3+2 =17

Example 2: Knapsack Problem

e Given nitems:
> weights: wi w2 ... Wy
» values: Vi V2 ... Vn

> a knapsack of capacity W

 Find most valuable subset of the items that fit into the knapsack

« Example: Knapsack capacity W=16

item weight value
1. 2 $20
2. 5 $30
3. 10 $50
4,) $10

Portland State

IIIIIIIIII

Knapsack Problem by Exhaustive Search

Subset Total weight Total value item weight value
{1} 2 $20
2} 5 $30 1. 2 $20
(3} 10 $50 2 5 $30
{4} 5 $10 3. 10 $50
{1,2} 7 $50 4 5 $10
{1,3} 12 $70
1.4; ! $30 Knapsack capacity W=16
{2,3} 15 $80
{2,4} 10 $40
{3,4} 15 $60
{1,2,3} 17 infeasible
{1,2,4} 12 $60
{1,3,4} 17 infeasible
{2,3,4} 20 infeasible
{1,2,3,4} 22 infeasible

Portland State

IIIIIIIIII

Knapsack Problem by Exhaustive Search

Subset Total weight Total value item weight value
{1} 2 $20
2} 5 $30 1. 2 $20
(3} 10 $50 2 5 $30
{4} 5 $10 3. 10 $50
{1,2} 7 $50 4 5 $10
{1,3} 12 $70
1.4; ! $30 Knapsack capacity W=16
{2,3} 15 $80
{2,4} 10 $40
{3,4} 15 $60
{1,2,3} 17 infeasible
{1,2,4} 12 $60
{1,3,4} 17 infeasible
{2,3,4} 20 infeasible
{1,2,3,4} 22 infeasible

Portland State

IIIIIIIIII

Knapsack Problem by Exhaustive Search

Subset Total weight

{1}
{2}
{3}
{4}
1.2}
{1,3}
1,4}
{2,3}
2,4}
(3,4}
{1,2,3}
{1,2,4}
{1,3,4}
{2,3,4}
{1,2,3,4}

Portland State

IIIIIIIIII

2

5
10

5

7
12

7

15
10
15
17
12
17
20
22

Total value
$20
$30
$50
$10
$50
$70
$30
$80
$40
$60
infeasible
$60
infeasible
infeasible
infeasible

item weight value

1. 2 $20
2. 5 $30
3. 10 $50
4. 5 $10

Knapsack capacity W=16

Example 3: The Assignment Problem

* There are n people who need to be assigned to n jobs, one
person per job. The cost of assigning person p to job jis
C[/,j]. Find an assignment that minimizes the total cost.

Job1 Job2 Job 3 Job 4

Person 1 9 2 7 8
Person2| 6 4 3 7
Person3| 5 8 1 8
Person4| 7 6 9 4

e Algorithmic Plan: Generate all legitimate assignments, compute
their costs, and select the cheapest one.

* How many assignments are there ...

Portland State

IIIIIIIIII

Example 3: The Assignment Problem

* There are n people who need to be assigned to n jobs, one
person per job. The cost of assigning person p to job jis
C[/,j]. Find an assignment that minimizes the total cost.

Job1 Job2 Job 3 Job 4

Person 1 9 2 7 8
Person2| 6 4 3 7
Person3| 5 8 1 8
Person4| 7 6 9 4

an assignment
(di, dz, a3, d4>
means that person |
gets job a

e Algorithmic Plan: Generate all legitimate assignments, compute
their costs, and select the cheapest one.

* How many assignments are there ...

Portland State

IIIIIIIIII

Example 3: The Assignment Problem

* There are n people who need to be assigned to n jobs, one
person per job. The cost of assigning person p to job jis
C[/,j]. Find an assignment that minimizes the total cost.

Job1 Job2 Job 3 Job 4

5 7 3 an assighment
ai, az, as, a4

(di|,Person1| 9
ap, Person2| 6
5

4 3 7
a3, Person 3 3] g means thz%t Eerson i
a4y Person4| 7 6 9 4 gets Job ai

e Algorithmic Plan: Generate all legitimate assignments, compute
their costs, and select the cheapest one.

* How many assignments are there ...

Portland State 7

IIIIIIIIII

Example 3: The Assignment Problem

* There are n people who need to be assigned to n jobs, one
person per job. The cost of assigning person p to job jis
C[/,j]. Find an assignment that minimizes the total cost.

Job1 Job2 Job 3 Job 4

2, Person 1 9 2 7 8
4, Person2| 6 4 3 7
3, Person3| 5 8 1 8
1> Person4| 7 6 9 4

an assignment
(di, dz, a3, d4>
means that person |
gets job a

e Algorithmic Plan: Generate all legitimate assignments, compute
their costs, and select the cheapest one.

* How many assignments are there ...

Portland State

IIIIIIIIII

Example 3: The Assignment Problem

* There are n people who need to be assigned to n jobs, one
person per job. The cost of assigning person p to job jis
C[/,j]. Find an assignment that minimizes the total cost.

Job1 Job2 Job3 Job4
°o @ 7 8
4, Person2| 6 4 3
) 8 1
6 9

2 , Person 1

3 y Person 3

A~ 0 N

1> Person4| 7

an assignment
(di, dz, a3, d4>
means that person |
gets job a

e Algorithmic Plan: Generate all legitimate assignments, compute
their costs, and select the cheapest one.

* How many assignments are there ...

Portland State

IIIIIIIIII

Example 3: The Assignment Problem

* There are n people who need to be assigned to n jobs, one
person per job. The cost of assigning person p to job jis
C[/,j]. Find an assignment that minimizes the total cost.

Job1 Job2 Job 3 Job 4

(2, Person1| 9 @ 7 8 an assignment

4, Person2| 6 4 3 @ ai, az, as, 4> |

3. person3| 5 8 1 5 means that person i
b

1> Person4| 7 6 9 4 gets job a

e Algorithmic Plan: Generate all legitimate assignments, compute
their costs, and select the cheapest one.

* How many assignments are there ...

Portland State 7

IIIIIIIIII

Example 3: The Assignment Problem

* There are n people who need to be assigned to n jobs, one
person per job. The cost of assigning person p to job jis
C[/,j]. Find an assignment that minimizes the total cost.

Job1 Job2 Job 3 Job 4

(2, Person1| 9 @ 7 8 an assignment

4, Person2| 6 4 3 @ ai, az, as, 4> |

3, person3| 5 8 (1) 5 means that person i
b

1> Person4| 7 6 9 4 gets job a

e Algorithmic Plan: Generate all legitimate assignments, compute
their costs, and select the cheapest one.

* How many assignments are there ...

Portland State 7

IIIIIIIIII

Example 3: The Assignment Problem

* There are n people who need to be assigned to n jobs, one
person per job. The cost of assigning person p to job jis
C[/,j]. Find an assignment that minimizes the total cost.

Job1 Job2 Job 3 Job 4

(2, Person1| 9 @ 7 8 an assignment

4, Person2| 6 4 3 @ ai, az, as, 4> |

3, person3| 5 8 (1) 5 means that person i
b

1> Person4| (7) 6 9 4 gets job a

e Algorithmic Plan: Generate all legitimate assignments, compute
their costs, and select the cheapest one.

* How many assignments are there ...

Portland State 7

IIIIIIIIII

Assignment Problem by Exhaustive Search

Portland State

IIIIIIIIII

Assignment Problem by Exhaustive Search

Consider the problem in terms of the) 2 78
L] I I
Cost Matrix C O — 6 4 3 7
5 8 1 8
7T 6 9 4

Portland State

IIIIIIIIII

Assignment Problem by Exhaustive Search

» Consider the problem in terms of the

Cost Matrix C
Assignment (col.#s) Total Cost
1,2,3,4 9+4+1+4=18
1,2,4,3 9+4+8+9=30

Portland State

IIIIIIIIII

C =

N Ot O

Sy OO0 = DO

O = W

B~ 00 =3

Assignment Problem by Exhaustive Search

| | 9 2 7 8
» Consider the problem in terms of the 6 4 3 7
Cost Matrix C C = 5 8 1 8§
Assignment (col.#s) Total Cost 7 6 9 4
1,2,3,4 9+4+1+4=18)]
1,2,4,3 9+4+8+9=30

Portland State

IIIIIIIIII

Assignment Problem by Exhaustive Search

| | 9 2 7 8]
« Consider the problem in terms of the 6 4 3 7
Cost Matrix C C = 5 8 1 8§
Assignment (col.#s) Total Cost 7 6 9 4
1,2,3,4 9+4+1+4=18)]
1,2,4,3 9+4+8+9=30
1,3,2, 4 9+3+8+4=24
1,3,4,2 9+3+8+6=26

Portland State

IIIIIIIIII

Assignment Problem by Exhaustive Search

» Consider the problem in terms of the

Cost Matrix C
Assignment (col.#s)
1,2,3,4
1,2,4,3
1,3,2,4
1,3,4,2
1,4,2,3

Portland State

IIIIIIIIII

Total Cost
9+4+1+4=18
9+4+8+9=30
9+3+8+4=24
9+3+8+6=26
9+7+8+9=33

O —

9 2 7

6 4
5 8
76

O =

B~ 00 =3

Assignment Problem by Exhaustive Search

» Consider the problem in terms of the 2 Z g E;
Cost Matrix C C =
Assignment (col.#s) Total Cost 57) 2 é i
1,2,3,4 9+4+1+4=18)]
1,2,4,3 9+4+8+9=30
1,3,2,4 9+3+8+4=24
1,3,4,2 9+3+8+6=26
1,4,2,3 9+7+8+9=33

1,4,3,2 9+7+1+6=23

Portland State

IIIIIIIIII

Assignment Problem by Exhaustive Search

» Consider the problem in terms of the 2 Z g E;
Cost Matrix C C =
Assignment (col.#s) Total Cost 57) 2 é i
1,2,3,4 9+4+1+4=18)]
1,2,4,3 9+4+8+9=30
1,3,2,4 9+3+8+4=24
1,3,4,2 9+3+8+6=26
1,4,2,3 9+7+8+4+9=33
1,4,3,2 9+7+1+6=23

etc.

Portland State

IIIIIIIIII

Assignment Problem by Exhaustive Search

» Consider the problem in terms of the 2 Z g E;
Cost Matrix C C =
Assignment (col.#s) Total Cost 57) 2 é i

1,2,3,4 9+4+1+4=18)]
1,2,4,3 9+4+8+9=30
1,3,2,4 9+3+8+4=24
1,3,4,2 9+3+8+6=26
1,4,2,3 9+7+8+9=33
1,4,3,2 9+7+1+6=23
etc.

How many assignments are there?

Portland State

IIIIIIIIII

Assignment Problem by Exhaustive Search

e Consider t.he problem in terms of the 2 421
Cost Matrix C C =
Assignment (col.#s) Total Cost E7) 2
1,2,3,4 9+4+1+4=18)
1,2,4,3 9+4+8+9=30
1,3,2, 4 9+3+8+4=24
1,3,4,2 9+3+8+6=26
1,4,2,3 9+7+8+9=33
1,4, 3, 2 9+7+1+6=23
etc.

How many assignments are there?

A: O(n) B: O(n2) C:0O(n3) D:O(n!)

Portland State

IIIIIIIIII

O =

B~ 00 =3

Convex Hulls

e What is a Convex Hull?

A bad design for a boat
A good design for a boat
A set of points without any concavities

o0 w >

None of the above

Portland State

IIIIIIIIII

Convex Hulls

e What is a Convex Set?

A bad design for a boat
A good design for a boat
A set of points without any concavities

o0 w >

None of the above

Portland State

IIIIIIIIII

Convex Hulls

e What is a Convex Set?

Portland State

IIIIIIIIII

20

Convex Hulls

e What is a Convex Set?

Portland State

IIIIIIIIII

*

20

Convex Hulls

e What is a Convex Set?

Portland State

IIIIIIIIII

*

20

Convex Hulls

e What is a Convex Set?

H & x

Portland State

IIIIIIIIII

20

Convex Hulls

e What is a Convex Set?

H & x

>

Portland State

IIIIIIIIII

20

Convex Hulls

e What is a Convex Set?

H &%
-

Portland State

IIIIIIIIII

>

20

Convex Hulls

e What is a Convex Set?

H &%
-

Portland State

IIIIIIIIII

>

20

Convex Hulls

e What is a Convex Set?

H &%
-

Portland State

IIIIIIIIII

>

20

Convex Hulls

e What is a Convex Set?

H &%
-

Portland State

IIIIIIIIII

>

20

Convex Hulls

e What is a Convex Set?

H &%
-

Portland State

IIIIIIIIII

>

20

Convex Hulls

e What is a Convex Set?

H &%
-

Portland State

IIIIIIIIII

>

20

Convex Hulls

e What is a Convex Set?

H &%
-

Portland State

IIIIIIIIII

>

20

Convex Hulls

e What is a Convex Set?

H &%
-

Portland State

IIIIIIIIII

) 4

20

Convex Hulls

e What is a Convex Set?

H &%
-

Portland State

IIIIIIIIII

>

20

Convex Hulls

e What is a Convex Set?

H &%
-

Portland State

IIIIIIIIII

>

20

Convex Hulls

e What is a Convex Set?

H &%
-

Portland State

IIIIIIIIII

>

20

Convex Hulls

A set of points C is convexiff v a, b € C, all
points on the line segment ab are entirely in C

@ X

-

>

Portland State 2l

IIIIIIIIII

Convex Hulls

Convex Hulls

e Given an arbitrary set of points S, the
convex hull of S is the smallest convex
set that contain all the points in S.

IIIIIIIIII

Convex Hulls

e Given an arbitrary set of points S, the
convex hull of S is the smallest convex
set that contain all the points in S.

> Barricading sleeping tigers

IIIIIIIIII

Convex Hulls

e Given an arbitrary set of points S, the
convex hull of S is the smallest convex
set that contain all the points in S.

> Barricading sleeping tigers

> Rubber-band around nails

IIIIIIIIII

Applications of Convex Hull

e Collision-detection in video games

IIIIIIIIII

23

Applications of Convex Hull

e Collision-detection in video games

 Robot motion planning

23

Portland State

IIIIIIIIII

Theorems about Convex Hulls

e The convex hull of a set S is a convex
polygon all of whose vertices are at some
of the points of S.

e Aline segment ab is part of the boundary
of the convex hull of S iff all the points of
S lie on the same side of ab (or on ab)

Portland State 24

IIIIIIIIII

Theorems about Convex Hulls

e The convex hull of a set S is a convex
polygon all of whose vertices are at some
of the points of S.

e Aline segment ab is part of the boundary
of the convex hull of S iff all the points of
S lie on the same side of ab (or on ab)

a

Portland State 24

IIIIIIIIII

Theorems about Convex Hulls

e The convex hull of a set S is a convex
polygon all of whose vertices are at some
of the points of S.

e Aline segment ab is part of the boundary
of the convex hull of S iff all the points of
S lie on the same side of ab (or on ab)

Portland State 24

IIIIIIIIII

Theorems about Convex Hulls

e The convex hull of a set S is a convex
polygon all of whose vertices are at some
of the points of S.

e Aline segment ab is part of the boundary
of the convex hull of S iff all the points of
S lie on the same side of ab (or on ab)

Portland State

IIIIIIIIII

Brute-Force Algorithm for Convex Hull

e write it down!

> Assume that you have a method for
ascertaining if a point r is on a line pg, on the

—ve side of line pg, or on the +ve side of pg

p tr

Portland State 25

IIIIIIIIII

Brute-Force Algorithm for Convex Hull

e write it down!

> Assume that you have a method for
ascertaining if a point r is on a line pg, on the

—ve side of line pg, or on the +ve side of pg
rwhichSideOfLine(pq)

p tr

Portland State 25

IIIIIIIIII

Brute-Force Algorithm for Convex Hull

e write it down!

> Assume that you have a method for
ascertaining if a point r is on a line pg, on the

—ve side of line pg, or on the +ve side of pg
rwhichSideOfLine(pq)

p tr

Portland State 25

IIIIIIIIII

Brute-Force Algorithm for Convex Hull

e write it down!

> Assume that you have a method for
ascertaining if a point r is on a line pg, on the

—ve side of line pg, or on the +ve side of pg
rwhichSideOfLine(pq)

p tr

Portland State 25

IIIIIIIIII

Brute-Force Algorithm for Convex Hull

edgeSet + {}
P: forpin S do:
Q:forqin S, g # p do:
goodSide < 0
R:forrin S, r£p A r£q do:
side « r.whichSideOfLine(pq)
If side # 0O then
if goodSide = 0 then goodSide « side
if goodSide # side then exit Q.
edgeSet < edgeSet u {pq}

Portland State 26

IIIIIIIIII

Final Comments on Exhaustive Search

 Exhaustive-search algorithms run in a realistic
amount of time only on very small instances

e |n some cases, there are much better alternatives!

> Euler circuits

» shortest paths

> minimum spanning tree
> assignment problem

e However, in many cases, exhaustive search (or a
variation) is the only known way to find an exact

solution

Portland State 27

IIIIIIIIII

Searching in Graphs

Exhaustively search a graph, by traversing
the edges, visiting every node once

‘WO approaches:
> Depth-first search and

» Breadth-first search

Portland State 28

IIIIIIIIII

ALGORITHM DFS(G)
/Tmplements a depth-first search traversal of a given graph
/Input: Graph G = (V, E)
//Output: Graph G with its vertices marked with consecutive integers
// in the order they are first encountered by the DFS traversal
mark each vertex in V with 0 as a mark of being “unvisited”
count < ()
for each vertex vin V do
if v 1s marked with 0

dfs(v)

dfs(v)
/Ivisits recursively all the unvisited vertices connected to vertex v
//by a path and numbers them in the order they are encountered
//via global variable count
count < count + 1; mark v with count
for each vertex w in V adjacent to v do

if w 1s marked with 0

dfs(w)

Portland State 29

UNIVERSITY

Portland State

IIIIIIIIII

Example

dfs(1)
dfs(2)

IIIIIIIIII

31

Example

dfs(1)
dfs(2)
dfs(7)

IIIIIIIIII

32

Example

dfs(1)
dfs(2)
dfs(7)
dfs(9)

IIIIIIIIII

33

Example

dfs(1)
dfs(2)
dfs(7)
dfs(5)
dfs(4)

IIIIIIIIII

34

Example

dfs(1)
dfs(2)
dfs(7)
dfs(5)
dfs(4)
dfs(3)

IIIIIIIIII

35

Example

dfs(1)
dfs(2)
dfs(7)
dfs(5)
dfs(4)

IIIIIIIIII

36

Example

dfs(1)
dfs(2)
dfs(7)
dfs(9)
dfs(4)

IIIIIIIIII

36

Example

dfs(1)
dfs(2)
dfs(7)
dfs(9)
dfs(4)

IIIIIIIIII

36

Example

dfs(1)
dfs(2)
dfs(7)
dfs(9)

IIIIIIIIII

37

Example

dfs(1)
dfs(2)
dfs(7)
dfs(9)

IIIIIIIIII

37

Example

dfs(1)
dfs(2)
dfs(7)
dfs(5)
dfs(6)

IIIIIIIIII

38

Example

dfs(1)
dfs(2)
dfs(7)
dfs(5)
dfs(6)

IIIIIIIIII

38

Example

dfs(1)
dfs(2)
dfs(7)
dfs(9)

IIIIIIIIII

39

Example
dfs(1)

dfs(2)
dfs(7)

IIIIIIIIII

40

IIIIIIIIII

IIIIIIIIII

IIIIIIIIII

IIIIIIIIII

IIIIIIIIII

Portland State

IIIIIIIIII

Complexity?

e What's the basic operation?
» finding all the Vertices in the graph?
> making a mark?
» checking a mark?
> finding all the neighbors of a node?

e (Cost depends on the data structure
used to represent the graph

Portland State 4

IIIIIIIIII

Two choices of data structure:

e Adjacency Matrix: ©(|Vi2)
e Adjacency List: O(IVI+| E)

Portland State 48

IIIIIIIIII

One Last look at the Example

Portland State 49

IIIIIIIIII

One Last look at the Example

Portland State 49

IIIIIIIIII

One Last look at the Example

Blue edges form a
spanning three

Portland State 49

IIIIIIIIII

One Last look at the Example

2

Blue edges form a
spanning three

Black edges lead back to
an already-visited node

Portland State 49

IIIIIIIIII

Applications

e Checking for connectivity

» How?

e Checking for Cycles

» How?

Portland State

IIIIIIIIII

50

