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General Plan for Analysis of Recursive algorithms
✦ Decide on parameter n indicating input size

✦ Identify algorithm’s basic operation

✦ Determine worst, average, and best cases 

for input of size n

✦ Set up a recurrence relation, with initial 

condition, for the number of times the basic 
operation is executed


✦ Solve the recurrence, or at least ascertain 
the order of growth of the solution (see 
Levitin Appendix B)                   
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x(n) = x(n� 1) + 5 for n > 1

x(1) = 0

Ex 2.4, Problem 1(a)
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! Use a piece of paper and do this now, 
individually. 
" Solve this recurrence relation:



Individual Problem (Q1):
Solve the recurrence  

x(n) = x(n﹣1) + 5     for n > 1 
x(1) = 0 

What’s the answer?
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Individual Problem (Q1):
Solve the recurrence  

x(n) = x(n﹣1) + 5     for n > 1 
x(1) = 0 

What’s the answer?

A. x(n) = n﹣1 
B. x(n) = 5n 
C. x(n) = 5n﹣5 
D. None of the above
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x(n) = x(n� 1) + 5 for all n > 1

x(1) = 0

My Solution
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x(n) = x(n� 1) + 5 for all n > 1

x(1) = 0

My Solution

6

replace n by n−1:



x(n� 1) = x(n� 2) + 5

x(n) = x(n� 1) + 5 for all n > 1

x(1) = 0

My Solution

6

replace n by n−1:



x(n� 1) = x(n� 2) + 5

x(n) = x(n� 1) + 5 for all n > 1

x(1) = 0

My Solution

6

replace n by n−1:

substitute for x(n−1):



x(n) = x(n� 2) + 5 + 5

x(n� 1) = x(n� 2) + 5

x(n) = x(n� 1) + 5 for all n > 1

x(1) = 0

My Solution

6

replace n by n−1:

substitute for x(n−1):



x(n) = x(n� 2) + 5 + 5

x(n� 1) = x(n� 2) + 5

x(n) = x(n� 1) + 5 for all n > 1

x(1) = 0

My Solution

6

replace n by n−1:

substitute for x(n−1):

substitute for x(n−2):



x(n) = x(n� 2) + 5 + 5

x(n� 1) = x(n� 2) + 5

= x(n� 3) + 5 + 5 + 5

x(n) = x(n� 1) + 5 for all n > 1

x(1) = 0

My Solution

6

replace n by n−1:

substitute for x(n−1):

substitute for x(n−2):



x(n) = x(n� 2) + 5 + 5

x(n� 1) = x(n� 2) + 5

= x(n� 3) + 5 + 5 + 5

x(n) = x(n� 1) + 5 for all n > 1

x(1) = 0

My Solution

6

replace n by n−1:

substitute for x(n−1):

generalize:

substitute for x(n−2):



x(n) = x(n� 2) + 5 + 5

x(n� 1) = x(n� 2) + 5

= x(n� 3) + 5 + 5 + 5

= x(n� i) + 5i 8i < n

x(n) = x(n� 1) + 5 for all n > 1

x(1) = 0

My Solution

6

replace n by n−1:

substitute for x(n−1):

generalize:

substitute for x(n−2):



x(n) = x(n� 2) + 5 + 5

x(n� 1) = x(n� 2) + 5

= x(n� 3) + 5 + 5 + 5

= x(n� i) + 5i 8i < n

x(n) = x(n� 1) + 5 for all n > 1

x(1) = 0

My Solution

6

replace n by n−1:

substitute for x(n−1):

generalize:

put i = (n−1) :

substitute for x(n−2):



x(n) = x(n� 2) + 5 + 5

x(n� 1) = x(n� 2) + 5

= x(n� 3) + 5 + 5 + 5

= x(n� i) + 5i 8i < n

= x(n� (n� 1)) + 5(n� 1)

x(n) = x(n� 1) + 5 for all n > 1

x(1) = 0

My Solution

6

replace n by n−1:

substitute for x(n−1):

generalize:

put i = (n−1) :

substitute for x(n−2):



x(n) = x(n� 2) + 5 + 5

x(n� 1) = x(n� 2) + 5

= x(n� 3) + 5 + 5 + 5

= x(n� i) + 5i 8i < n

= x(n� (n� 1)) + 5(n� 1)

x(n) = x(n� 1) + 5 for all n > 1

x(1) = 0

My Solution

6

replace n by n−1:

substitute for x(n−1):

generalize:

put i = (n−1) :

substitute for x(1):

substitute for x(n−2):



x(n) = x(n� 2) + 5 + 5

x(n� 1) = x(n� 2) + 5

= x(n� 3) + 5 + 5 + 5

= x(n� i) + 5i 8i < n

= x(n� (n� 1)) + 5(n� 1)

= 5(n� 1)

x(n) = x(n� 1) + 5 for all n > 1

x(1) = 0

My Solution

6

replace n by n−1:

substitute for x(n−1):

generalize:

put i = (n−1) :

substitute for x(1):

substitute for x(n−2):



x(n) = x(n� 1) + n for n > 0

x(0) = 0

Ex 2.4, Problem 1(c)
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! Use a piece of paper and do this now, 
individually. 
" Solve this recurrence relation:



x(n) = x(n� 1) + n for n > 0

x(0) = 0

Ex 2.4, Problem 1(c)

7

! Use a piece of paper and do this now, 
individually. 
" Solve this recurrence relation:

A. x(n) = n2 
B. x(n) = n2/2 

C. x(n) = n(n+1)/2 
D. None of the above

Answer? 



x(n) = x(n/2) + n for n > 1

x(1) = 1

Ex 2.4, Problem 1(d)
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! Use a piece of paper and do this now, 
individually. 
" Solve this recurrence relation for            :n = 2k



x(n) = x(n/2) + n for n > 1

x(1) = 1

Ex 2.4, Problem 1(d)
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! Use a piece of paper and do this now, 
individually. 
" Solve this recurrence relation for            :n = 2k

A. x(n) = 2n+1 
B. x(n) = 2n – 1 

C. x(n) = n(n+1) 
D. None of the above

Answer? 



What does that mean?
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! “Solving a Recurrence relation” means:

What does that mean?
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! “Solving a Recurrence relation” means:
" find an explicit (non-recursive) formula that 

satisfies the relation and the initial condition.

What does that mean?
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! “Solving a Recurrence relation” means:
" find an explicit (non-recursive) formula that 

satisfies the relation and the initial condition.
" For example, for the relation 
 
the solution is  

What does that mean?

9

x(n) = 3x(n� 1) for n > 1, x(1) = 4

x(n) = 4⇥ 3n�1



! “Solving a Recurrence relation” means:
" find an explicit (non-recursive) formula that 

satisfies the relation and the initial condition.
" For example, for the relation 
 
the solution is  

" Check:

What does that mean?

9

x(n) = 3x(n� 1) for n > 1, x(1) = 4

x(n) = 4⇥ 3n�1



! “Solving a Recurrence relation” means:
" find an explicit (non-recursive) formula that 

satisfies the relation and the initial condition.
" For example, for the relation 
 
the solution is  

" Check:

What does that mean?

9

x(n) = 3x(n� 1) for n > 1, x(1) = 4

x(n) = 4⇥ 3n�1

x(1) = 4⇥ 30 = 4⇥ 1 = 4



! “Solving a Recurrence relation” means:
" find an explicit (non-recursive) formula that 

satisfies the relation and the initial condition.
" For example, for the relation 
 
the solution is  

" Check:

x(n) = 3x(n� 1) definition of recurrence

= 3⇥ [4⇥ 3

(n�1)�1
] substitute solution

= 4⇥ 3

n�1
= x(n)

What does that mean?

9

x(n) = 3x(n� 1) for n > 1, x(1) = 4

x(n) = 4⇥ 3n�1

x(1) = 4⇥ 30 = 4⇥ 1 = 4



! “Solving a Recurrence relation” means:
" find an explicit (non-recursive) formula that 

satisfies the relation and the initial condition.
" For example, for the relation 
 
the solution is  

" Check:

x(n) = 3x(n� 1) definition of recurrence

= 3⇥ [4⇥ 3

(n�1)�1
] substitute solution

= 4⇥ 3

n�1
= x(n)

What does that mean?

9

x(n) = 3x(n� 1) for n > 1, x(1) = 4

x(n) = 4⇥ 3n�1

x(1) = 4⇥ 30 = 4⇥ 1 = 4



! “Solving a Recurrence relation” means:
" find an explicit (non-recursive) formula that 

satisfies the relation and the initial condition.
" For example, for the relation 
 
the solution is  

" Check:

x(n) = 3x(n� 1) definition of recurrence

= 3⇥ [4⇥ 3

(n�1)�1
] substitute solution

= 4⇥ 3

n�1
= x(n)

What does that mean?

9

x(n) = 3x(n� 1) for n > 1, x(1) = 4

x(n) = 4⇥ 3n�1

x(1) = 4⇥ 30 = 4⇥ 1 = 4



Ex 2.4, Problem 2
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Exercises 2.4

1. Solve the following recurrence relations.

a. x(n) = x(n− 1) + 5 for n > 1, x(1) = 0

b. x(n) = 3x(n− 1) for n > 1, x(1) = 4

c. x(n) = x(n− 1) + n for n > 0, x(0) = 0

d. x(n) = x(n/2) + n for n > 1, x(1) = 1 (solve for n = 2
k
)

e. x(n) = x(n/3) + 1 for n > 1, x(1) = 1 (solve for n = 3
k
)

2. Set up and solve a recurrence relation for the number of calls made by

F (n), the recursive algorithm for computing n!.

3. Consider the following recursive algorithm for computing the sum of the

first n cubes: S(n) = 1
3
+ 2

3
+ ...+ n

3
.

Algorithm S(n)

//Input: A positive integer n

//Output: The sum of the first n cubes

if n = 1 return 1

else return S(n− 1) + n ∗ n ∗ n

a. Set up and solve a recurrence relation for the number of times the

algorithm’s basic operation is executed.

b. How does this algorithm compare with the straightforward nonrecursive

algorithm for computing this function?

4. Consider the following recursive algorithm.

Algorithm Q(n)

//Input: A positive integer n

if n = 1 return 1

else return Q(n− 1) + 2 ∗ n− 1

a. Set up a recurrence relation for this function’s values and solve it

to determine what this algorithm computes.

b. Set up a recurrence relation for the number of multiplications made by

this algorithm and solve it.

c. Set up a recurrence relation for the number of additions/subtractions

made by this algorithm and solve it.

27

F(n) ≝  if n = 0  
then return 1  
else return F(n – 1) ⨉ n



my solution

11

F(n) ≝  if n = 0  
then return 1  
else return F(n – 1) ⨉ n



Let C(n) be the number of calls made in computing F (n)

my solution

11

F(n) ≝  if n = 0  
then return 1  
else return F(n – 1) ⨉ n



Let C(n) be the number of calls made in computing F (n)

my solution

11

C(n) = C(n� 1) + 1

C(0) = 1 (when n = 0, there is 1 call)

F(n) ≝  if n = 0  
then return 1  
else return F(n – 1) ⨉ n



Let C(n) be the number of calls made in computing F (n)

C(n) = C(n� 1) + 1

= [C(n� 2) + 1] + 1

my solution

11

C(n) = C(n� 1) + 1

C(0) = 1 (when n = 0, there is 1 call)

F(n) ≝  if n = 0  
then return 1  
else return F(n – 1) ⨉ n



Let C(n) be the number of calls made in computing F (n)

C(n) = C(n� 1) + 1

= [C(n� 2) + 1] + 1

= C(n� 2) + 2

my solution

11

C(n) = C(n� 1) + 1

C(0) = 1 (when n = 0, there is 1 call)

F(n) ≝  if n = 0  
then return 1  
else return F(n – 1) ⨉ n



= C(n� i) + i 8i < n (generalize)

Let C(n) be the number of calls made in computing F (n)

C(n) = C(n� 1) + 1

= [C(n� 2) + 1] + 1

= C(n� 2) + 2

my solution

11

C(n) = C(n� 1) + 1

C(0) = 1 (when n = 0, there is 1 call)

F(n) ≝  if n = 0  
then return 1  
else return F(n – 1) ⨉ n



= C(n� i) + i 8i < n (generalize)

Put i = n: = C(0) + n

Let C(n) be the number of calls made in computing F (n)

C(n) = C(n� 1) + 1

= [C(n� 2) + 1] + 1

= C(n� 2) + 2

my solution

11

C(n) = C(n� 1) + 1

C(0) = 1 (when n = 0, there is 1 call)

F(n) ≝  if n = 0  
then return 1  
else return F(n – 1) ⨉ n



= C(n� i) + i 8i < n (generalize)

Put i = n: = C(0) + n

= 1 + n

Let C(n) be the number of calls made in computing F (n)

C(n) = C(n� 1) + 1

= [C(n� 2) + 1] + 1

= C(n� 2) + 2

my solution

11

C(n) = C(n� 1) + 1

C(0) = 1 (when n = 0, there is 1 call)

F(n) ≝  if n = 0  
then return 1  
else return F(n – 1) ⨉ n



= C(n� i) + i 8i < n (generalize)

Put i = n: = C(0) + n

= 1 + n

Let C(n) be the number of calls made in computing F (n)

C(n) = C(n� 1) + 1

= [C(n� 2) + 1] + 1

= C(n� 2) + 2

my solution

11

C(n) = C(n� 1) + 1

C(0) = 1 (when n = 0, there is 1 call)

F(n) ≝  if n = 0  
then return 1  
else return F(n – 1) ⨉ n

Now check!



Ex 2.4, Problem 3

12

Exercises 2.4

1. Solve the following recurrence relations.

a. x(n) = x(n− 1) + 5 for n > 1, x(1) = 0

b. x(n) = 3x(n− 1) for n > 1, x(1) = 4

c. x(n) = x(n− 1) + n for n > 0, x(0) = 0

d. x(n) = x(n/2) + n for n > 1, x(1) = 1 (solve for n = 2
k
)

e. x(n) = x(n/3) + 1 for n > 1, x(1) = 1 (solve for n = 3
k
)

2. Set up and solve a recurrence relation for the number of calls made by

F (n), the recursive algorithm for computing n!.

3. Consider the following recursive algorithm for computing the sum of the

first n cubes: S(n) = 1
3
+ 2

3
+ ...+ n

3
.

Algorithm S(n)

//Input: A positive integer n

//Output: The sum of the first n cubes

if n = 1 return 1

else return S(n− 1) + n ∗ n ∗ n

a. Set up and solve a recurrence relation for the number of times the

algorithm’s basic operation is executed.

b. How does this algorithm compare with the straightforward nonrecursive

algorithm for computing this function?

4. Consider the following recursive algorithm.

Algorithm Q(n)

//Input: A positive integer n

if n = 1 return 1

else return Q(n− 1) + 2 ∗ n− 1

a. Set up a recurrence relation for this function’s values and solve it

to determine what this algorithm computes.

b. Set up a recurrence relation for the number of multiplications made by

this algorithm and solve it.

c. Set up a recurrence relation for the number of additions/subtractions

made by this algorithm and solve it.

27



Ex 2.4, Problem 3

12

Exercises 2.4

1. Solve the following recurrence relations.

a. x(n) = x(n− 1) + 5 for n > 1, x(1) = 0

b. x(n) = 3x(n− 1) for n > 1, x(1) = 4

c. x(n) = x(n− 1) + n for n > 0, x(0) = 0

d. x(n) = x(n/2) + n for n > 1, x(1) = 1 (solve for n = 2
k
)

e. x(n) = x(n/3) + 1 for n > 1, x(1) = 1 (solve for n = 3
k
)

2. Set up and solve a recurrence relation for the number of calls made by

F (n), the recursive algorithm for computing n!.

3. Consider the following recursive algorithm for computing the sum of the

first n cubes: S(n) = 1
3
+ 2

3
+ ...+ n

3
.

Algorithm S(n)

//Input: A positive integer n

//Output: The sum of the first n cubes

if n = 1 return 1

else return S(n− 1) + n ∗ n ∗ n

a. Set up and solve a recurrence relation for the number of times the

algorithm’s basic operation is executed.

b. How does this algorithm compare with the straightforward nonrecursive

algorithm for computing this function?

4. Consider the following recursive algorithm.

Algorithm Q(n)

//Input: A positive integer n

if n = 1 return 1

else return Q(n− 1) + 2 ∗ n− 1

a. Set up a recurrence relation for this function’s values and solve it

to determine what this algorithm computes.

b. Set up a recurrence relation for the number of multiplications made by

this algorithm and solve it.

c. Set up a recurrence relation for the number of additions/subtractions

made by this algorithm and solve it.

27

S  1
for i 2 to n do

S  S + i⇥ i⇥ i
return S

Exercises 2.4

1. Solve the following recurrence relations.

a. x(n) = x(n− 1) + 5 for n > 1, x(1) = 0

b. x(n) = 3x(n− 1) for n > 1, x(1) = 4

c. x(n) = x(n− 1) + n for n > 0, x(0) = 0

d. x(n) = x(n/2) + n for n > 1, x(1) = 1 (solve for n = 2
k
)

e. x(n) = x(n/3) + 1 for n > 1, x(1) = 1 (solve for n = 3
k
)

2. Set up and solve a recurrence relation for the number of calls made by

F (n), the recursive algorithm for computing n!.

3. Consider the following recursive algorithm for computing the sum of the

first n cubes: S(n) = 1
3
+ 2

3
+ ...+ n

3
.

Algorithm S(n)

//Input: A positive integer n

//Output: The sum of the first n cubes

if n = 1 return 1

else return S(n− 1) + n ∗ n ∗ n

a. Set up and solve a recurrence relation for the number of times the

algorithm’s basic operation is executed.

b. How does this algorithm compare with the straightforward nonrecursive

algorithm for computing this function?

4. Consider the following recursive algorithm.

Algorithm Q(n)

//Input: A positive integer n

if n = 1 return 1

else return Q(n− 1) + 2 ∗ n− 1

a. Set up a recurrence relation for this function’s values and solve it

to determine what this algorithm computes.

b. Set up a recurrence relation for the number of multiplications made by

this algorithm and solve it.

c. Set up a recurrence relation for the number of additions/subtractions

made by this algorithm and solve it.

27



Ex 2.4, Problem 4(a)

13

Exercises 2.4

1. Solve the following recurrence relations.

a. x(n) = x(n− 1) + 5 for n > 1, x(1) = 0

b. x(n) = 3x(n− 1) for n > 1, x(1) = 4

c. x(n) = x(n− 1) + n for n > 0, x(0) = 0

d. x(n) = x(n/2) + n for n > 1, x(1) = 1 (solve for n = 2
k
)

e. x(n) = x(n/3) + 1 for n > 1, x(1) = 1 (solve for n = 3
k
)

2. Set up and solve a recurrence relation for the number of calls made by

F (n), the recursive algorithm for computing n!.

3. Consider the following recursive algorithm for computing the sum of the

first n cubes: S(n) = 1
3
+ 2

3
+ ...+ n

3
.

Algorithm S(n)

//Input: A positive integer n

//Output: The sum of the first n cubes

if n = 1 return 1

else return S(n− 1) + n ∗ n ∗ n

a. Set up and solve a recurrence relation for the number of times the

algorithm’s basic operation is executed.

b. How does this algorithm compare with the straightforward nonrecursive

algorithm for computing this function?

4. Consider the following recursive algorithm.

Algorithm Q(n)

//Input: A positive integer n

if n = 1 return 1

else return Q(n− 1) + 2 ∗ n− 1

a. Set up a recurrence relation for this function’s values and solve it

to determine what this algorithm computes.

b. Set up a recurrence relation for the number of multiplications made by

this algorithm and solve it.

c. Set up a recurrence relation for the number of additions/subtractions

made by this algorithm and solve it.

27



Ex 2.4, Problem 4(a)

13

Exercises 2.4

1. Solve the following recurrence relations.

a. x(n) = x(n− 1) + 5 for n > 1, x(1) = 0

b. x(n) = 3x(n− 1) for n > 1, x(1) = 4

c. x(n) = x(n− 1) + n for n > 0, x(0) = 0

d. x(n) = x(n/2) + n for n > 1, x(1) = 1 (solve for n = 2
k
)

e. x(n) = x(n/3) + 1 for n > 1, x(1) = 1 (solve for n = 3
k
)

2. Set up and solve a recurrence relation for the number of calls made by

F (n), the recursive algorithm for computing n!.

3. Consider the following recursive algorithm for computing the sum of the

first n cubes: S(n) = 1
3
+ 2

3
+ ...+ n

3
.

Algorithm S(n)

//Input: A positive integer n

//Output: The sum of the first n cubes

if n = 1 return 1

else return S(n− 1) + n ∗ n ∗ n

a. Set up and solve a recurrence relation for the number of times the

algorithm’s basic operation is executed.

b. How does this algorithm compare with the straightforward nonrecursive

algorithm for computing this function?

4. Consider the following recursive algorithm.

Algorithm Q(n)

//Input: A positive integer n

if n = 1 return 1

else return Q(n− 1) + 2 ∗ n− 1

a. Set up a recurrence relation for this function’s values and solve it

to determine what this algorithm computes.

b. Set up a recurrence relation for the number of multiplications made by

this algorithm and solve it.

c. Set up a recurrence relation for the number of additions/subtractions

made by this algorithm and solve it.

27



Ex 2.4, Problem 4(a)

13

Exercises 2.4

1. Solve the following recurrence relations.

a. x(n) = x(n− 1) + 5 for n > 1, x(1) = 0

b. x(n) = 3x(n− 1) for n > 1, x(1) = 4

c. x(n) = x(n− 1) + n for n > 0, x(0) = 0

d. x(n) = x(n/2) + n for n > 1, x(1) = 1 (solve for n = 2
k
)

e. x(n) = x(n/3) + 1 for n > 1, x(1) = 1 (solve for n = 3
k
)

2. Set up and solve a recurrence relation for the number of calls made by

F (n), the recursive algorithm for computing n!.

3. Consider the following recursive algorithm for computing the sum of the

first n cubes: S(n) = 1
3
+ 2

3
+ ...+ n

3
.

Algorithm S(n)

//Input: A positive integer n

//Output: The sum of the first n cubes

if n = 1 return 1

else return S(n− 1) + n ∗ n ∗ n

a. Set up and solve a recurrence relation for the number of times the

algorithm’s basic operation is executed.

b. How does this algorithm compare with the straightforward nonrecursive

algorithm for computing this function?

4. Consider the following recursive algorithm.

Algorithm Q(n)

//Input: A positive integer n

if n = 1 return 1

else return Q(n− 1) + 2 ∗ n− 1

a. Set up a recurrence relation for this function’s values and solve it

to determine what this algorithm computes.

b. Set up a recurrence relation for the number of multiplications made by

this algorithm and solve it.

c. Set up a recurrence relation for the number of additions/subtractions

made by this algorithm and solve it.

27



Ex 2.4, Problem 8 

14

5. a. In the original version of the Tower of Hanoi puzzle, as it was published

by Edouard Lucas, a French mathematician, in the 1890s, the world will

end after 64 disks have been moved from a mystical Tower of Brahma.

Estimate the number of years it will take if monks could move one disk
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c.! Design a nonrecursive algorithm for the Tower of Hanoi puzzle.

6. a. Prove that the exact number of additions made by the recursive algo-

rithm BinRec(n) for an arbitrary positive integer n is ⌊log
2
n⌋.

b. Set up a recurrence relation for the number of additions made by

the nonrecursive version of this algorithm (see Section 2.3, Example 4)

and solve it.

7. a. Design a recursive algorithm for computing 2
n
for any nonnegative

integer n that is based on the formula: 2
n
= 2

n−1
+ 2

n−1
.

b. Set up a recurrence relation for the number of additions made by

the algorithm and solve it.

c. Draw a tree of recursive calls for this algorithm and count the number

of calls made by the algorithm.

d. Is it a good algorithm for solving this problem?

8. Consider the following recursive algorithm.

Algorithm Min1 (A[0..n− 1])

//Input: An array A[0..n− 1] of real numbers

if n = 1 return A[0]

else temp ← Min1 (A[0..n− 2])

if temp ≤ A[n− 1] return temp

else return A[n− 1]

a. What does this algorithm compute?

b. Set up a recurrence relation for the algorithm’s basic operation count

and solve it.

9. Consider another algorithm for solving the same problem as the one in

Problem 8 which recursively divides an array into two halves:
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Solution to Problem 8

15

Step 1: Move the smallest disk from its current peg to the next peg in

clockwise direction.

Step 2: Make the only move possible that does not involve the smallest

disk.

Note: There are other iterative algorithms for the Tower of Hanoi puzzle

(see, in particular, http://hanoitower.mkolar.org/algo.html for examples

of such algorithms and http://www.cs.wm.edu/~pkstoc/h_papers.html

for an extensive bibliography on this problem).

6. a. We’ll verify by substitution that A(n) = ⌊log
2
n⌋ satisfies the recurrence

for the number of additions

A(n) = A(⌊n/2⌋) + 1 for every n > 1.

Let n be even, i.e., n = 2k.

The left-hand side is:

A(n) = ⌊log
2
n⌋ = ⌊log

2
2k⌋ = ⌊log

2
2 + log

2
k⌋ = (1 + ⌊log

2
k⌋) =

⌊log
2
k⌋+ 1.

The right-hand side is:

A(⌊n/2⌋) + 1 = A(⌊2k/2⌋) + 1 = A(k) + 1 = ⌊log
2
k⌋+ 1.

Let n be odd, i.e., n = 2k + 1.

The left-hand side is:

A(n) = ⌊log
2
n⌋ = ⌊log

2
(2k + 1)⌋ = using ⌊log

2
x⌋ = ⌈log

2
(x + 1)⌉ − 1

⌈log
2
(2k + 2)⌉ − 1 = ⌈log

2
2(k + 1)⌉ − 1

= ⌈log
2
2 + log

2
(k + 1)⌉ − 1 = 1 + ⌈log

2
(k + 1)⌉ − 1 = ⌊log

2
k⌋+ 1.

The right-hand side is:

A(⌊n/2⌋) + 1 = A(⌊(2k + 1)/2⌋) + 1 = A(⌊k + 1/2⌋) + 1 = A(k) + 1 =

⌊log
2
k⌋+ 1.

The initial condition is verified immediately: A(1) = ⌊log
2
1⌋ = 0.

b. The recurrence relation for the number of additions is identical to

the one for the recursive version:

A(n) = A(⌊n/2⌋) + 1 for n > 1, A(1) = 0,

with the solution A(n) = ⌊log
2
n⌋+ 1.

7. a. Algorithm Power(n)

//Computes 2
n
recursively by the formula 2

n
= 2

n−1
+ 2

n−1

//Input: A nonnegative integer n

//Output: Returns 2
n

if n = 0 return 1

else return Power(n− 1) + Power(n− 1)
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b. A(n) = 2A(n− 1) + 1, A(0) = 0.

A(n) = 2A(n− 1) + 1

= 2[2A(n− 2) + 1] + 1 = 2
2
A(n− 2) + 2 + 1

= 2
2
[2A(n− 3) + 1] + 2 + 1 = 2

3
A(n− 3) + 2

2
+ 2+ 1

= ...

= 2
i
A(n− i) + 2

i−1
+ 2

i−2
+ ...+ 1

= ...

= 2
n
A(0) + 2

n−1
+ 2

n−2
+ ...+ 1 = 2

n−1
+ 2

n−2
+ ...+ 1 = 2

n
− 1.

c. The tree of recursive calls for this algorithm looks as follows:

       n

n-1 n-1

n-2 n-2 n-2 n-2

0 0

... ... ...
1

0 0

1

0 0

1

0 0

1

Note that it has one extra level compared to the similar tree for the Tower

of Hanoi puzzle.

d. It’s a very bad algorithm because it is vastly inferior to the algo-

rithm that simply multiplies an accumulator by 2 n times, not to mention

much more efficient algorithms discussed later in the book. Even if only

additions are allowed, adding two 2
n−1

times is better than this algorithm.

8. a. The algorithm computes the value of the smallest element in a given

array.

b. The recurrence for the number of key comparisons is

C(n) = C(n− 1) + 1 for n > 1, C(1) = 0.

Solving it by backward substitutions yields C(n) = n− 1.

9. a. The recurrence for the number of key comparisons is

C(n) = C(⌈n/2⌉) +C(⌊n/2⌋) + 1 for n > 1, C(1) = 0.
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call Min2 (A[0..n− 1]) where

Algorithm Min2 (A[l..r])

if l = r return A[l]

else temp1 ← Min2 (A[l..⌊(l + r)/2⌋])

temp2 ← Min2 (A[⌊(l + r)/2⌋+1..r])

if temp1 ≤ temp2 return temp1

else return temp2

a. Set up a recurrence relation for the algorithm’s basic operation and

solve it.

b. Which of the algorithms Min1 or Min2 is faster? Can you sug-

gest an algorithm for the problem they solve that would be more efficient

than either of them?

10. The determinant of an n-by-n matrix

A =

⎡

⎢

⎢

⎣

a11 a1n

a21 a2n

an1 ann

⎤

⎥

⎥

⎦

,

denoted detA, can be defined as a11 for n = 1 and, for n > 1, by the

recursive formula

detA =

n
∑

j=1

sja1j detAj ,

where sj is +1 if j is odd and -1 if j is even, a1j is the element in row

1 and column j, and Aj is the (n − 1)-by-(n − 1) matrix obtained from

matrix A by deleting its row 1 and column j.

a.◃ Set up a recurrence relation for the number of multiplications made

by the algorithm implementing this recursive definition.

b.◃ Without solving the recurrence, what can you say about the solu-

tion’s order of growth as compared to n! ?

9. von Neumann neighborhood revisited Find the number of cells in the von

Neumann neighborhood of range n (see Problem 11 in Exercises 2.3) by

setting up and solving a recurrence relation.

29

(Ignore multiplications by sj .)

Ex 2.4, Problem 11

17
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my solution

18
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Without solving this relation, what can you say about M’s 
order of growth, compared to n! ?
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The maximum values of the Java primitive type int is 231�1. Find the smallest

n for which the nth Fibonacci number is not going to fit in a variable of type

int.

Recall Eqn 2.12:

Fib(n) =

1p
5

�n
rounded to the nearest integer

where � =

1
2 (1 +

p
5)

Problem

19

Problem 3, Levitin 2e §2.5

2.10



Solution
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Solution
! We need the smallest n s.t. Fib(n) >  
 
 

20

Solutions to Exercises 2.5

1. n/a

2. On substituting φ
n
into the left-hand side of the equation, we obtain

F (n)−F (n− 1)−F (n− 2) = φ
n
− φ

n−1
− φ

n−2
= φ

n−2
(φ

2
− φ− 1) = 0

because φ is one of the roots of the characteristic equation r
2
− r− 1 = 0.

The verification of φ̂

n

works out for the same reason. Since the equation

F (n) − F (n − 1) − F (n − 2) = 0 is homogeneous and linear, any linear

combination of its solutions φ
n
and φ̂

n

, i.e., any sequence of the form

αφ
n
+ βφ̂

n

will also be a solution to F (n)−F (n− 1)− F (n− 2) = 0. In

particular, it will be the case for the Fibonacci sequence
1
√

5

φ
n
−

1
√

5

φ̂

n

.

Both initial conditions are checked out in a quite straightforward manner

(but, of course, not individually for φ
n
and φ̂

n

).

3. a. The question is to find the smallest value of n such that F (n) > 2
31
−1.

Using the formula F (n) =
1
√

5

φ
n

rounded to the nearest integer, we get

(approximately) the following inequality:

1
√

5

φ
n
> 2

31
− 1 or φ

n
>

√

5(2
31

− 1).

After taking natural logarithms of both hand sides, we obtain

n >

ln(

√

5(2
31

− 1))

lnφ

≈ 46.3.

Thus, the answer is n = 47.

b. Similarly, we have to find the smallest value of n such that F (n) >

2
63

− 1. Thus,

1
√

5

φ
n
> 2

63
− 1, or φ

n
>

√

5(2
63

− 1)

or, after taking natural logarithms of both hand sides,

n >

ln(

√

5(2
63

− 1))

lnφ

≈ 92.4.

Thus, the answer is n = 93.

4. Let W (n) be the number of different ways to climb an n-stair staircase.

W (n−1) of them start with a one-stair climb and W (n−2) of them start

with a two-stair climb. Thus,

W (n) = W (n− 1) +W (n− 2) for n ≥ 3, W (1) = 1, W (2) = 2.

43
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4. Let W (n) be the number of different ways to climb an n-stair staircase.

W (n−1) of them start with a one-stair climb and W (n−2) of them start

with a two-stair climb. Thus,

W (n) = W (n− 1) +W (n− 2) for n ≥ 3, W (1) = 1, W (2) = 2.
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