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Analysis of time efficiency

< Time efficiency is analyzed by determining
the number of repetitions of the “basic
operation”

<~ Almost always depends on the size of the
Input

< “Basic operation”: the operation that
contributes most towards the running time
of the algorithm

T(n) = Cop X C(N)
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Problem

Input size measure

Basic operation

Searching for key in a
list of nitems

Multiplication of two
matrices

Checking primality of
a given integer n

Shortest path through
a graph




Complete the table

Problem

Input size measure

Basic operation

Searching for key in a
list of nitems

Multiplication of two
matrices

Checking primality of
a given integer n

Shortest path through
a graph

A: Number of list’s
items, i.e.n

B: Matrix dimension, or
total number of
elements

C: size of n = number of
digits

D: #vertices and/or
edges

A: Key comparison

B: Multiplication of
two numbers

C: Division

D: Visiting a vertex or
traversing an edge




Problem

Input size measure

Basic operation

Searching for key in a
list of n items

A: Number of list’s
items, i.e.n

B: Matrix dimension, or
total number of
elements

C: size of n = number of
digits

D: #vertices and/or
edges




Problem Input size measure | Basic operation

Searching for key in a

. . A: Key comparison
list of n items y P

B: Multiplication of
two numbers

C: Division

D: Visiting a vertex or
traversing an edge




Problem

Input size measure

Basic operation

Multiplication of two
matrices

A: Number of list’s
items, i.e.n

B: Matrix dimension, or
total number of
elements

C: size of n = number of
digits

D: #vertices and/or
edges




Problem

Input size measure

Basic operation

Multiplication of two
matrices

A: Key comparison

B: Multiplication of
two numbers

C: Division

D: Visiting a vertex or
traversing an edge




Problem

Input size measure

Basic operation

Checking primality of
a given integer n

A: Number of list’s
items, i.e.n

B: Matrix dimension, or
total number of
elements

C: size of n = number of
digits

D: #vertices and/or
edges




Problem

Input size measure

Basic operation

Checking primality of
a given integer n

A: Key comparison

B: Multiplication of
two numbers

C: Division

D: Visiting a vertex or
traversing an edge
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Problem

Input size measure

Basic operation

Shortest path through
a graph

A: Number of list’s
items, i.e.n

B: Matrix dimension, or
total number of
elements

C: size of n = number of
digits

D: #vertices and/or
edges
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Problem Input size measure | Basic operation

A: Key comparison

B: Multiplication of
two numbers

C: Division

Shortest path through D: Visiting a vertex or
a graph traversing an edge
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Problem

Input size measure

Basic operation

Searching for key in a
list of nitems

Multiplication of two
matrices

Checking primality of
a given integer n

Shortest path through
a graph
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Best-case, average-case, worst-case

< For some algorithms, efficiency depends on the input:

<~ Worst case: Cuors(n) — maximum over inputs of size n
< Best case: Cresr(n) — minimum over inputs of size n

<~ Average case: Cae(n) — “average” over inputs of size n

= Number of times the basic operation will be executed on
typical input
* Not the average of worst and best case

= Expected number of basic operations under some
assumption about the probability distribution of all
possible inputs
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DiIscuss:

ALGORITHM UniqueElements(A[0..n — 1])

//Determines whether all the elements in a given array are distinct
/nput: An array A[0..n — 1]
//Output: Returns “true” if all the elements in A are distinct
// and “false” otherwise
fori < Oton —2do

for j < i+ 1ton—1do

if A[i]= A[/] return false

return true

<~ What's the best case, and its running time?
a. constant — O(1)
. linear — O(n)
c. quadratic — O(n?)
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DiIscuss:

ALGORITHM UniqueElements(A[0..n — 1])

//Determines whether all the elements in a given array are distinct
/nput: An array A[0..n — 1]
//Output: Returns “true” if all the elements in A are distinct
// and “false” otherwise
fori < Oton —2do

for j < i+ 1ton—1do

if A[i]= A[/] return false

return true

< What's the worst case, and its running time?
a. constant — O(1)
. linear — O(n)
c. quadratic — O(n?)
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DiIscuss:

ALGORITHM UniqueElements(A[0..n — 1])

//Determines whether all the elements in a given array are distinct
/nput: An array A[0..n — 1]
//Output: Returns “true” if all the elements in A are distinct
// and “false” otherwise
fori < Oton —2do

for j < i+ 1ton—1do

if A[i]= A[/] return false

return true

< What's the average case, and its running time?
a. constant — O(1)
. linear — O(n)
c. quadratic — O(n?)
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General Plan for Analysis of
non-recursive algorithms

1.

2.

3.

Decide on parameter n indicating input size

dentify algorithm’s basic operation

Determine worst, average, and best cases
for input of size n

Set up a sum for the number of times the
basic operation is executed

Simplify the sum using standard formulae
and rules (see Levitin Appendix A)
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"Basic Operation”

ALGORITHM MaxElement(A[0..n — 1])

//Determines the value of the largest element in a given array
//Input: An array A[0..n — 1] of real numbers
//Output: The value of the largest element in A
maxval < A[0]
fori < 1ton—1do

if A[i]> maxval

maxval < Ali]

return maxval

Why choose > as the basic operation?
m\Whynot i i+ 17
= 0Or[]°?
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Same Algorithm:

ALGORITHM MaxElement (A: List)
// Determines the value of the largest element in the list A
// Input: a list A of real numbers
// Output: the value of the largest element of A
maxval < A first
for each in A do
if each > maxval
maxval < each
return maxval

~Why choose > as the basic operation?
m\Whynot i< i+ 17
"Or[]°?
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From Algorithm to Formula

<~ We want a formula for the # of basic ops
< Basic op will normally be in inner loop

< Bounds of for loop become bounds of
summation

~e.qg. fori+ /. hdo:

3 basic operations i 7
h
s

1=I
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Works for nested loops too

ALGORITHM UniqueElements(A[0..n — 1])

//Determines whether all the elements in a given array are distinct
/Input: An array A[0..n — 1]
//Output: Returns “true” if all the elements in A are distinct
// and “false” otherwise
fori < Oton —2do

for j < i+1ton—1do

if A[i]= A[/] return false

return true
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Works for nested loops too

ALGORITHM UniqueElements(A[0..n — 1])

//Determines whether all the elements in a given array are distinct
/Input: An array A[0..n — 1]
//Output: Returns “true” if all the elements in A are distinct
// and “false” otherwise
fori < Oton —2do

for j < i+1ton—1do

if A[i]= A[/] return false

return true

7
(N
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Works for nested loops too

ALGORITHM UniqueElements(A[0..n — 1])

//Determines whether all the elements in a given array are distinct
/Input: An array A[0..n — 1]
//Output: Returns “true” if all the elements in A are distinct
// and “false” otherwise
fori < Oton —2do

for j < i+1ton—1do

if A[i]= A[/] return false

return true

n—2 n—1
> 1
1=0 71=1+4+1
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Useful Summation Formulae
leisﬂ —

In particular, 21<i<,1 = n

21 <i<n [ =

r

In particular, 2o<i<, 27 =2

Z(aiibi): >2Cda; =

ZlSiSu ai =

23
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Where do the Summation formulae come
from?

< Answer: mathematics.
< Example:
The Euler—Mascheroni constant y is defined as:

1 2 3 4 5 6 7 8 9 10 11 12 24
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What does Levitin's ~ mean?

< “becomes almost equal to as n — "
< Sg formula 8

Zlgz’ ~nlgn
i=1

" means

nh_)n;@ (Zlgz nlgn) = (

1=1
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Example: Counting Binary Digits
ALGORITHM Binary(n)
//Input: A positive decimal integer n
//Output: The number of binary digits in »’s binary representation
count <1
while » > 1 do
count < count + 1
n<|n/2|
return count

26



Example: Counting Binary Digits
ALGORITHM Binary(n)
//Input: A positive decimal integer n
//Output: The number of binary digits in »’s binary representation
count <1
while » > 1 do
count < count + 1

n<|n/2|
return count

~How many times is the basic operation
executed?
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Example: Counting Binary Digits
ALGORITHM Binary(n)
//Input: A positive decimal integer n
//Output: The number of binary digits in »’s binary representation
count <1
while » > 1 do
count < count + 1

n<|n/2|
return count

~How many times is the basic operation
executed?

< Why is this algorithm harder to analyze
than the earlier examples?
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Ex 2.3, Problem 1

Working with a partner:

1. Compute the following sums.

a. 1 +3+0+7+...+999

b.24+4+8+16+ ... +1024
c. Yt d Y e. Y+ 1)

£33 e i by 1/ii+ 1)

27



Ex 2.3, Problem 2

2. Find the order of growth of the following sums.

a. S0 (i241)? b. S0 g2
¢ Y (127 A S Y (i + )

Use the O(g(n)) notation with the simplest function g(n) possible.

28



Ex 2.3, Problem 3

3. The sample variance of n measurements x1, x2, ..., T,, can be computed as

Z?:l(xi _ ZZ‘)Q Z?:l %)

where T =
n—1 n
or 0 o N ,
D i1 Ti — (Do wi)*/n
n—1 '

Find and compare the number of divisions, multiplications, and addi-
tions/subtractions (additions and subtractions are usually bunched to-
gether) that are required for computing the variance according to each of
these formulas.
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Ex 2.3, Problem 4

4. Consider the following algorithm.

Algorithm Mystery(n)
//Input: A nonnegative integer n
S0
for : — 1 ton do
S S+1x1
return S

30



Ex 2.3, Problem 4

4. Consider the following algorithm.

Algorithm Mystery(n)
//Input: A nonnegative integer n
S0
for : — 1 ton do
S S+1x1
return S

What does this

algorithm compute?

A. n?

B. Y00
C. Y0,
D. Y, 2
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Ex 2.3, Problem 4

4. Consider the following algorithm.

Algorithm Mystery(n)
//Input: A nonnegative integer n
S0
for : — 1 ton do
S S+1x1
return S
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Ex 2.3, Problem 4

4. Consider the following algorithm.

Algorithm Mystery(n) What is the

g/I(_npOut: A nonnegative integer n basic Operation?

for 1 — 1 ton do

retusr; SSH” A. multiplication
B. addition

C. assignment

D

squaring

31



Ex 2.3, Problem 4

4. Consider the following algorithm. How many times is the

Algorithm Mystery(n) basic operation executed?
//Input: A nonnegative integer n
S0
for : — 1 ton do A. once
S S+1x1
return S n times

B
C. lgn times
D

none of the above
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Ex 2.3, Problem 4

4. Consider the following algorithm. What is the efﬁCleIle

class of this algorithm?

?&/11%1‘;11'11;}12“ nﬂfgi;?tg\?e) integer n [b 18 # of bits needed to
o 0 represent n)|
for 1 — 1 to n do
S—S+ixi
return S " A. @(1)
B. O(n)
C. O(b)
D. 6(2%)
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Ex 2.3, Problem 4 (cont)

e. Suggest an improvement or a better algorithm altogether and indi-

cate its efficiency class.
cannot be done.

If you cannot do it, try to prove that, in fact, it
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Problem 5 — Group work

5. Consider the following algorithm.

Algorithm Secret(A[0..n — 1])
//Input: An array A|0..n — 1] of n real numbers
minval < A|0]; mazval «— A|0]
fori—1ton—1do

if Ali] < minval

minval «— Ali
[ ] a. What does this algorithm compute?

it A[Z] > ma:m)a‘l b. What is its basic operation?
mazval « A[Z]. c. How many times is the basic
return maxval — minval operation executed?

d. What is the efficiency class of this
algorithm?

e. Suggest an improvement or a better
algorithm altogether and indicateBiSts
efficiency class.



Ex 2.3, Problem 9

Prove the formula

n

Zi=1—|—2—|—...—|—n:n
1=1

(n+1)
2

either by mathematical induction or by following the insight of a 10-year
old schoolboy named Karl Friedrich Gauss (1777-1855) who grew up to
become one of the greatest mathematicians of all times.
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Ex 2.3, Problem 11

Algorithm GE(A[0..n —1,0..n])
//Input: An n-by-n + 1 matrix A[0..n — 1,0..n] of real numbers
for:—0ton—-2do
for j«—14+1ton—1do
for k +— i ton do

Alj, k] — Alg, k| = Als, k] « Alg, ] / Ali, 1]

a. Find the time efficiency class of this algorithm

b. What glaring inefficiency does this code contain, and how
can it be eliminated?

c. Estimate the reduction in run time.
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Problem 11: von Neumann neighborhood

How many one-by-one squares are generated by the
algorithm that starts with a single square, and on each of its

n iterations adds new squares around the outside. How many
one-by-one squares are generated on the nth iteration? Here

are the neighborhoods for n = 0, 1, and 2.
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