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Analysis of time efficiency
! Time efficiency is analyzed by determining 

the number of repetitions of the “basic 
operation” 

! Almost always depends on the size of the 
input 

! “Basic operation”: the operation that 
contributes most towards the running time 
of the algorithm 

                    T(n) ≈ cop ⨉ C(n)
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Problem Input size measure Basic operation

Searching for key in a 
list of n items

Multiplication of two 
matrices

Checking primality of 
a given integer n

Shortest path through 
a graph
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Problem Input size measure Basic operation

Searching for key in a 
list of n items

A:  Number of list’s 
items,  i.e. n A: Key comparison

Multiplication of two 
matrices

B: Matrix dimension, or 
total number of 
elements 

B: Multiplication of 
two numbers

Checking primality of 
a given integer n

C: size of n = number of 
digits C: Division

Shortest path through 
a graph

D: #vertices and/or 
edges

D: Visiting a vertex or 
traversing an edge

Complete the table
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Best-case, average-case, worst-case
! For some algorithms, efficiency depends on the input: 

! Worst case:  Cworst(n) – maximum over inputs of size n 

! Best case: Cbest(n) –  minimum over inputs of size n 

! Average case: Cavg(n) – “average” over inputs of size n 
" Number of times the basic operation will be executed on 

typical input 
# Not the average of worst and best case 

" Expected number of basic operations under some 
assumption about the probability distribution of all 
possible inputs
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Discuss:

! What’s the best case, and its running time? 
A. constant  — O(1) 
B. linear — O(n) 
C. quadratic — O(n2)
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Discuss:

! What’s the worst case, and its running time? 
A. constant  — O(1) 
B. linear — O(n) 
C. quadratic — O(n2)
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Discuss:

! What’s the average case, and its running time? 
A. constant  — O(1) 
B. linear — O(n) 
C. quadratic — O(n2)
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General Plan for Analysis of  
non-recursive algorithms

1. Decide on parameter n indicating input size

2. Identify algorithm’s basic operation

3. Determine worst, average, and best cases 

for input of size n

4. Set up a sum for the number of times the 

basic operation is executed

5. Simplify the sum using standard formulae 

and rules (see Levitin Appendix A)                   
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“Basic Operation”

! Why choose > as the basic operation? 
" Why not  i ← i + 1 ? 
" Or [ ] ?

"19

2.3 Mathematical Analysis of Nonrecursive Algorithms 61

11. Lighter or heavier? You have n > 2 identical-looking coins and a two-pan
balance scale with no weights. One of the coins is a fake, but you do not know
whether it is lighter or heavier than the genuine coins, which all weigh the
same. Design a !(1) algorithm to determine whether the fake coin is lighter
or heavier than the others.

12. Door in a wall You are facing a wall that stretches infinitely in both direc-
tions. There is a door in the wall, but you know neither how far away nor in
which direction. You can see the door only when you are right next to it. De-
sign an algorithm that enables you to reach the door by walking at most O(n)

steps where n is the (unknown to you) number of steps between your initial
position and the door. [Par95]

2.3 Mathematical Analysis of Nonrecursive Algorithms

In this section, we systematically apply the general framework outlined in Section
2.1 to analyzing the time efficiency of nonrecursive algorithms. Let us start with
a very simple example that demonstrates all the principal steps typically taken in
analyzing such algorithms.

EXAMPLE 1 Consider the problem of finding the value of the largest element
in a list of n numbers. For simplicity, we assume that the list is implemented as
an array. The following is pseudocode of a standard algorithm for solving the
problem.

ALGORITHM MaxElement(A[0..n − 1])
//Determines the value of the largest element in a given array
//Input: An array A[0..n − 1] of real numbers
//Output: The value of the largest element in A

maxval ← A[0]
for i ← 1 to n − 1 do

if A[i] > maxval

maxval ← A[i]
return maxval

The obvious measure of an input’s size here is the number of elements in the
array, i.e., n. The operations that are going to be executed most often are in the
algorithm’s for loop. There are two operations in the loop’s body: the comparison
A[i] > maxval and the assignment maxval ← A[i]. Which of these two operations
should we consider basic? Since the comparison is executed on each repetition
of the loop and the assignment is not, we should consider the comparison to be
the algorithm’s basic operation. Note that the number of comparisons will be the
same for all arrays of size n; therefore, in terms of this metric, there is no need to
distinguish among the worst, average, and best cases here.



Same Algorithm:

! Why choose > as the basic operation? 
" Why not  i ← i + 1 ? 
" Or [ ] ?
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ALGORITHM MaxElement (A: List)
// Determines the value of the largest element in the list A
// Input: a list A of real numbers
// Output: the value of the largest element of A
maxval ← A.first
for each in A do

if each > maxval
maxval ← each

return maxval



From Algorithm to Formula
! We want a formula for the # of basic ops 
! Basic op will normally be in inner loop 
! Bounds of for loop become bounds of 

summation 
! e.g.  for i ← l .. h do:  

  3 basic operations 

!

"21
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Works for nested loops too
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Useful Summation Formulae
Σl≤i≤u1 = 1+1+…+1 = u - l + 1


In particular, Σ1≤i≤n1 = n - 1 + 1 = n ∈ Θ(n) 

Σ1≤i≤n i = 1+2+…+n = n(n+1)/2 ≈  n2/2 ∈ Θ(n2) 


Σ1≤i≤n i2 = 12+22+…+n2 = n(n+1)(2n+1)/6 ≈ n3/3 ∈ Θ(n3) 


Σ0≤i≤n ai  = 1 + a  +…+ an  = (an+1 - 1)/(a - 1)  for any a ≠ 1

In particular, Σ0≤i≤n 2i  = 20 + 21 + … + 2n  = 2n+1 - 1 ∈ Θ(2n )  

Σ(ai ± bi ) = Σ ai ± Σ bi         	 	 Σc ai  = c Σ ai        
Σl≤i≤u ai  = Σ l ≤i≤m ai + Σ m+1≤i≤u ai
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Where do the Summation formulae come 
from?                        

! Answer: mathematics. 
! Example: 
The Euler–Mascheroni constant 𝛾 is defined as:
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! Answer: mathematics. 
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The Euler–Mascheroni constant 𝛾 is defined as:
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Where do the Summation formulae come 
from?                        

! Answer: mathematics. 
! Example: 
The Euler–Mascheroni constant 𝛾 is defined as:

"24

� = lim
n!1

 
nX

i=1

1

i
� lnn

!

Harmonic 
series 

y = 1/x

ln x



What does Levitin’s    mean?
! “becomes almost equal to as n → ∞” 
! So formula 8 

" means

"25

⇡

nX

i=1

lg i ⇡ n lg n

lim
n!1

 
nX

i=1

lg i� n lg n

!
= 0



Example: Counting Binary Digits

"26



Example: Counting Binary Digits

! How many times is the basic operation 
executed?

"26



Example: Counting Binary Digits

! How many times is the basic operation 
executed?

! Why is this algorithm harder to analyze 
than the earlier examples?

"26



Ex 2.3, Problem 1

"27

Exercises 2.3

1. Compute the following sums.

a. 1 + 3 + 5 + 7 + ...+ 999

b. 2 + 4 + 8 + 16 + ...+ 1024

c.

∑
n+1

i=3
1 d.

∑
n+1

i=3
i e.

∑
n−1

i=0
i(i+ 1)

f.

∑
n

j=1
3
j+1

g.

∑
n

i=1

∑
n

j=1
ij h.

∑
n−1

i=0
1/i(i+ 1)

2. Find the order of growth of the following sums.

a.

∑
n−1

i=0
(i

2
+1)

2
b.

∑
n−1

i=2
lgi

2

c.

∑
n

i=1
(i+ 1)2

i−1
d.

∑
n−1

i=0

∑
i−1

j=0
(i+ j)

Use the Θ(g(n)) notation with the simplest function g(n) possible.

3. The sample variance of n measurements x1, x2, ..., xn can be computed as

∑
n

i=1
(xi − x̄)

2

n− 1

where x̄ =

∑
n

i=1
xi

n

or
∑

n

i=1
x
2

i
− (

∑
n

i=1
xi)

2
/n

n− 1

.

Find and compare the number of divisions, multiplications, and addi-

tions/subtractions (additions and subtractions are usually bunched to-

gether) that are required for computing the variance according to each of

these formulas.

4. Consider the following algorithm.

Algorithm Mystery(n)

//Input: A nonnegative integer n

S ← 0

for i ← 1 to n do

S ← S + i ∗ i

returnS

a. What does this algorithm compute?

b. What is its basic operation?

c. How many times is the basic operation executed?

16

! Working with a partner:

Pn
i=1
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Exercises 2.3

1. Compute the following sums.

a. 1 + 3 + 5 + 7 + ...+ 999

b. 2 + 4 + 8 + 16 + ...+ 1024

c.

∑
n+1

i=3
1 d.

∑
n+1

i=3
i e.

∑
n−1

i=0
i(i+ 1)

f.

∑
n

j=1
3
j+1

g.

∑
n

i=1

∑
n

j=1
ij h.

∑
n−1

i=0
1/i(i+ 1)

2. Find the order of growth of the following sums.

a.

∑
n−1

i=0
(i

2
+1)

2
b.

∑
n−1

i=2
lgi

2

c.

∑
n

i=1
(i+ 1)2

i−1
d.

∑
n−1

i=0

∑
i−1

j=0
(i+ j)

Use the Θ(g(n)) notation with the simplest function g(n) possible.

3. The sample variance of n measurements x1, x2, ..., xn can be computed as

∑
n

i=1
(xi − x̄)

2

n− 1

where x̄ =

∑
n

i=1
xi

n

or
∑

n

i=1
x
2

i
− (

∑
n

i=1
xi)

2
/n

n− 1

.

Find and compare the number of divisions, multiplications, and addi-

tions/subtractions (additions and subtractions are usually bunched to-

gether) that are required for computing the variance according to each of

these formulas.

4. Consider the following algorithm.

Algorithm Mystery(n)

//Input: A nonnegative integer n

S ← 0

for i ← 1 to n do

S ← S + i ∗ i

returnS

a. What does this algorithm compute?

b. What is its basic operation?

c. How many times is the basic operation executed?

16



Ex 2.3, Problem 3
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Exercises 2.3

1. Compute the following sums.

a. 1 + 3 + 5 + 7 + ...+ 999

b. 2 + 4 + 8 + 16 + ...+ 1024

c.

∑
n+1

i=3
1 d.

∑
n+1

i=3
i e.

∑
n−1

i=0
i(i+ 1)

f.

∑
n

j=1
3
j+1

g.

∑
n

i=1

∑
n

j=1
ij h.

∑
n−1

i=0
1/i(i+ 1)

2. Find the order of growth of the following sums.

a.

∑
n−1

i=0
(i

2
+1)

2
b.

∑
n−1

i=2
lgi

2

c.

∑
n

i=1
(i+ 1)2

i−1
d.

∑
n−1

i=0

∑
i−1

j=0
(i+ j)

Use the Θ(g(n)) notation with the simplest function g(n) possible.

3. The sample variance of n measurements x1, x2, ..., xn can be computed as

∑
n

i=1
(xi − x̄)

2

n− 1

where x̄ =

∑
n

i=1
xi

n

or
∑

n

i=1
x
2

i
− (

∑
n

i=1
xi)

2
/n

n− 1

.

Find and compare the number of divisions, multiplications, and addi-

tions/subtractions (additions and subtractions are usually bunched to-

gether) that are required for computing the variance according to each of

these formulas.

4. Consider the following algorithm.

Algorithm Mystery(n)

//Input: A nonnegative integer n

S ← 0

for i ← 1 to n do

S ← S + i ∗ i

returnS

a. What does this algorithm compute?

b. What is its basic operation?

c. How many times is the basic operation executed?

16
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Exercises 2.3

1. Compute the following sums.

a. 1 + 3 + 5 + 7 + ...+ 999

b. 2 + 4 + 8 + 16 + ...+ 1024

c.

∑
n+1

i=3
1 d.

∑
n+1

i=3
i e.

∑
n−1

i=0
i(i+ 1)

f.

∑
n

j=1
3
j+1

g.

∑
n

i=1

∑
n

j=1
ij h.

∑
n−1

i=0
1/i(i+ 1)

2. Find the order of growth of the following sums.

a.

∑
n−1

i=0
(i

2
+1)

2
b.

∑
n−1

i=2
lgi

2

c.

∑
n

i=1
(i+ 1)2

i−1
d.

∑
n−1

i=0

∑
i−1

j=0
(i+ j)

Use the Θ(g(n)) notation with the simplest function g(n) possible.

3. The sample variance of n measurements x1, x2, ..., xn can be computed as

∑
n

i=1
(xi − x̄)

2

n− 1

where x̄ =

∑
n

i=1
xi

n

or
∑

n

i=1
x
2

i
− (

∑
n

i=1
xi)

2
/n

n− 1

.

Find and compare the number of divisions, multiplications, and addi-

tions/subtractions (additions and subtractions are usually bunched to-

gether) that are required for computing the variance according to each of

these formulas.

4. Consider the following algorithm.

Algorithm Mystery(n)

//Input: A nonnegative integer n

S ← 0

for i ← 1 to n do

S ← S + i ∗ i

returnS

a. What does this algorithm compute?

b. What is its basic operation?

c. How many times is the basic operation executed?

16

d. What is the efficiency class of this algorithm?

e. Suggest an improvement or a better algorithm altogether and indi-

cate its efficiency class. If you cannot do it, try to prove that, in fact, it

cannot be done.

5. Consider the following algorithm.

Algorithm Secret(A[0..n− 1])

//Input: An array A[0..n− 1] of n real numbers

minval ← A[0]; maxval ← A[0]

for i ← 1 to n− 1 do

if A[i] < minval

minval ← A[i]

if A[i] > maxval

maxval ← A[i]

return maxval − minval

Answer questions a—e of Problem 4 about this algorithm.

6. Consider the following algorithm.

Algorithm Enigma(A[0..n− 1, 0..n− 1])

//Input: A matrix A[0..n− 1, 0..n− 1] of real numbers

for i ← 0 to n− 2 do

for j ← i+ 1 to n− 1 do

if A[i, j] ̸= A[j, i]

return false

return true

Answer the questions a—e of Problem 4 about this algorithm.

7. Improve the implementation of the matrix multiplication algorithm (see

Example 3) by reducing the number of additions made by the algorithm.

What effect will this change have on the algorithm’s efficiency?

8. Determine the asymptotic order of growth for the total number of times all

the doors are toggled in the Locker Doors puzzle (Problem 11 in Exercises

1.1).

9. Prove the formula

n
∑

i=1

i = 1 + 2 + ...+ n =

n(n+ 1)

2

either by mathematical induction or by following the insight of a 10-year

old schoolboy named Karl Friedrich Gauss (1777—1855) who grew up to

become one of the greatest mathematicians of all times.

17
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Exercises 2.3

1. Compute the following sums.

a. 1 + 3 + 5 + 7 + ...+ 999

b. 2 + 4 + 8 + 16 + ...+ 1024

c.

∑
n+1

i=3
1 d.

∑
n+1

i=3
i e.

∑
n−1

i=0
i(i+ 1)

f.

∑
n

j=1
3
j+1

g.

∑
n

i=1

∑
n

j=1
ij h.

∑
n−1

i=0
1/i(i+ 1)

2. Find the order of growth of the following sums.

a.

∑
n−1

i=0
(i

2
+1)

2
b.

∑
n−1

i=2
lgi

2

c.

∑
n

i=1
(i+ 1)2

i−1
d.

∑
n−1

i=0

∑
i−1

j=0
(i+ j)

Use the Θ(g(n)) notation with the simplest function g(n) possible.

3. The sample variance of n measurements x1, x2, ..., xn can be computed as

∑
n

i=1
(xi − x̄)

2

n− 1

where x̄ =

∑
n

i=1
xi

n

or
∑

n

i=1
x
2

i
− (

∑
n

i=1
xi)

2
/n

n− 1

.

Find and compare the number of divisions, multiplications, and addi-

tions/subtractions (additions and subtractions are usually bunched to-

gether) that are required for computing the variance according to each of

these formulas.

4. Consider the following algorithm.

Algorithm Mystery(n)

//Input: A nonnegative integer n

S ← 0

for i ← 1 to n do

S ← S + i ∗ i

returnS

a. What does this algorithm compute?

b. What is its basic operation?

c. How many times is the basic operation executed?

16

d. What is the efficiency class of this algorithm?

e. Suggest an improvement or a better algorithm altogether and indi-

cate its efficiency class. If you cannot do it, try to prove that, in fact, it

cannot be done.

5. Consider the following algorithm.

Algorithm Secret(A[0..n− 1])

//Input: An array A[0..n− 1] of n real numbers

minval ← A[0]; maxval ← A[0]

for i ← 1 to n− 1 do

if A[i] < minval

minval ← A[i]

if A[i] > maxval

maxval ← A[i]

return maxval − minval

Answer questions a—e of Problem 4 about this algorithm.

6. Consider the following algorithm.

Algorithm Enigma(A[0..n− 1, 0..n− 1])

//Input: A matrix A[0..n− 1, 0..n− 1] of real numbers

for i ← 0 to n− 2 do

for j ← i+ 1 to n− 1 do

if A[i, j] ̸= A[j, i]

return false

return true

Answer the questions a—e of Problem 4 about this algorithm.

7. Improve the implementation of the matrix multiplication algorithm (see

Example 3) by reducing the number of additions made by the algorithm.

What effect will this change have on the algorithm’s efficiency?

8. Determine the asymptotic order of growth for the total number of times all

the doors are toggled in the Locker Doors puzzle (Problem 11 in Exercises

1.1).

9. Prove the formula

n
∑

i=1

i = 1 + 2 + ...+ n =

n(n+ 1)

2

either by mathematical induction or by following the insight of a 10-year

old schoolboy named Karl Friedrich Gauss (1777—1855) who grew up to

become one of the greatest mathematicians of all times.

17

What does this
algorithm compute?

A. n2

B.
Pn

i=1 i

C.
Pn

i=1 i
2

D.
Pn

i=1 2i
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Exercises 2.3

1. Compute the following sums.

a. 1 + 3 + 5 + 7 + ...+ 999

b. 2 + 4 + 8 + 16 + ...+ 1024

c.

∑
n+1

i=3
1 d.

∑
n+1

i=3
i e.

∑
n−1

i=0
i(i+ 1)

f.

∑
n

j=1
3
j+1

g.

∑
n

i=1

∑
n

j=1
ij h.

∑
n−1

i=0
1/i(i+ 1)

2. Find the order of growth of the following sums.

a.

∑
n−1

i=0
(i

2
+1)

2
b.

∑
n−1

i=2
lgi

2

c.

∑
n

i=1
(i+ 1)2

i−1
d.

∑
n−1

i=0

∑
i−1

j=0
(i+ j)

Use the Θ(g(n)) notation with the simplest function g(n) possible.

3. The sample variance of n measurements x1, x2, ..., xn can be computed as

∑
n

i=1
(xi − x̄)

2

n− 1

where x̄ =

∑
n

i=1
xi

n

or
∑

n

i=1
x
2

i
− (

∑
n

i=1
xi)

2
/n

n− 1

.

Find and compare the number of divisions, multiplications, and addi-

tions/subtractions (additions and subtractions are usually bunched to-

gether) that are required for computing the variance according to each of

these formulas.

4. Consider the following algorithm.

Algorithm Mystery(n)

//Input: A nonnegative integer n

S ← 0

for i ← 1 to n do

S ← S + i ∗ i

returnS

a. What does this algorithm compute?

b. What is its basic operation?

c. How many times is the basic operation executed?

16

d. What is the efficiency class of this algorithm?

e. Suggest an improvement or a better algorithm altogether and indi-

cate its efficiency class. If you cannot do it, try to prove that, in fact, it

cannot be done.

5. Consider the following algorithm.

Algorithm Secret(A[0..n− 1])

//Input: An array A[0..n− 1] of n real numbers

minval ← A[0]; maxval ← A[0]

for i ← 1 to n− 1 do

if A[i] < minval

minval ← A[i]

if A[i] > maxval

maxval ← A[i]

return maxval − minval

Answer questions a—e of Problem 4 about this algorithm.

6. Consider the following algorithm.

Algorithm Enigma(A[0..n− 1, 0..n− 1])

//Input: A matrix A[0..n− 1, 0..n− 1] of real numbers

for i ← 0 to n− 2 do

for j ← i+ 1 to n− 1 do

if A[i, j] ̸= A[j, i]

return false

return true

Answer the questions a—e of Problem 4 about this algorithm.

7. Improve the implementation of the matrix multiplication algorithm (see

Example 3) by reducing the number of additions made by the algorithm.

What effect will this change have on the algorithm’s efficiency?

8. Determine the asymptotic order of growth for the total number of times all

the doors are toggled in the Locker Doors puzzle (Problem 11 in Exercises

1.1).

9. Prove the formula

n
∑

i=1

i = 1 + 2 + ...+ n =

n(n+ 1)

2

either by mathematical induction or by following the insight of a 10-year

old schoolboy named Karl Friedrich Gauss (1777—1855) who grew up to

become one of the greatest mathematicians of all times.

17
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Exercises 2.3

1. Compute the following sums.

a. 1 + 3 + 5 + 7 + ...+ 999

b. 2 + 4 + 8 + 16 + ...+ 1024

c.

∑
n+1

i=3
1 d.

∑
n+1

i=3
i e.

∑
n−1

i=0
i(i+ 1)

f.

∑
n

j=1
3
j+1

g.

∑
n

i=1

∑
n

j=1
ij h.

∑
n−1

i=0
1/i(i+ 1)

2. Find the order of growth of the following sums.

a.

∑
n−1

i=0
(i

2
+1)

2
b.

∑
n−1

i=2
lgi

2

c.

∑
n

i=1
(i+ 1)2

i−1
d.

∑
n−1

i=0

∑
i−1

j=0
(i+ j)

Use the Θ(g(n)) notation with the simplest function g(n) possible.

3. The sample variance of n measurements x1, x2, ..., xn can be computed as

∑
n

i=1
(xi − x̄)

2

n− 1

where x̄ =

∑
n

i=1
xi

n

or
∑

n

i=1
x
2

i
− (

∑
n

i=1
xi)

2
/n

n− 1

.

Find and compare the number of divisions, multiplications, and addi-

tions/subtractions (additions and subtractions are usually bunched to-

gether) that are required for computing the variance according to each of

these formulas.

4. Consider the following algorithm.

Algorithm Mystery(n)

//Input: A nonnegative integer n

S ← 0

for i ← 1 to n do

S ← S + i ∗ i

returnS

a. What does this algorithm compute?

b. What is its basic operation?

c. How many times is the basic operation executed?

16

d. What is the efficiency class of this algorithm?

e. Suggest an improvement or a better algorithm altogether and indi-

cate its efficiency class. If you cannot do it, try to prove that, in fact, it

cannot be done.

5. Consider the following algorithm.

Algorithm Secret(A[0..n− 1])

//Input: An array A[0..n− 1] of n real numbers

minval ← A[0]; maxval ← A[0]

for i ← 1 to n− 1 do

if A[i] < minval

minval ← A[i]

if A[i] > maxval

maxval ← A[i]

return maxval − minval

Answer questions a—e of Problem 4 about this algorithm.

6. Consider the following algorithm.

Algorithm Enigma(A[0..n− 1, 0..n− 1])

//Input: A matrix A[0..n− 1, 0..n− 1] of real numbers

for i ← 0 to n− 2 do

for j ← i+ 1 to n− 1 do

if A[i, j] ̸= A[j, i]

return false

return true

Answer the questions a—e of Problem 4 about this algorithm.

7. Improve the implementation of the matrix multiplication algorithm (see

Example 3) by reducing the number of additions made by the algorithm.

What effect will this change have on the algorithm’s efficiency?

8. Determine the asymptotic order of growth for the total number of times all

the doors are toggled in the Locker Doors puzzle (Problem 11 in Exercises

1.1).

9. Prove the formula

n
∑

i=1

i = 1 + 2 + ...+ n =

n(n+ 1)

2

either by mathematical induction or by following the insight of a 10-year

old schoolboy named Karl Friedrich Gauss (1777—1855) who grew up to

become one of the greatest mathematicians of all times.

17

What is the
basic operation?

A. multiplication

B. addition

C. assignment

D. squaring
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Exercises 2.3

1. Compute the following sums.

a. 1 + 3 + 5 + 7 + ...+ 999

b. 2 + 4 + 8 + 16 + ...+ 1024

c.

∑
n+1

i=3
1 d.

∑
n+1

i=3
i e.

∑
n−1

i=0
i(i+ 1)

f.

∑
n

j=1
3
j+1

g.

∑
n

i=1

∑
n

j=1
ij h.

∑
n−1

i=0
1/i(i+ 1)

2. Find the order of growth of the following sums.

a.

∑
n−1

i=0
(i

2
+1)

2
b.

∑
n−1

i=2
lgi

2

c.

∑
n

i=1
(i+ 1)2

i−1
d.

∑
n−1

i=0

∑
i−1

j=0
(i+ j)

Use the Θ(g(n)) notation with the simplest function g(n) possible.

3. The sample variance of n measurements x1, x2, ..., xn can be computed as

∑
n

i=1
(xi − x̄)

2

n− 1

where x̄ =

∑
n

i=1
xi

n

or
∑

n

i=1
x
2

i
− (

∑
n

i=1
xi)

2
/n

n− 1

.

Find and compare the number of divisions, multiplications, and addi-

tions/subtractions (additions and subtractions are usually bunched to-

gether) that are required for computing the variance according to each of

these formulas.

4. Consider the following algorithm.

Algorithm Mystery(n)

//Input: A nonnegative integer n

S ← 0

for i ← 1 to n do

S ← S + i ∗ i

returnS

a. What does this algorithm compute?

b. What is its basic operation?

c. How many times is the basic operation executed?

16

d. What is the efficiency class of this algorithm?

e. Suggest an improvement or a better algorithm altogether and indi-

cate its efficiency class. If you cannot do it, try to prove that, in fact, it

cannot be done.

5. Consider the following algorithm.

Algorithm Secret(A[0..n− 1])

//Input: An array A[0..n− 1] of n real numbers

minval ← A[0]; maxval ← A[0]

for i ← 1 to n− 1 do

if A[i] < minval

minval ← A[i]

if A[i] > maxval

maxval ← A[i]

return maxval − minval

Answer questions a—e of Problem 4 about this algorithm.

6. Consider the following algorithm.

Algorithm Enigma(A[0..n− 1, 0..n− 1])

//Input: A matrix A[0..n− 1, 0..n− 1] of real numbers

for i ← 0 to n− 2 do

for j ← i+ 1 to n− 1 do

if A[i, j] ̸= A[j, i]

return false

return true

Answer the questions a—e of Problem 4 about this algorithm.

7. Improve the implementation of the matrix multiplication algorithm (see

Example 3) by reducing the number of additions made by the algorithm.

What effect will this change have on the algorithm’s efficiency?

8. Determine the asymptotic order of growth for the total number of times all

the doors are toggled in the Locker Doors puzzle (Problem 11 in Exercises

1.1).

9. Prove the formula

n
∑

i=1

i = 1 + 2 + ...+ n =

n(n+ 1)

2

either by mathematical induction or by following the insight of a 10-year

old schoolboy named Karl Friedrich Gauss (1777—1855) who grew up to

become one of the greatest mathematicians of all times.

17

How many times is the

basic operation executed?

A. once

B. n times

C. lg n times

D. none of the above
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Exercises 2.3

1. Compute the following sums.

a. 1 + 3 + 5 + 7 + ...+ 999

b. 2 + 4 + 8 + 16 + ...+ 1024

c.

∑
n+1

i=3
1 d.

∑
n+1

i=3
i e.

∑
n−1

i=0
i(i+ 1)

f.

∑
n

j=1
3
j+1

g.

∑
n

i=1

∑
n

j=1
ij h.

∑
n−1

i=0
1/i(i+ 1)

2. Find the order of growth of the following sums.

a.

∑
n−1

i=0
(i

2
+1)

2
b.

∑
n−1

i=2
lgi

2

c.

∑
n

i=1
(i+ 1)2

i−1
d.

∑
n−1

i=0

∑
i−1

j=0
(i+ j)

Use the Θ(g(n)) notation with the simplest function g(n) possible.

3. The sample variance of n measurements x1, x2, ..., xn can be computed as

∑
n

i=1
(xi − x̄)

2

n− 1

where x̄ =

∑
n

i=1
xi

n

or
∑

n

i=1
x
2

i
− (

∑
n

i=1
xi)

2
/n

n− 1

.

Find and compare the number of divisions, multiplications, and addi-

tions/subtractions (additions and subtractions are usually bunched to-

gether) that are required for computing the variance according to each of

these formulas.

4. Consider the following algorithm.

Algorithm Mystery(n)

//Input: A nonnegative integer n

S ← 0

for i ← 1 to n do

S ← S + i ∗ i

returnS

a. What does this algorithm compute?

b. What is its basic operation?

c. How many times is the basic operation executed?

16

d. What is the efficiency class of this algorithm?

e. Suggest an improvement or a better algorithm altogether and indi-

cate its efficiency class. If you cannot do it, try to prove that, in fact, it

cannot be done.

5. Consider the following algorithm.

Algorithm Secret(A[0..n− 1])

//Input: An array A[0..n− 1] of n real numbers

minval ← A[0]; maxval ← A[0]

for i ← 1 to n− 1 do

if A[i] < minval

minval ← A[i]

if A[i] > maxval

maxval ← A[i]

return maxval − minval

Answer questions a—e of Problem 4 about this algorithm.

6. Consider the following algorithm.

Algorithm Enigma(A[0..n− 1, 0..n− 1])

//Input: A matrix A[0..n− 1, 0..n− 1] of real numbers

for i ← 0 to n− 2 do

for j ← i+ 1 to n− 1 do

if A[i, j] ̸= A[j, i]

return false

return true

Answer the questions a—e of Problem 4 about this algorithm.

7. Improve the implementation of the matrix multiplication algorithm (see

Example 3) by reducing the number of additions made by the algorithm.

What effect will this change have on the algorithm’s efficiency?

8. Determine the asymptotic order of growth for the total number of times all

the doors are toggled in the Locker Doors puzzle (Problem 11 in Exercises

1.1).

9. Prove the formula

n
∑

i=1

i = 1 + 2 + ...+ n =

n(n+ 1)

2

either by mathematical induction or by following the insight of a 10-year

old schoolboy named Karl Friedrich Gauss (1777—1855) who grew up to

become one of the greatest mathematicians of all times.

17

What is the e�ciency
class of this algorithm?
[b is # of bits needed to

represent n]

A. ⇥(1)

B. ⇥(n)

C. ⇥(b)

D. ⇥(2b)
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d. What is the efficiency class of this algorithm?

e. Suggest an improvement or a better algorithm altogether and indi-

cate its efficiency class. If you cannot do it, try to prove that, in fact, it

cannot be done.

5. Consider the following algorithm.

Algorithm Secret(A[0..n− 1])

//Input: An array A[0..n− 1] of n real numbers

minval ← A[0]; maxval ← A[0]

for i ← 1 to n− 1 do

if A[i] < minval

minval ← A[i]

if A[i] > maxval

maxval ← A[i]

return maxval − minval

Answer questions a—e of Problem 4 about this algorithm.

6. Consider the following algorithm.

Algorithm Enigma(A[0..n− 1, 0..n− 1])

//Input: A matrix A[0..n− 1, 0..n− 1] of real numbers

for i ← 0 to n− 2 do

for j ← i+ 1 to n− 1 do

if A[i, j] ̸= A[j, i]

return false

return true

Answer the questions a—e of Problem 4 about this algorithm.

7. Improve the implementation of the matrix multiplication algorithm (see

Example 3) by reducing the number of additions made by the algorithm.

What effect will this change have on the algorithm’s efficiency?

8. Determine the asymptotic order of growth for the total number of times all

the doors are toggled in the Locker Doors puzzle (Problem 11 in Exercises

1.1).

9. Prove the formula

n
∑

i=1

i = 1 + 2 + ...+ n =

n(n+ 1)

2

either by mathematical induction or by following the insight of a 10-year

old schoolboy named Karl Friedrich Gauss (1777—1855) who grew up to

become one of the greatest mathematicians of all times.

17
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d. What is the efficiency class of this algorithm?

e. Suggest an improvement or a better algorithm altogether and indi-

cate its efficiency class. If you cannot do it, try to prove that, in fact, it

cannot be done.

5. Consider the following algorithm.

Algorithm Secret(A[0..n− 1])

//Input: An array A[0..n− 1] of n real numbers

minval ← A[0]; maxval ← A[0]

for i ← 1 to n− 1 do

if A[i] < minval

minval ← A[i]

if A[i] > maxval

maxval ← A[i]

return maxval − minval

Answer questions a—e of Problem 4 about this algorithm.

6. Consider the following algorithm.

Algorithm Enigma(A[0..n− 1, 0..n− 1])

//Input: A matrix A[0..n− 1, 0..n− 1] of real numbers

for i ← 0 to n− 2 do

for j ← i+ 1 to n− 1 do

if A[i, j] ̸= A[j, i]

return false

return true

Answer the questions a—e of Problem 4 about this algorithm.

7. Improve the implementation of the matrix multiplication algorithm (see

Example 3) by reducing the number of additions made by the algorithm.

What effect will this change have on the algorithm’s efficiency?

8. Determine the asymptotic order of growth for the total number of times all

the doors are toggled in the Locker Doors puzzle (Problem 11 in Exercises

1.1).

9. Prove the formula

n
∑

i=1

i = 1 + 2 + ...+ n =

n(n+ 1)

2

either by mathematical induction or by following the insight of a 10-year

old schoolboy named Karl Friedrich Gauss (1777—1855) who grew up to

become one of the greatest mathematicians of all times.

17

a.  What does this algorithm compute? 
b.  What is its basic operation? 
c.  How many times is the basic 

operation executed?
d. What is the efficiency class of this 

algorithm?
e. Suggest an improvement or a better 

algorithm altogether and indicate its 
efficiency class.
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d. What is the efficiency class of this algorithm?

e. Suggest an improvement or a better algorithm altogether and indi-

cate its efficiency class. If you cannot do it, try to prove that, in fact, it

cannot be done.

5. Consider the following algorithm.

Algorithm Secret(A[0..n− 1])

//Input: An array A[0..n− 1] of n real numbers

minval ← A[0]; maxval ← A[0]

for i ← 1 to n− 1 do

if A[i] < minval

minval ← A[i]

if A[i] > maxval

maxval ← A[i]

return maxval − minval

Answer questions a—e of Problem 4 about this algorithm.

6. Consider the following algorithm.

Algorithm Enigma(A[0..n− 1, 0..n− 1])

//Input: A matrix A[0..n− 1, 0..n− 1] of real numbers

for i ← 0 to n− 2 do

for j ← i+ 1 to n− 1 do

if A[i, j] ̸= A[j, i]

return false

return true

Answer the questions a—e of Problem 4 about this algorithm.

7. Improve the implementation of the matrix multiplication algorithm (see

Example 3) by reducing the number of additions made by the algorithm.

What effect will this change have on the algorithm’s efficiency?

8. Determine the asymptotic order of growth for the total number of times all

the doors are toggled in the Locker Doors puzzle (Problem 11 in Exercises

1.1).

9. Prove the formula

n
∑

i=1

i = 1 + 2 + ...+ n =

n(n+ 1)

2

either by mathematical induction or by following the insight of a 10-year

old schoolboy named Karl Friedrich Gauss (1777—1855) who grew up to

become one of the greatest mathematicians of all times.

17
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10. Consider the following version of an important algorithm that we will

study later in the book.

Algorithm GE(A[0..n− 1, 0..n])

//Input: An n-by-n+ 1 matrix A[0..n− 1, 0..n] of real numbers

for i ← 0 to n− 2 do

for j ← i+ 1 to n− 1 do

for k ← i to n do

A[j, k] ← A[j, k]−A[i, k] ∗A[j, i] / A[i, i]

a.◃ Find the time efficiency class of this algorithm.

b.◃ What glaring inefficiency does this pseudocode contain and how can

it be eliminated to speed the algorithm up?

11. von Neumann’s neighborhood How many one-by-one squares are gener-

ated by the algorithm that starts with a single square square and on each

of its n iterations adds new squares all round the outside. How many

one-by-one squares are generated on the nth iteration? [Gar99, p.88] (In

the parlance of cellular automata theory, the answer is the number of cells

in the von Neumann neighborhood of range n.) The results for n = 0, 1,

and 2 are illustrated below:

n = 0 n = 1 n = 2

18

a. Find the time efficiency class of this algorithm
b. What glaring inefficiency does this code contain, and how 

can it be eliminated?
c. Estimate the reduction in run time.
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10. Consider the following version of an important algorithm that we will

study later in the book.

Algorithm GE(A[0..n− 1, 0..n])

//Input: An n-by-n+ 1 matrix A[0..n− 1, 0..n] of real numbers

for i ← 0 to n− 2 do

for j ← i+ 1 to n− 1 do

for k ← i to n do

A[j, k] ← A[j, k]−A[i, k] ∗A[j, i] / A[i, i]

a.◃ Find the time efficiency class of this algorithm.

b.◃ What glaring inefficiency does this pseudocode contain and how can

it be eliminated to speed the algorithm up?

11. von Neumann’s neighborhood How many one-by-one squares are gener-

ated by the algorithm that starts with a single square square and on each

of its n iterations adds new squares all round the outside. How many

one-by-one squares are generated on the nth iteration? [Gar99, p.88] (In

the parlance of cellular automata theory, the answer is the number of cells

in the von Neumann neighborhood of range n.) The results for n = 0, 1,

and 2 are illustrated below:

n = 0 n = 1 n = 2

18

How many one-by-one squares are generated by the 
algorithm that starts with a single square, and on each of its 
n iterations adds new squares around the outside. How many 
one-by-one squares are generated on the nth iteration?  Here 
are the neighborhoods for n = 0, 1, and 2.


