CS 350 Algorithms and Complexity

Winter 2019

Lecture 3: Analyzing Non-Recursive Algorithms

Andrew P. Black

Department of Computer Science
Portland State University

Analysis of time efficiency

< Time efficiency is analyzed by determining
the number of repetitions of the “basic
operation”

<~ Almost always depends on the size of the
Input

< “Basic operation”: the operation that
contributes most towards the running time
of the algorithm

T(n) = Cop X C(N)

Analysis of time efficiency

< Time efficiency is analyzed by determining
the number of repetitions of the “basic
operation”

<~ Almost always depends on the size of the
Input

< “Basic operation”: the operation that
contributes most towards the running time
of the algorithm

T(n) ~ Cop X C(N)

Analysis of time efficiency

< Time efficiency is analyzed by determining
the number of repetitions of the “basic
operation”

<~ Almost always depends on the size of the
Input

< “Basic operation”: the operation that
contributes mos A< the running time
of the algorithn| €St of basic

op: constant

T(n) ~ Cop X C(N)

Analysis of time efficiency

< Time efficiency is analyzed by determining
the number of repetitions of the “basic
operation”

<~ Almost always depends on the size of the
Input

“Ba5|c operation”; the operatlon that

cost of basic

of the algorith op- constant “umber

of times basic op
j ted
T(n) X Cop X C(n) IS execu e2

Problem

Input size measure

Basic operation

Searching for key in a
list of nitems

Multiplication of two
matrices

Checking primality of
a given integer n

Shortest path through
a graph

Complete the table

Problem

Input size measure

Basic operation

Searching for key in a
list of nitems

Multiplication of two
matrices

Checking primality of
a given integer n

Shortest path through
a graph

A: Number of list’s
items, i.e.n

B: Matrix dimension, or
total number of
elements

C: size of n = number of
digits

D: #vertices and/or
edges

A: Key comparison

B: Multiplication of
two numbers

C: Division

D: Visiting a vertex or
traversing an edge

Problem

Input size measure

Basic operation

Searching for key in a
list of n items

A: Number of list’s
items, i.e.n

B: Matrix dimension, or
total number of
elements

C: size of n = number of
digits

D: #vertices and/or
edges

Problem Input size measure | Basic operation

Searching for key in a

. . A: Key comparison
list of n items y P

B: Multiplication of
two numbers

C: Division

D: Visiting a vertex or
traversing an edge

Problem

Input size measure

Basic operation

Multiplication of two
matrices

A: Number of list’s
items, i.e.n

B: Matrix dimension, or
total number of
elements

C: size of n = number of
digits

D: #vertices and/or
edges

Problem

Input size measure

Basic operation

Multiplication of two
matrices

A: Key comparison

B: Multiplication of
two numbers

C: Division

D: Visiting a vertex or
traversing an edge

Problem

Input size measure

Basic operation

Checking primality of
a given integer n

A: Number of list’s
items, i.e.n

B: Matrix dimension, or
total number of
elements

C: size of n = number of
digits

D: #vertices and/or
edges

Problem

Input size measure

Basic operation

Checking primality of
a given integer n

A: Key comparison

B: Multiplication of
two numbers

C: Division

D: Visiting a vertex or
traversing an edge

10

Problem

Input size measure

Basic operation

Shortest path through
a graph

A: Number of list’s
items, i.e.n

B: Matrix dimension, or
total number of
elements

C: size of n = number of
digits

D: #vertices and/or
edges

11

Problem Input size measure | Basic operation

A: Key comparison

B: Multiplication of
two numbers

C: Division

Shortest path through D: Visiting a vertex or
a graph traversing an edge

12

Problem

Input size measure

Basic operation

Searching for key in a
list of nitems

Multiplication of two
matrices

Checking primality of
a given integer n

Shortest path through
a graph

13

Best-case, average-case, worst-case

< For some algorithms, efficiency depends on the input:

<~ Worst case: Cuors(n) — maximum over inputs of size n
< Best case: Cresr(n) — minimum over inputs of size n

<~ Average case: Cae(n) — “average” over inputs of size n

= Number of times the basic operation will be executed on
typical input
* Not the average of worst and best case

= Expected number of basic operations under some
assumption about the probability distribution of all
possible inputs

14

DiIscuss:

ALGORITHM UniqueElements(A[0..n — 1])

//Determines whether all the elements in a given array are distinct
/nput: An array A[0..n — 1]
//Output: Returns “true” if all the elements in A are distinct
// and “false” otherwise
fori < Oton —2do

for j < i+ 1ton—1do

if A[i]= A[/] return false

return true

<~ What's the best case, and its running time?
a. constant — O(1)
. linear — O(n)
c. quadratic — O(n?)

15

DiIscuss:

ALGORITHM UniqueElements(A[0..n — 1])

//Determines whether all the elements in a given array are distinct
/nput: An array A[0..n — 1]
//Output: Returns “true” if all the elements in A are distinct
// and “false” otherwise
fori < Oton —2do

for j < i+ 1ton—1do

if A[i]= A[/] return false

return true

< What's the worst case, and its running time?
a. constant — O(1)
. linear — O(n)
c. quadratic — O(n?)

16

DiIscuss:

ALGORITHM UniqueElements(A[0..n — 1])

//Determines whether all the elements in a given array are distinct
/nput: An array A[0..n — 1]
//Output: Returns “true” if all the elements in A are distinct
// and “false” otherwise
fori < Oton —2do

for j < i+ 1ton—1do

if A[i]= A[/] return false

return true

< What's the average case, and its running time?
a. constant — O(1)
. linear — O(n)
c. quadratic — O(n?)

17

General Plan for Analysis of
non-recursive algorithms

1.

2.

3.

Decide on parameter n indicating input size

dentify algorithm’s basic operation

Determine worst, average, and best cases
for input of size n

Set up a sum for the number of times the
basic operation is executed

Simplify the sum using standard formulae
and rules (see Levitin Appendix A)

18

"Basic Operation”

ALGORITHM MaxElement(A[0..n — 1])

//Determines the value of the largest element in a given array
//Input: An array A[0..n — 1] of real numbers
//Output: The value of the largest element in A
maxval < A[0]
fori < 1ton—1do

if A[i]> maxval

maxval < Ali]

return maxval

Why choose > as the basic operation?
m\Whynot i i+ 17
= 0Or[]°?

19

Same Algorithm:

ALGORITHM MaxElement (A: List)
// Determines the value of the largest element in the list A
// Input: a list A of real numbers
// Output: the value of the largest element of A
maxval < A first
for each in A do
if each > maxval
maxval < each
return maxval

~Why choose > as the basic operation?
m\Whynot i< i+ 17
"Or[]°?

20

From Algorithm to Formula

<~ We want a formula for the # of basic ops
< Basic op will normally be in inner loop

< Bounds of for loop become bounds of
summation

~e.qg. fori+ /. hdo:

3 basic operations i 7
h
s

1=I

21

Works for nested loops too

ALGORITHM UniqueElements(A[0..n — 1])

//Determines whether all the elements in a given array are distinct
/Input: An array A[0..n — 1]
//Output: Returns “true” if all the elements in A are distinct
// and “false” otherwise
fori < Oton —2do

for j < i+1ton—1do

if A[i]= A[/] return false

return true

22

Works for nested loops too

ALGORITHM UniqueElements(A[0..n — 1])

//Determines whether all the elements in a given array are distinct
/Input: An array A[0..n — 1]
//Output: Returns “true” if all the elements in A are distinct
// and “false” otherwise
fori < Oton —2do

for j < i+1ton—1do

if A[i]= A[/] return false

return true

7
(N

22

Works for nested loops too

ALGORITHM UniqueElements(A[0..n — 1])

//Determines whether all the elements in a given array are distinct
/Input: An array A[0..n — 1]
//Output: Returns “true” if all the elements in A are distinct
// and “false” otherwise
fori < Oton —2do

for j < i+1ton—1do

if A[i]= A[/] return false

return true

n—2 n—1
> 1
1=0 71=1+4+1

22

Useful Summation Formulae
leisﬂ —

In particular, 21<i<,1 = n

21 <i<n [=

r

In particular, 2o<i<, 27 =2

Z(aiibi): >2Cda; =

ZlSiSu ai =

23

Useful Summation Formulae

Di<icyl = 1+1+...+1 =u -1+ 1
In particular, 21<i<,1 = n

21 <i<n [=

r

In particular, 2o<i<, 27 =2

Z(aiibi): >2Cda; =

ZlSiSu ai =

23

Useful Summation Formulae

2lcicyl = 1+1+...+1=u-1+ 1
In particular, Z1<i<x1=n-1+1=n¢e O(n)

21 <i<n [=

r

In particular, 2o<i<, 27 =2

Z(aiibi): >2Cda; =

ZlSiSu ai =

23

Useful Summation Formulae

iyl =1+1+...+1=u-1+1

In particular, Z1<i<x1=n-1+1=n¢e O(n)
Dicicn 1 = 142+...4+n = n(n+1)/2 = n2/2 € O(n?)

r

In particular, 2o<i<, 27 =2

Z(aiibi): >2Cda; =

ZlSiSu ai =

23

Useful Summation Formulae

iyl =1+1+...+1=u-1+1

In particular, Z1<i<x1=n-1+1=n¢e O(n)
Dicicn 1 = 142+...4+n = n(n+1)/2 = n2/2 € O(n?)

Dicicn 12 = 12422+, . +n2 = n(n+1)(2n+1)/6 = n3/3 € O(nd)

ZOSiSn ai =

r

In particular, 2o<i<, 27 =2

Z(aiibi): >2Cda; =

ZlSiSu ai =

23

Useful Summation Formulae

iyl =1+1+...+1=u-1+1

In particular, Z1<i<x1=n-1+1=n¢e O(n)
Dicicn 1 = 142+...4+n = n(n+1)/2 = n2/2 € O(n?)

Dicicn 12 = 12422+, . +n2 = n(n+1)(2n+1)/6 = n3/3 € O(nd)

2o<icnadl =1+a +...+a" =(@t1-1)/(a-1) foranya =1

In particular, 2o<i<, 27 =2

Z(aiibi): >2Cda; =

ZlSiSu ai =

23

Useful Summation Formulae

iyl =1+1+...+1=u-1+1

In particular, Z1<i<,21=n-1+1=n¢e O(n)
Dicicn 1 = 142+...4+n = n(n+1)/2 = n2/2 € O(n?)

Dicicn 12 = 12422+, . +n2 = n(n+1)(2n+1)/6 = n3/3 € O(nd)

2o<icnadl =1+a +...+a" =(@t1-1)/(a-1) foranya =1
In particular, Zo<i<, 20 =20+ 21 + ... +2n =21 -1 € O(27)

Z(aiibi): >2Cda; =

ZlSiSu ai =

23

Useful Summation Formulae

iyl =1+1+...+1=u-1+1

In particular, Z1<i<,21=n-1+1=n¢e O(n)
Dicicn 1 = 142+...4+n = n(n+1)/2 = n2/2 € O(n?)

Dicicn 12 = 12422+, . +n2 = n(n+1)(2n+1)/6 = n3/3 € O(nd)

2o<icnadl =1+a +...+a" =(@t1-1)/(a-1) foranya =1
In particular, Zo<i<, 20 =20+ 21 + ... +2n =21 -1 € O(27)

2(ai+xbi)=2a;+ 2 b; 2C a; =

ZlSiSu ai =

23

Useful Summation Formulae

iyl =1+1+...+1=u-1+1

In particular, Z1<i<,21=n-1+1=n¢e O(n)
Dicicn 1 = 142+...4+n = n(n+1)/2 = n2/2 € O(n?)

Dicicn 12 = 12422+, . +n2 = n(n+1)(2n+1)/6 = n3/3 € O(nd)

2o<icnadl =1+a +...+a" =(@t1-1)/(a-1) foranya =1
In particular, Zo<i<, 20 =20+ 21 + ... +2n =21 -1 € O(27)

Z(aiibi)ZECliizbi 2ca; =cxa;

ZlSiSu ai =

23

Useful Summation Formulae

iyl =1+1+...+1=u-1+1

In particular, Z1<i<,21=n-1+1=n¢e O(n)
Dicicn 1 = 142+...4+n = n(n+1)/2 = n2/2 € O(n?)

Dicicn 12 = 12422+, . +n2 = n(n+1)(2n+1)/6 = n3/3 € O(nd)

2o<icnadl =1+a +...+a" =(@t1-1)/(a-1) foranya =1
In particular, Zo<i<, 20 =20+ 21 + ... +2n =21 -1 € O(27)

Z(aiibi)ZECliizbi 2ca; =cxa;

2i<isu i = 20 <ism Qi + 2 m+1<i<u Ai

23

Where do the Summation formulae come
from?

< Answer: mathematics.
< Example:
The Euler—Mascheroni constant y is defined as:

1 2 3 4 5 6 7 8 9 10 11 12 24

Where do the Summation formulae come
from?

< Answer: mathematics.
< Example:
The Euler—Mascheroni constant y is defined as:

1 2 3 4 5 6 7 8 9 10 11 12 24

Where do the Summation formulae come
from?

< Answer: mathematics.
< Example:
The Euler—Mascheroni constant y is defined as:

1 2 3 4 5 6 7 8 9 10 11 12 24

Where do the Summation formulae come
from?

< Answer: mathematics.
< Example:
The Euler—Mascheroni constant y is defined as:

1 2 3 4 5 6 7 8 9 10 11 12 24

What does Levitin's ~ mean?

< “becomes almost equal to as n — "
< Sg formula 8

Zlgz’ ~nlgn
i=1

" means

nh_)n;@ (Zlgz nlgn) = (

1=1

25

Example: Counting Binary Digits
ALGORITHM Binary(n)
//Input: A positive decimal integer n
//Output: The number of binary digits in »’s binary representation
count <1
while » > 1 do
count < count + 1
n<|n/2|
return count

26

Example: Counting Binary Digits
ALGORITHM Binary(n)
//Input: A positive decimal integer n
//Output: The number of binary digits in »’s binary representation
count <1
while » > 1 do
count < count + 1

n<|n/2|
return count

~How many times is the basic operation
executed?

26

Example: Counting Binary Digits
ALGORITHM Binary(n)
//Input: A positive decimal integer n
//Output: The number of binary digits in »’s binary representation
count <1
while » > 1 do
count < count + 1

n<|n/2|
return count

~How many times is the basic operation
executed?

< Why is this algorithm harder to analyze
than the earlier examples?

26

Ex 2.3, Problem 1

Working with a partner:

1. Compute the following sums.

a. 1 +3+0+7+...+999

b.24+4+8+16+ ... +1024
c. Yt d Y e. Y+ 1)

£33 e i by 1/ii+ 1)

27

Ex 2.3, Problem 2

2. Find the order of growth of the following sums.

a. S0 (i241)? b. S0 g2
¢ Y (127 A S Y (i +)

Use the O(g(n)) notation with the simplest function g(n) possible.

28

Ex 2.3, Problem 3

3. The sample variance of n measurements x1, x2, ..., T,, can be computed as

Z?:l(xi _ ZZ‘)Q Z?:l %)

where T =
n—1 n
or 0 o N ,
D i1 Ti — (Do wi)*/n
n—1 '

Find and compare the number of divisions, multiplications, and addi-
tions/subtractions (additions and subtractions are usually bunched to-
gether) that are required for computing the variance according to each of
these formulas.

29

Ex 2.3, Problem 4

4. Consider the following algorithm.

Algorithm Mystery(n)
//Input: A nonnegative integer n
S0
for : — 1 ton do
S S+1x1
return S

30

Ex 2.3, Problem 4

4. Consider the following algorithm.

Algorithm Mystery(n)
//Input: A nonnegative integer n
S0
for : — 1 ton do
S S+1x1
return S

What does this

algorithm compute?

A. n?

B. Y00
C. Y0,
D. Y, 2

30

Ex 2.3, Problem 4

4. Consider the following algorithm.

Algorithm Mystery(n)
//Input: A nonnegative integer n
S0
for : — 1 ton do
S S+1x1
return S

30

Ex 2.3, Problem 4

4. Consider the following algorithm.

Algorithm Mystery(n) What is the

g/I(_npOut: A nonnegative integer n basic Operation?

for 1 — 1 ton do

retusr; SSH” A. multiplication
B. addition

C. assignment

D

squaring

31

Ex 2.3, Problem 4

4. Consider the following algorithm. How many times is the

Algorithm Mystery(n) basic operation executed?
//Input: A nonnegative integer n
S0
for : — 1 ton do A. once
S S+1x1
return S n times

B
C. lgn times
D

none of the above

32

Ex 2.3, Problem 4

4. Consider the following algorithm. What is the efﬁCleIle

class of this algorithm?

?&/11%1‘;11'11;}12“ nﬂfgi;?tg\?e) integer n [b 18 # of bits needed to
o 0 represent n)|
for 1 — 1 to n do
S—S+ixi
return S " A. @(1)
B. O(n)
C. O(b)
D. 6(2%)

33

Ex 2.3, Problem 4 (cont)

e. Suggest an improvement or a better algorithm altogether and indi-

cate its efficiency class.
cannot be done.

If you cannot do it, try to prove that, in fact, it

34

Problem 5 — Group work

5. Consider the following algorithm.

Algorithm Secret(A[0..n — 1])
//Input: An array A|0..n — 1] of n real numbers
minval < A|0]; mazval «— A|0]
fori—1ton—1do

if Ali] < minval

minval «— Ali
[] a. What does this algorithm compute?

it A[Z] > ma:m)a‘l b. What is its basic operation?
mazval « A[Z]. c. How many times is the basic
return maxval — minval operation executed?

d. What is the efficiency class of this
algorithm?

e. Suggest an improvement or a better
algorithm altogether and indicateBiSts
efficiency class.

Ex 2.3, Problem 9

Prove the formula

n

Zi=1—|—2—|—...—|—n:n
1=1

(n+1)
2

either by mathematical induction or by following the insight of a 10-year
old schoolboy named Karl Friedrich Gauss (1777-1855) who grew up to
become one of the greatest mathematicians of all times.

36

Ex 2.3, Problem 11

Algorithm GE(A[0..n —1,0..n])
//Input: An n-by-n + 1 matrix A[0..n — 1,0..n] of real numbers
for:—0ton—-2do
for j«—14+1ton—1do
for k +— i ton do

Alj, k] — Alg, k| = Als, k] « Alg,] / Ali, 1]

a. Find the time efficiency class of this algorithm

b. What glaring inefficiency does this code contain, and how
can it be eliminated?

c. Estimate the reduction in run time.

37

Problem 11: von Neumann neighborhood

How many one-by-one squares are generated by the
algorithm that starts with a single square, and on each of its

n iterations adds new squares around the outside. How many
one-by-one squares are generated on the nth iteration? Here

are the neighborhoods for n = 0, 1, and 2.

38

