
Andrew P. Black

based in part on material by Mark P. Jones

Department of Computer Science

Portland State University

Fall 2019

Lecture 2:  
Preliminaries, Asymptotic Notation

CS 350 Algorithms and Complexity

Form yourselves into groups of 4
! Number yourselves 1, 2, 3 and 4
! Roles:
Facilitator: gets discussion moving and keeps it moving,
e.g., by asking the other group members questions,
sometimes about what they've just been saying.
Summarizer: Every so often, provides a summary of the
discussion for other students to approve or amend.
Reflector: This student will listen to what others say and
explain it back in his or her own words, asking the
original speaker if the interpretation is correct.
Elaborator: This person seeks connections between the
current discussion and past topics or overall course
themes.

2

Here are your Roles:
3. Facilitator: gets discussion moving and keeps it
moving, e.g., by asking the other group members
questions, sometimes about what they've just been
saying.
2. Summarizer: Every so often, provides a
summary of the discussion for other students to
approve or amend.
4. Reflector: This student will listen to what others
say and explain it back in his or her own words,
asking the original speaker if the interpretation is
correct.
1. Elaborator: This person seeks connections
between the current discussion and past topics or
overall course themes.

3

GCD (again!)
! Find gcd(31415, 13205) using Euclid’s

algorithm

!Estimate how many times faster that
was, compared to using the
consecutive algorithm

4

Consecutive
1. t ← min(m, n)
2. r

1
 ← m rem t.

3. if r
1
 = 0 then goto step 4 else goto step 6

4. r
2
 ← n rem t.

5. if r
2
 = 0 then return t

6. t ← t – 1
7. goto step 2

Euclid

Old world Puzzle
A peasant finds himself on a riverbank with a wolf, a
goat, and a head of cabbage. He needs to transport all
three to the other side of the river in his boat. However,
the boat has room for only the peasant himself and one
other item (either the wolf, the goat, or the cabbage). In
his absence, the wolf would eat the goat, and the goat
would eat the cabbage.

Solve this problem for the peasant or prove it has no
solution. (Note: The peasant is a vegetarian but does
not like cabbage and hence can eat neither the goat nor
the cabbage to help him solve the problem. And it goes
without saying that the wolf is a protected species.)

5

What’s the first move?

6

p w g c

What’s the first move?

7

A:

B:

C:

D:

E: none of the above

p

w g c

p

w g

c

p w

g c

p

w

g

c

Solve this problem in your groups

8

p w g c

What’s an algorithm?
! Which of the following constitute an

algorithm for computing the area of a
triangle, given positive numbers a, b, c
representing the lengths of the sides?

9

Exercises 1.2

1. Old World puzzle A peasant finds himself on a riverbank with a wolf,
a goat, and a head of cabbage. He needs to transport all three to the

other side of the river in his boat. However, the boat has room for only

the peasant himself and one other item (either the wolf, the goat, or the

cabbage). In his absence, the wolf would eat the goat, and the goat would

eat the cabbage. Solve this problem for the peasant or prove it has no

solution. (Note: The peasant is a vegetarian but does not like cabbage

and hence can eat neither the goat nor the cabbage to help him solve the

problem. And it goes without saying that the wolf is a protected species.)

2. New World puzzle There are four people who want to cross a rickety

bridge; they all begin on the same side. You have 17 minutes to get them

all across to the other side. It is night, and they have one flashlight. A
maximum of two people can cross the bridge at one time. Any party that

crosses, either one or two people, must have the flashlight with them. The
flashlight must be walked back and forth; it cannot be thrown, for example.
Person 1 takes 1 minute to cross the bridge, person 2 takes 2 minutes,

person 3 takes 5 minutes, and person 4 takes 10 minutes. A pair must

walk together at the rate of the slower person’s pace. (Note: According to

a rumor on the Internet, interviewers at a well-known software company

located near Seattle have given this problem to interviewees.)

3. Which of the following formulas can be considered an algorithm for com-

puting the area of a triangle whose side lengths are given positive numbers

d, e, and f?

a. V =
p
s(s� d)(s� e)(s� f)> where s = (d+ e+ f)@2

b. V = 1
2ef sinD> where D is the angle between sides e and f

c. V = 1
2dkd> where kd is the height to base d

4. Write pseudocode for an algorithm for finding real roots of equation d{2+
e{+ f = 0 for arbitrary real coe!cients d> e> and f= (You may assume the
availability of the square root function vtuw({)=)

5. Describe the standard algorithm for finding the binary representation of
a positive decimal integer

a. in English.

b. in pseudocode.

6. Describe the algorithm used by your favorite ATM machine in dispensing

cash. (You may give your description in either English or pseudocode,

whichever you find more convenient.)

7

Basic Data Structures
! Array: sequence of n items, stored

contiguously in memory
" element access: constant time

! Linked List: sequence of n nodes, each
containing a pointer and an item
" access to element k: time proportional to k
" insert an element: constant time
" delete an element: constant time

10

! How can we insert and delete at index
k in an array?

! How long do these operations take?

A. constant time?
B. time proportional to insertion position k ?
C. time proportional to size of the array n ?

11

Group Problem—Unsorted Array
! Suppose that you have an (unsorted)

array of size n.

! How can you delete the ith element  
(1 ≤ i ≤ n) of the array so that the time
taken does not depend on n?

12

Group Problem—Unsorted Array
! Suppose that you have an (unsorted)

array of size n.

! How can you delete the ith element  
(1 ≤ i ≤ n) of the array so that the time
taken does not depend on n?

! Is element access still constant time?

13

Group Problem—Sorted Array
! Suppose that you have a sorted array of

size n.

! How can you delete the ith element  
(1 ≤ i ≤ n) of the array so that the time
taken does not depend on n? Yes, the
array must remain sorted.

! Is element access still constant time?

14

Trees
! Levitin: free tree ≡ connected acyclic graph

15

a b

e

g

h

j

c

d

f

Trees
! Levitin: forest ≡ connected acyclic graph

16

a b

e

g

h

j

c

d

f

Rooted Tree
! In a tree, ∃ a unique path from one

node to another

! So we can pick an arbitrary node as the
"root"

17

a

g

h

j

a

g

h

j

a

gh

j

Tree Depth & Tree Height
! depth =

length of
path to
root

! height =
maximum
depth

18

a

b

e

g

h

j

c

df

depth 0

depth 1

depth 2

depth 3

depth 4

 =
number of
levels – 1

Q: What’s
the height
of an
empty
tree? 

Ordered Tree
! children

are
ordered
(left to
right)

19

6

5

9

4

7

3

7

42

Search Tree
! children

are ordered
(left to
right)

! left
children ≤
parent  
< right
children

20

6

7

9

5

4

4

2

3 7

Size of Numbers
! How many bits are there in the binary

representation of a decimal number n?

21

A. log10 n

B. lg n

C. blg nc

D. dlg ne

E. none of the above

Binary Representations
! The number of bits b in the binary

representation of a number n is given by

b = ⌊lg n⌋ + 1

Using this formula, how many bits are
required to represent the number 230 ?

A. 29 C. 31

B. 30 D. none of these

22

Binary Representations
! The number of bits b in the binary

representation of a number n is given by

b = ⌊lg n⌋ + 1

Using this formula, how many bits are
required to represent the number (230 - 1)?

A. 29 C. 31

B. 30 D. none of these

23

A. C(n) D. tm / C(n)
B. O(C(n)) E. C(n) / tm

C. tm C(n) F. none of the above

Basic operation
An algorithm has multiplication as its basic
operation. A multiplication takes time tm, on
average. On an input of size n, the algorithm
performs its basic operation C(n) times.

What’s the approximate run time T(n) of the
algorithm?

24

Running Time
! Suppose T(n) = 4n3 seconds
! So T(10) = 4000 s (4000s ≈ 1.1 hour)
! What’s T(1 000)?

A. 10 000 s (≈ 2.8 hours)
B. 40 000 s (≈ 11 hours)
C. 4 000 000 s (≈ 6.6 weeks)
D. 1 000 000 000 s (31 years)
E. 4 000 000 000 s (127 years)

25

N

f(n)

C g(n)

there exists a C such that,
for all n > N, f(n) ≤ C g(n).

upper bounds

26

N

f(n)

C g(n)

there exists a C such that,
for all n ≥ N, f(n) ≤ C g(n).

upper bounds

What’s the relationship between
f(n) and g(n)?

A. f(n) ∈ O(g(n))
B. f(n) ∈ 𝛀(g(n))
C. f(n) ∈ Θ(g(n))
D. f(n) < C(g(n))
E. none of the above

27

f(n) ∈ O(g(n))

f(n)

C g(n)

there exists a C such that,
for all n ≥ N, f(n) ≤ C g(n).

Big Oh
upper bound

N 28

Formalizing Asymptotic Notation:
! A function f(n) is said to be O(g(n)) if

there are constants c>0 and N>0 such
that:

f(n) ≤ c g(n) for all n ≥ N

! In other words: for large enough input n,
f(n) is no more than a constant multiple
of g(n).

! Big Oh is used for stating upper bounds.

“Big Oh”

29

30

Which of the following is true:

A. 3n2 + 500 2 O(n)

B. 3n2 + 500 2 O(n2)

C. 3n2 + 500 2 O(n3)

D. A & B

E. B & C

F. none of the above

Which of the following is true:

31

A. 3n3/500 2 O(n)

B. 3n3/500 2 O(n2)

C. 3n3/500 2 O(n3)

D. A & B

E. B & C

F. none of the above

Examples:
! 4n2 + 3 ∈ O(n2)

! 4n3 + 3 ∈ O(n3)

! n2/1000 + 3000n ∈ O(n2)

In general:

! Can ignore all but the highest power

! Can ignore coefficients
32

Logarithms
! Which of the following is true?

33

A. O(lnn) = O(log10 n)

B. O(lg n) = O(lnn)

C. lg n = lnn

D. all of the above are true

E. none of the above is true

F. A and B are true

G. B and C are true

Powers
! Which of the following is true

34

A. O(4n) = O(2n)

B. O(2⇥ 2n) = O(10⇥ 2n)

C. both of the above are true

D. neither of the above is true

More Examples:
Logarithms:
! Can ignore base because:

logab = logcb/logca.

! Thus O(log2n) is the same as O(log10n).

Exponents:
! Can ignore non-exponential terms
! Base of exponentiation is important; for

example, O(4n) is bigger than O(2n).
35

More Properties of Big Oh:

! O notation is additive and multiplicative:

If f(n) ∈ O(s(n)) and g(n) ∈ O(t(n)), then:
" f(n) + g(n) ∈ O(s(n) + t(n));
" f(n)g(n) ∈ O(s(n)t(n)).

! O notation is transitive:

If f(n) ∈ O(g(n)), and g(n) ∈ O(h(n)), then

f(n) ∈ O(h(n)).

36

Classes of Algorithm:
There are standard names for some of the
most common complexity classes:

✦ Constant: O(1)

✦ Logarithmic: O(log n)

✦ Linear: O(n)

✦ Linearithmic: O(n log n)

✦ Quadratic: O(n2)

✦ Exponential: O(2n)

✦ Double Exponential: O(22n)
37

Polynomial Algorithms:
! An algorithm is said to be polynomial if it

is O(np) for some integer p.

! Terminology:

" Problems with polynomial algorithms are
generally considered to be tractable.

" Problems for which no polynomial
algorithm has been found are often
considered intractable.

38

f(n)

C g(n)

there exists a C such that
for all n > N, f(n) ≥ C g(n).

Lower Bounds

What’s the relationship 
between f(n) and g(n)?

A. f(n) ∈ O(g(n))
B. f(n) ∈ 𝛀(g(n))
C. f(n) ∈ Θ(g(n))
D. f(n) > C(g(n))
E. none of the above

39N

f(n) ∈ Ω(g(n))

N

f(n)

C g(n)

there exists a C such that
for all n ≥ N, f(n) ≥ C g(n).

Omega, Ω
lower bound

40

Dealing with Lower Bounds:
! “This algorithm takes at least …”

! A function f(n) is said to be in Ω(g(n)) if
there are constants c>0 and N>0 such that:

f(n) ≥ c g(n) for all n ≥ N

! Note that f(n) ∈ Ω(g(n)) if and only if  
g(n) ∈ O(f(n)).

Omega

41

Mnemonics
! Big Oh is really a Capital greek letter

Omicron; pronounce it O-micron.
Pronounce 𝛀 O-mega.

! Read as f is O-smaller-than g

! Read as f is O-larger-than g

" The large O (O, 𝛀) says: f may be equal to g

" The small o (𝞸, 𝜔) says: f will be unequal to
g

42

f(n) 2 ⌦(g(n))

f(n) 2 O(g(n))

Tight Bounds:

! A function f(n) is said to be in Θ(g(n)) if it
is in both O(g(n)) and Ω(g(n)).

" If f(n) ∈ Θ(g(n)), then it is eventually
“sandwiched” between constant multiples
of g(n).

! f(n) ∈ Θ(g(n)) if and only if lim
n!1

g(n)

f(n)
= c

43

C2 g(n)

C1 g(n)

N

f(n)

f(n) ∈ Θ(g(n))

there exist C1 and C2 such
that, for all n ≥ N,
C1 g(n) ≤ f(n) ≤ C2 g(n).

Theta, Θ
tight bound

44

Simple laws of Θ(..) notation:
! Addition:

 Θ(f(n) + g(n)) = Θ(f(n)) + Θ(g(n))

! Scaling: for any constant c>0,

 Θ(cf(n)) = c Θ(f(n)) = Θ(f(n))

45

True or False
! You have two sorting algorithms:  

 B is O(n2), while  
 Q is O(n lg n).

! True or false: Q is always faster than B
" A. True
" B. False

46

Beware Constant Factors!
! Use complexity measures with care!

! A Θ(n2) algorithm might actually be faster
than a Θ(n) algorithm for all values of n
encountered in some real application!

47

Θ(n2)

Θ(n)

n

T(n)

The Θ(n2) algorithm is faster than the Θ(n) alternative
if we’re working within this particular range …

48

Beware Constant Factors!
! Use complexity measures with care!
! A Θ(n2) algorithm might actually be faster

than a Θ(n) algorithm for all values of n
encountered in some real application!

! How would you find out?

A. more careful analysis for different n

B. measure the implementation for different n
C. neither of the above

49

lim
n!1

t(n)

g(n)
=

8
><

>:

0) t(n) has a smaller order of growth than g(n)

c > 0) t(n) has the same order of growth as g(n)

1) t(n) has a larger order of growth than g(n)

Comparing Orders of Growth
! If you need to compare the rates of

growth of two functions, t and g, the
easiest way is often to take limits:

50

lim
n!1

t(n)

g(n)
=

8
><

>:

0) t(n) has a smaller order of growth than g(n)

c > 0) t(n) has the same order of growth as g(n)

1) t(n) has a larger order of growth than g(n)

Comparing Orders of Growth
! If you need to compare the rates of growth

of two functions, t and g, the easiest way is
often to take limits:

! Which function goes on top of the limit?
A. The one you think grows slower
B. The one you think grows faster
C. It doesn’t matter

51

Example
! Prove that the functions and have

different orders of growth if

52

Summary:

! Asymptotic notation using O, Ω, and Θ
" O(f (n)) is an upper bound
" Ω(f (n)) is a lower bound
" Θ(f (n)) sets tight bounds

53

Square roots
! Write pseudocode for an algorithm that

computes ⌊√n⌋ for any positive integer n.
Besides assignment and comparison, your
algorithm may use only the four basic
arithmetic operations.

54

Euclid’s Euclid
! Euclid’s algorithm, as presented in Euclid’s

treatise, uses subtractions rather than
mod. Write pseudocode for this version
of Euclid’s algorithm.

55

Door in a Wall

56

copyrighted Soni Alcorn-Hender

!You are facing a wall that
stretches infinitely in both
directions. There is a door in the
wall, but you know neither how
far away, nor in which direction.
You can see the door only when
you are right next to it.

!Design an algorithm that
enables you to reach the door.

!Write an expression for the
number of steps that your
algorithm will take. Your
expression should be in terms of
n, the (unknown to you) number
of steps between your initial
position and the door.

57

58

?

Which way do you walk?
A. To the right

B. To the left

C. It doesn't matter

59

How far do you go?
A. 1 step

B. 2 steps

C. Until you are in front of the door

D. k steps, for some fixed k

E. The lesser of C and D

60

What do you do then?

61

