
CS 350 Algorithms and Complexity

Winter 2019

Lecture 1: Introduction

Andrew P. Black
based on material by Mark P. Jones
Department of Computer Science

Portland State University

Happy Birthday!
! Are there two people in this room with the

same birthday?

2

Surprisingly likely …

3

Happy Birthday!
! Are there two people in this room with the

same birthday?
" if so: what is that day?

! How might we go about answering this
question?

4

One Possible Algorithm:

5

Algorithm:

for each person in the room:
 find each’s birthday on
 calendar
 if calendar day is marked
 then return that day
 else mark day on calendar
return false

Another Possible Algorithm

! Algorithm
for each person in the room: 
 write each’s birthday on the whiteboard 
 for other people in the room: 
 if other’s birthday is on the whiteboard 
 then return birthday  
return false

6

7 September11 July11 October

Question:
! Which of these algorithms is better?

" You decide what “better” means

! A: Calendar Algorithm

! B: Whiteboard algorithm

7

Question:
! True or False: there are no other

algorithms for this problem

! A: True
! B: False

8

The Birthday Problem
! Are there two people in this room with the

same birthday?
! How might we go about answering this

question?
! How much effort would it take?

" In the best case?
" In the worst case?

! Are there faster methods?
! Are there approximate methods?

7

Fermat’s Last Theorem:
! Find integers, a>0, b>0, c>0, n>2, such

that:
	 	 	 	 an + bn = cn

 if they exist.
! Could you write a program to “answer”

this question?
" A: Yes
" B: No

8

Fermat’s Last Theorem:
! Could you write an algorithm to

“answer” this question?
" A: Yes
" B: No

11

Complexity:
! How do we compare algorithms?

! How do we compare problems?

! What are the limits of computation?

! What opportunities do different models of
computation provide?

9

10

Why Study Algorithms?
! Because it’s a required class!

Why Study Algorithms?
! Because you want (amongst other things)

" a job, or career, or way to support yourselves
while doing what you love

! How can studying algorithms help you?

11

12

Studying Algorithms can help you:
! To recognize common patterns, or

problem-solving strategies …

! To be able to analyze algorithms for time-
and space-efficiency

! To strengthen your mathematical,
programming, and problem-solving skills
…

13

Studying Algorithms can help you:
! To build a “repertoire” of algorithmic

building blocks
! Because there is no better optimization

than replacing a bad algorithm with a
good one!

! Because it’s fun and enlightening!
! Because hiring companies care about

algorithms

14

Administrative Details

15

Contact Details:
Andrew P Black:

" Office: FAB 115-10
" Telephone: (503) 725 2411
" Email: apblack@pdx.edu

Web page:
" http://www.cs.pdx.edu/~black/cs350/

Piazza page:
" piazza.com/pdx/winter2019/cs350

http://www.cs.pdx.edu/~black/cs350/
http://piazza.com/pdx/winter2019/cs350

16

Teaching Assistant / Grader
! We have a Teaching Assistant: Arjun Koduru

" Looking for an office and time to hold office
hours

! CS Tutors can help
! I can help too!

" My office hours
Tuesday noon–12:30
Thursday 16:00–17:00

" or by appointment (telephone to make one)

17

Piazza:
! Sign up at piazza.com/pdx/winter2019/cs350
! Piazza is required reading!
! The instructor, TA, and all students will see and

can respond to questions posted on Piazza
" Except for private questions to the instructor

! Interaction on Piazza counts for a (small) part of
your grade.

! Please don’t send me email. Instead, send a
private message to "Instructors" on Piazza.

http://piazza.com/pdx/winter2019/cs350

19

Assessment:

 20% on homeworks (most, but not all, will be
formally graded; I’ll be very clear about this
when assignments are given out.)

 20% on midterm (Provisionally, 12 Feb)

 30% on Final (Tuesday 19 Mar, 10:15–12:05)

 20%: Term paper/project: empirical analysis of
algorithm behavior; further details after midterm

 10%: Participation, in class & electronically.

20

Required Text:

! Introduction to the
Design and Analysis
of Algorithms (3rd
Edition) by Anany
Levitin. Addison
Wesley).

!Very readable book:
it’s a MOC

Required Reading
! I’m not requiring you to just own Levitin,

I’m requiring you to read it too!

! After today, I won’t be lecturing on the
material in the book

! Instead, class sessions will be used as an
opportunity to interact with the material
and to challenge your understanding.

23

21

Useful Reference Text:
! Introduction to Algorithms, 2nd or 3rd Ed
	 Thomas H. Cormen, Charles E. Leiserson,

Ronald L. Rivest, and Clifford Stein
" Published by McGraw-Hill / MIT Press
" A first edition was published in 1990. Much of the

material appears in all editions, but the sections
numbers are sometimes different!

" Frequently called “CLRS”

! http://mitpress.mit.edu/algorithms/

http://mitpress.mit.edu

23

Catalog Description:
! Techniques for the design and analysis of

algorithms
! Case studies of existing algorithms:

" sorting
" searching
" graph algorithms
" dynamic programming
" matrix multiplication
" fast Fourier transformation

! NP-completeness

24

Course Goals

1. Analyze the running time and
space complexity of algorithms.

2. Use the big Oh notation. (e.g.,  
O(n lg n).)

3. Describe how to prove the
correctness of an algorithm.

4. Use the mathematical techniques
required to prove the time
complexity of a program/algorithm.
(e.g., limits and sums of series.)

5. Perform inductive proofs.

6. Prove and apply the Master
Theorem.

7. Describe the notions of P, NP, NPC,
and NP-hard.

8. Compare the rates of growth of
functions.

9. Apply algorithmic complexity
principles in the design of programs.

10. Design divide and conquer and
dynamic programming algorithms.

Upon Successful completion of this course, students will be able to:

25

Provisional Plan:
Weeks Topics Levitin

2 Introduction to Algorithm Analysis,
asymptotic notation, recurrence relations

§1–2

3 Brute force, Decrease & Conquer,
Transform & Conquer §3–4.5

1 Divide & Conquer, Master Theorem,
Quicksort & Mergesort §5

2 Space & Time tradeoffs. Dynamic
programming, Greedy algorithms §7–9.4

1 Introduction to complexity theory, P, NP,
NPC, etc. Proof of Correctness §11.1–11.3

26

I’ll be flexible!
! This schedule is intended as a rough guide only.

! Based on class interaction, we’ll go slower (or
faster) as necessary
" Your feedback will help to determine the pace!

! Suggestions/requests for other topics are always
welcome

! If you think that the book, or your instructor are
too vague: ask questions!

27

Policies:
! By default, all deadlines are firm. There will be penalties for

unexcused late assignments.
! We will be as flexible as possible in accommodating special

circumstances (talk to me in advance if you have a chance)
! We follow the standard policies for academic integrity:

" discussion is good;

" items turned in should be your own, individual work;

" cheating is not acceptable.

! I put material on the website or Piazza rather than handing
out paper.

http://www.cs.pdx.edu/~black/cs350

28

Prerequisites:
! CS 250, CS251, CS311:

" A solid grounding in discrete math
" The ability to write down a formal proof

! This isn’t a course about programming, but
some programming experience is required

! Assignment 0 — set today — is designed to
remind you of some of the essential pre-
requisites

29

Programming Languages:
! Our primary goal is to learn about general

concepts.

! A lot of the programs in this class will be
given using “pseudo-code”

! For concrete examples, I might use Java,
C, Smalltalk, Grace, or Pascal.

30

What Questions do you have?

 Don’t be shy …

	 	 … don’t be afraid to ask questions!

(… don’t be afraid to offer suggestions too!)

Use Piazza to ask questions or leave feedback. If you
want to leave anonymous feedback for the instructor,
you can do so at https://sayat.me/PSU_CS350

https://sayat.me/PSU_CS350

31

Algorithms: Introduction

32

Goals for this lecture:
! To understand the structure, content, and

expectations of the course

! To explore the concept of an “algorithm”,
and the relationship with programs

! To appreciate how algorithms can be
designed and analyzed

33

The origins of “Algorithm”:
Al-Khawarizmi (~790-850)
! Iranian mathematician,

geographer, astronomer.
! Credited with inventing zero (!),

negative numbers, the decimal

system, etc …
! Famous treatise: `Hisab al-jabr

w’al-muqabala’, from which we get

the word `algebra’.

34

What is an “Algorithm”?
A precise set of rules specifying how to
solve a particular problem.

Expressed at a level of abstraction that
allows:
! A focus on essential aspects only;
! Machine and language independence;
! Rigorous scientific/mathematical analysis.

35

Example: Recipes in a Cookbook
! How to prepare your favorite dish.

! A recipe lists ingredients, measurements,
equipment, timings, and the sequence of
steps that need to be followed.

! In principle, anyone, in any kitchen, can
follow the recipe.

Example Recipe
1. Line a loose-bottomed quiche tin with

pastry, and bake until done.
2. Sauté vegetables and season to taste
3. Allow vegetables to cool a little, and stir

into previously-prepared egg mixture
4. Pour into the pastry case and bake until

firm, but not brown.
" 2 or 3 minutes before the quiche is done,

sprinkle cheese on top and return to oven to
brown.

36

What did you notice about the recipe?
! Is it an Algorithm? (A: Yes, B: No)
! Features of a Program?

37

1.Line a loose-bottomed quiche tin with
pastry, and bake until done.

2.Sauté vegetables and season to taste
3.Allow vegetables to cool a little, and stir

into previously-prepared egg mixture
4.Pour into the pastry case and bake until

firm, but not brown.
✦ 2 or 3 minutes before the quiche is

done, sprinkle cheese on top and
return to oven to brown.

38

Example: Driving Directions
! Turn right out of the driveway, cross César Chávez

Blvd.,

and turn right on 37
th

Ave.
! Proceed North to Gladstone.
! Turn left on Gladstone and continue down the hill to 22

nd

Ave.
! Turn left onto Bush, first right onto 21st Ave.
! Left on Powell; right on 21

st
; half-right onto Frontage

Road; take Bike path on left sidewalk
! Continue under the railway tracks on Bike Path
! Cross pedestrian crossing at end of Bike Path, and turn

right.
! Turn 180° left on bike path, and then continue on Gideon

Street
! …

39

Example: Driving Directions
! Turn right out of the driveway, right again on

César Chávez Blvd
! Turn left on Holgate, and continue to McLoughlin

Blvd.
! Exit onto Ross Island Bridge.
! After crossing bridge, turn right onto Corbett.
! Turn half-left onto Caruthers St.
! Turn Right onto 6th Ave
! Hot Lips Pizza will be on your left, on the corner

with Hall St.
! Park wherever you can.

40

Example: Driving Directions
! How to get from one place to another.
! A sequence of instructions indicating:

" Landmarks to look for;
" Junctions at which to turn;
" Distances to travel; etc

! Abstracts away from inessential details:
when to apply brakes, how fast to travel,
etc.

! Is mode of transportation an inessential
detail?

Definition: Algorithm
! An Algorithm is a sequence of

unambiguous instructions for solving a
problem, i.e., for obtaining a required
output for any legitimate input in a finite
time.

41

Properties of this Definition:
! each step must be unambiguous
! range of allowable inputs must be

specified
! process must terminate
! the same algorithm can be represented in

different ways
! there can be several algorithms for the

same problem
" they can differ dramatically in concept,

speed, and space requirements
42

Algorithms
! Which of the following are important

characteristics of an algorithm?
A. Instructions are unambiguous
B. Instructions work for some inputs
C. The algorithm depends on the size of the
input
D. Instructions work for all inputs
E. Algorithm always stops
F. Instructions are easy to understand

45

43

Example: GCD

the GCD of two non-negative integers, not both
zero, is the largest integer that divides both exactly.

Note: careful description of legal inputs

Euclid's Algorithm for GCD

44

Based on repeated application of  

GCD(m, n) = GCD(n, m mod n)

until (m mod n) = 0

euclid: anIntegerParameter
 "Levitin §1"
 | m n r |
 m ← self.
 n ← anIntegerParameter.
 [n = 0] whileFalse: [
 r ← m mod: n.
 m ← n.
 n ← r].
 ↑ m

Declare local
variables

Declare local
variables
bind inputs
to local
variables

Another Algorithm for GCD
! Consecutive integer checking algorithm

1. t ← min(m, n)
2. r1 ← m rem t.

3. if r1 = 0 then goto step 4 else goto step 6

4. r2 ← n rem t.

5. if r2 = 0 then return t

6. t ← t – 1
7. goto step 2

47

Compare these two algorithms
! Presentation style:

" A: Euclid’s is bad
" B: Consecutive is bad
" C: both are sort of OK
" D: both are bad

48

Consecutive
1. t ← min(m, n)
2. r

1
 ← m rem t.

3. if r
1
 = 0 then goto step 4 else goto step 6

4. r
2
 ← n rem t.

5. if r
2
 = 0 then return t

6. t ← t – 1
7. goto step 2

Euclid

Compare these two algorithms
! Valid inputs:

" A: Euclid’s specifies validity of inputs
" B: Consecutive specifies validity of inputs
" C: both specify validity of inputs
" D: neither specifies validity of inputs

48

Consecutive
1. t ← min(m, n)
2. r

1
 ← m rem t.

3. if r
1
 = 0 then goto step 4 else goto step 6

4. r
2
 ← n rem t.

5. if r
2
 = 0 then return t

6. t ← t – 1
7. goto step 2

Euclid

Compare these two algorithms
! Work required: in general

" A: Euclid’s does more work
" B: Consecutive does more work
" C: both do the same amount of work

48

Consecutive
1. t ← min(m, n)
2. r

1
 ← m rem t.

3. if r
1
 = 0 then goto step 4 else goto step 6

4. r
2
 ← n rem t.

5. if r
2
 = 0 then return t

6. t ← t – 1
7. goto step 2

Euclid

Compare these two algorithms
! Will they terminate on all valid inputs?

" A: Euclid’s always terminates
" B: Consecutive always terminates
" C: both always terminate
" D: both may run forever

48

Consecutive
1. t ← min(m, n)
2. r

1
 ← m rem t.

3. if r
1
 = 0 then goto step 4 else goto step 6

4. r
2
 ← n rem t.

5. if r
2
 = 0 then return t

6. t ← t – 1
7. goto step 2

Euclid

49

Common Features:
Descriptions of algorithms often involve:
! Sequential and Parallel Execution;
! Conditionals and Decision Making;
! Looping and Repetition;
! Assumed Details (procedures);
! etc…

There are corresponding features in many
programming languages.

50

How Good is an Algorithm?

Given a particular algorithm, we might ask:

! Does it solve the original problem?
! How fast is it?
! How much space does it require?
! Are there “better” ways to solve this

problem?

51

First Approach: Experiment!
! Implement the algorithm;
! Run it on some test data.

But if we can’t test all possible inputs:

! We might miss cases where the algorithm fails;
! We might miss cases where performance is

particularly good (or bad);
! Results will depend on implementation details.

Works well in some, but not all cases.

52

Second Approach: Analyze!

!Study the algorithm in general terms;

!Try to predict general trends in behavior:
" Correctness: Does it do the “right thing”?

" Performance: How long does it take? How
much memory does it use?

53

Correctness:
For an informal proof of correctness of Euclid’s algorithm,
we begin with the equality:

GCD(m, n) = GCD(n, m mod n)
Invariant: each time around the loop, GCD of the original
two inputs = GCD(m, n)
Variant: each time around the loop, n gets smaller, but
never becomes negative
Loop terminates  
when n = 0
GCD(m, 0) = m

54

Performance:
Execution time depends on:
! the size of the input data;
! the input data itself;
! the machine and implementation.

What exactly do we want to measure?
! A: CPU Cycles?
! B: Wall time?
! C: Number of machine instructions?
! D: Number of primitive operations?
! E: All of the above
! F: It doesn’t really matter

55

! Suppose we have a program that calculates f(x)
for some function f, and input x.

! We could write a program fTime(x) that calculates
the time taken to execute f(x); this might be
done by instrumenting the original code.

! In effect, we need to run the program for each
given input, and measure how long it takes.

! In most cases, this is too much information to
be useful!

56

! Solution: Abstract away from the specifics
of particular input data.

! We can get useful information from a
function

T(n) = time taken to process an input of “size” n

! It’s up to us to decide what would be a
good measure of “size”;

! We can make do with approximations
instead of precise timings.

57

Summary:
! The concept of an algorithm

! Dimensions of algorithm analysis

" Correctness

" Efficiency

! Approximating efficiency is OK

