
16 SUnit

[self run: result] ensure: [self resources do: [:each | each reset]].
↑result

Method 1.15: Passing the test result to the test suite
TestSuite»run: aResult

self tests do: [:each |
self changed: each.
each run: aResult].

The class TestResource and its subclasses keep track of their currently created

instances (one per class) that can be accessed and created using the class

method current. This instance is cleared when the tests have finished running

and the resources are reset.

The resource availability check makes it possible for the resource to be re-

created if needed, as shown in the class method TestResource class»isAvailable.

During the TestResource instance creation, it is initialized and the method

setUp is invoked.

Method 1.16: Test resource availability
TestResource class»isAvailable

↑self current notNil and: [self current isAvailable]

Method 1.17: Test resource creation
TestResource class»current

current isNil ifTrue: [current := self new].
↑current

Method 1.18: Test resource initialization
TestResource»initialize

super initialize.
self setUp

1.9 Some advice on testing

While the mechanics of testing are easy, writing good tests is not. Here is

some advice on how to design tests.

Feathers’ Rules for Unit tests. Michael Feathers, an agile process consul-

tant and author, writes:
3

3
See http://www.artima.com/weblogs/viewpost.jsp?thread=126923. 9 September 2005

http://www.artima.com/weblogs/viewpost.jsp?thread=126923


Some advice on testing 17

A test is not a unit test if:
• it talks to the database,
• it communicates across the network,
• it touches the file system,
• it can’t run at the same time as any of your other unit tests, or
• you have to do special things to your environment (such as

editing config files) to run it.
Tests that do these things aren’t bad. Often they are worth writing,
and they can be written in a unit test harness. However, it is im-
portant to be able to separate them from true unit tests so that we
can keep a set of tests that we can run fast whenever we make our
changes.

Never get yourself into a situation where you don’t want to run your

unit test suite because it takes too long.

Unit Tests vs. Acceptance Tests. Unit tests capture one piece of functional-

ity, and as such make it easier to identify bugs in that functionality. As

far as possible try to have unit tests for each method that could possibly

fail, and group them per class. However, for certain deeply recursive

or complex setup situations, it is easier to write tests that represent a

scenario in the larger application; these are called acceptance tests or

functional tests. Tests that break Feathers’ rules may make good ac-

ceptance tests. Group acceptance tests according to the functionality

that they test. For example, if you are writing a compiler, you might

write acceptance tests that make assertions about the code generated

for each possible source language statement. Such tests might exercise

many classes, and might take a long time to run because they touch the

file system. You can write them using SUnit, but you won’t want to run

them each time you make a small change, so they should be separated

from the true unit tests.

Black’s Rule of Testing. For every test in the system, you should be able

to identify some property for which the test increases your confidence.

It’s obvious that there should be no important property that you are not

testing. This rule states the less obvious fact that there should be no test

that does not add value to the system by increasing your confidence

that a useful property holds. For example, several tests of the same

property do no good. In fact, they do harm in two ways. First, they

make it harder to infer the behaviour of the class by reading the tests.

Second, because one bug in the code might then break many tests, they

make it harder to estimate how many bugs remain in the code. So,

have a property in mind when you write a test.



18 SUnit

1.10 Chapter summary

This chapter explained why tests are an important investment in the future
of your code. We explained in a step-by-step fashion how to define a few
tests for the class Set. Then we gave an overview of the core of the SUnit
framework by presenting the classes TestCase, TestResult, TestSuite and TestRe-
sources. Finally we looked deep inside SUnit by following the execution of a
test and a test suite.

• To maximize their potential, unit tests should be fast, repeatable, in-
dependent of any direct human interaction and cover a single unit of
functionality.

• Tests for a class called MyClass belong in a class called MyClassTest,
which should be introduced as a subclass of TestCase.

• Initialize your test data in a setUp method.

• Each test method should start with the word “test”.

• Use the TestCase methods assert:, deny: and others to make assertions.

• Run tests using the SUnit test runner tool (in the tool bar).


