# MP3s - Where Did All the Bits Go? 

Wu-chi Feng<br>Intel Systems and Networking Lab<br>Portland State University

## Digital Music

- The gold standard - CD Audio format
* 44,100 samples per second (Hz)
* 16-bit samples
* 2 channels for stereo
* 1.41 Mbits / second
- MP3 format
* 64 - 256 kbits / second
*Where did all the bits go?


## Background

- Lossless compression
* Examples: WinZip, gzip, etc...
* 2-4 :1 compression maximum
* Audio does not compress and will yield
~706 kbits / second
- Lossy compression
* Purposely throw away data
* For audio, images, and video - minimized perceived loss in playback / display


## Background

$\square$ Sound can sometimes be represented more compactly


## Background

${ }_{\square}$ Generalizing to audio


## MP3 Compression

- Major Components
* Frequency domain transform
* Remove signals that are perceptually irrelevant
* Entropy encoding


## MP3 Compression

- Frequency domain transform



## MP3 Compression

- Remove signals that cannot be heard Threshold of Quiet


Portland State
UNIVERSITY

## MP3 Compression

- Remove signals that cannot be heard Threshold of Quiet


Portland State
UNIVERSITY

## MP3 Compression

$\square$ Remove signals that cannot be heard Threshold of Quiet


## MP3 Compression

$\square$ Remove signals that cannot be heard Frequency Masking


Portland State
UNIVERSITY

## MP3 Compression

$\square$ Remove signals that cannot be heard Frequency Masking


Portland State
UNIVERSITY

## MP3 Compression

$\square$ Remove signals that cannot be heard Frequency Masking


## MP3 Compression

$\square$ Remove signals that cannot be heard Frequency Masking


## MP3 Compression

- Remove signals that cannot be heard Temporal Masking



## MP3 Compression

$\square$ Remove signals that cannot be heard Temporal Masking


Portland State
UNIVERSITY

## MP3 Compression

$\square$ Remove signals that cannot be heard Temporal Masking


Portland State
UNIVERSITY

## MP3 Compression

$\square$ Remove signals that cannot be heard Temporal Masking


## MP3 Compression

$\square$ Entropy Encoding

* Employ standard Lossless compression on remaining signal



## Summary

- MP3 compression yields 10:1 compression fairly easily
* Uses frequency domain transform of data
* Removes signals we cannot hear to minimize perceptual loss
* Employs entropy encoding on remaining frequency data
-Interested?
* Fall Quarters - Introduction to Multimedia Networking

4A1

## My Words of Wisdom

- 3 deep stack maximum
* Organize so that the audience only needs to keep track of two to three things at a time
* Need to summarize and finish each section to allow audience to "pop" it off of their stack
- Just because you know it doesn't mean it has to go in the presentation
* Pitch presentation at right level of audience and for the right length of time
- Never go over time
* Be mindful of where you are in your talk at all times
- Know how to adjust / drop information from you talk
* Just because you practiced it in 40 minutes does not mean it will be delivered in 40 minutes.

4A1

4A1

## MP3 Compression

$\square$ Remove signals that cannot be heard Threshold of Quiet


## MP3 Compression

$\square$ Remove signals that cannot be heard Threshold of Quiet


