Squeak By Example

Andrew Black Stéphane Ducasse

Oscar Nierstrasz Damien Pollet

with Damien Cassou and Marcus Denker

Version of 2007-09-05

ii

This book is available as a free download from scg.unibe.ch/SBE.

Copyright © 2007 by Andrew Black, Stéphane Ducasse, Oscar Nierstrasz and Damien
Pollet.

The contents of this book are protected under Creative Commons Attribution-ShareAlike
3.0 Unported license.

You are free:

to Share — to copy, distribute and transmit the work

to Remix — to adapt the work
Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of
the work).

Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under the same, similar or a compatible license.

¢ For any reuse or distribution, you must make clear to others the license terms of
this work. The best way to do this is with a link to this web page: creativecommons.
org/licenses/by-sa/3.0/

¢ Any of the above conditions can be waived if you get permission from the
copyright holder.

¢ Nothing in this license impairs or restricts the author’s moral rights.

Your fair dealing and other rights are in no way affected by the
above. This is a human-readable summary of the Legal Code (the
BY SA

full license): creativecommons.org/licenses/by-sa/3.0/legalcode

scg.unibe.ch/SBE
creativecommons.org/licenses/by-sa/3.0/
creativecommons.org/licenses/by-sa/3.0/
creativecommons.org/licenses/by-sa/3.0/legalcode

Contents

Preface

I Getting Started

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11

A Quick Tour of Squeak
Getting Started
The World Menu.

Saving, Quitting and Restarting a Squeak Session .

Workspaces and Transcripts
Keyboard shortcuts.
SqueakMap

The System Browser
Finding Classes .

Finding Methods

Defining a new Method .
Chapter Summary .

A First Application
The Quinto Game

iii

xiii

O 0 W W

.12
. 14
. 16
. 18
. 20
.22
.24
. 30

31

.31

v

2.2
23
24
25
2.6
27
2.8
29
2.10

3.1
3.2
3.3
34
3.5
3.6
3.7
3.8

41
4.2

4.3

Creating a new class Category .
Defining the Class SBECell .
Adding Methods to a Class .
Inspecting an Object

Defining the Class SBEGame
Organizing Methods into Protocols .
Let’s Try Our Code . .
Saving and Sharing Smalltalk Code .
Chapter Summary .

Syntax in a Nutshell
Syntactic Elements .
Pseudo-variables
Message Sends
Method Syntax .
Block Syntax .

Conditionals and Loops in a Nutshell .

Primitives and Pragmas .

Chapter Summary .

Understanding Message Syntax
Identifying Messages .

Three Kinds of Messages.
Unary Messages .

Binary Messages.

Keyword messages .

Message Composition.
Parentheses First.

From Left to Right .

Contents

.32
. 33
. 35
. 38
. 39
. 43
. 47
. 50
. 55

57
. 57
. 61
. 62
. 63
. 65
. 66
. 68
. 69

71
.71
. 74
. 74
.75
. 76
. 76
. 80
. 81

44

4.5
4.6
4.7

II

51
52
5.3

54

55
5.6

Arithmetic Inconsistencies .

Hints for Identifying Keyword Messages .

Parentheses or not?.
When to use [] or ().
Expression Sequences .
Cascaded Messages
Chapter Summary .

Developing in Squeak

The Smalltalk Object Model

The Rules of the Model

Everything is an Object

Every object is an instance of a class.
Instance variables

Methods. e
The Instance Side and the Class Side
Class Methods

Class Instance Variables .

Every class has a superclass.
Abstract Methods and Abstract Classes

Traits .

Everything Happens by Message Sending

Method lookup follows the inheritance chain

Method lookup .
Returning self.
Overriding and Extension

Self sends and super sends .

. 81
. 84
. 84
. 85
. 86
. 86
. 87

89

91

.91
. 92
. 93
. 93
. 95
. 95
. 97
. 97
.101
.102
104
105
107
.108
.109
110
11

vi

57

5.8

6.1
6.2

6.3

6.4

6.5
6.6
6.7
6.8
6.9
6.10

Message not Understood.
Shared Variables .

Global Variables..

Class Variables

Pool Variables.

Chapter Summary .

The Squeak Programming Environment
Overview .

The System Browser

The Button Bar

The Browser Menus

Other Class Browsers .

Browsing Programatically .

Summary .

Monticello .

Packages: Declarative Categorization of Squeak Code .

Basic Monticello .

The Inspector and Explorer .

The Inspector .

The Object Explorer

The Debugger.

The Process Browser .

Finding Methods

Change Sets and the Change Sorter .
The File List Browser .

In Smalltalk, You Can’t Lose Code
How to get your code back .

Contents

113
115
115
117
.120
121

123
124
125
129
138
.140
141
141
142
142
144
150
151
153
154
164
.166
167
170
173
173

6.11

7.1
7.2
7.3
74

7.5

7.6

7.7

7.8

Chapter Summary .

SUnit

Introduction .

Why Testing is Important

What makes a Good Test?

SUnit by Example .

Step 1: Create the test class .

Step 2: Initialize the test context .
Step 3: Write some test methods .
Step 4: Run the tests

Step 5: Interpret the Results.

The SUnit Cook Book .

Other assertions .

Running a Single Test .

Running all the Tests in a Test Class .

Must I Subclass TestCase?

The SUnit Framework .
TestCase.

TestSuite

TestResult .

TestResource .

Advanced Features of SUnit
Assertion Description Strings .
Logging Support.

Continuing after a Failure

The Implementation of SUnit .

Running One Test .

vii

174

177

177
178
179
181
181
181
182
.183
.185
.185
186
187
187
187
.188
.188
.189
.189
.189
191
191
191
191
192
192

viii

79
7.10

8.2

8.3
8.4
8.5
8.6

9.1
9.2
9.3

Running a TestSuite .
Some Advice on Testing .

Chapter Summary .

Basic Classes

Object

Printing . .
Identity and Equality .
Class membership .
Copying.

Debugging .

Error handling

Testing .

Initialize release .
Numbers

Magnitude .

Number .

Float .

Fraction .

Integer .

Characters .

Strings

Booleans

Chapter Summary .

Collections
Introduction .
The Varieties of Collection .

Implementations of Collections

Contents

194
.196
.197

199
.199
.200
.203
204
.205
.207
.208
.209
.209
210
.210
211
213
213
213
214
215
217
.219

221
221
222
.226

94

9.5

9.6
9.7

10

10.1
10.2
10.3

10.4

Examples of Key Classes .

Array.

OrderedCollection .

Interval .

Dictionary .

Set .

SortedCollection .

String.

Collection Iterators .

Iterating (do:) .

Collecting results (collect:)
Selecting and Rejecting Elements .
Identifying an element with detect:
Accumulating results with inject:into:.
Other messages .

Some Hints for using Collections .

Chapter Summary .

Streams

Two Sequences of Elements .
Streams vs. Collections
Streaming over Collections .
Reading Collections

Writing to Collections .

Reading and writing at the same time .

Using Streams for File Access .
Creating File Streams .

Binary Streams

ix

228
229
.231
.232
.232
.234
.235
.237
.240
.240
241
.243
.243
.243
244
.245
.246

249

.249
.250
.252
.252
.255
257
.261
.261
.263

10.5

11
11.1
11.2
11.3
114
11.5
11.6
11.7
11.8
11.9
11.10

Chapter Summary .

Morphic

The History of Morphic .
Manipulating morphs .
Composing Morphs

Creating and Drawing Your Own Morphs
Mouse and Keyboard Interaction.
Interactors .

Drag-and-drop

A Complete Example .

More About the Canvas .
Chapter Summary .

III Advanced Squeak

12

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8

Classes and Metaclasses
Rules for Classes and Metaclasses
Revisiting the Smalltalk Object Model .

Every Class is an Instance of a Metaclass .

Contents

.264

267
.267
.269
.270
271
273
276
277
279
284
.285

287

289
.289
.290
.293

The Metaclass Hierarchy Parallels the Class Hierarchy . .294

Every Metaclass Inherits from Class and Behavior .

Every metaclass is an instance of Metaclass

The Metaclass of Metaclass is an Instance of Metaclass .

Chapter Summary .

.296
.300
301
.302

xi

IV Appendices 305

A Frequently Asked Questions 307
Al Gettingstarted307
A2 Collections.307
A3 Browsing thesystem308
A4 Using Monticello and SqueakSource310
A5 Tools.31
A.6 Regular Expressions and Parsing.312

Bibliography 313

Index 314

xiii

Preface

What is Squeak?

Squeak is a modern, open source, fully-featured implementation of
the Smalltalk programming language and environment.

Squeak is highly portable — even its virtual machine is written
entirely in Smalltalk, making it easy to debug, analyze, and change.
Squeak is the vehicle for a wide range of innovative projects from
multimedia applications and educational platforms to commercial
web development environments.

Who should read this book?

This book presents the various aspects of Squeak, starting with the
basics, and proceeding to more advanced topics.

This book will not teach you how to program. The reader should
have some familiarity with programming languages. Some back-
ground with object-oriented programming would be helpful.

This book will introduce the Squeak programming environment,
the language and the associated tools. You will be exposed to com-
mon idioms and practices, but the focus is on the technology, not on
object-oriented design. Wherever possible, we will show you lots of
examples. (We have been inspired by Alec Sharp’s excellent book on

Xiv Preface

Smalltalk!.)

There are numerous other books on Smalltalk freely available on
the web but none of these focuses specifically on Squeak. See for
example: stephane.ducasse.free.fr/FreeBooks.html

A word of advice

Do not be frustrated by parts of Smalltalk that you do not immediately
understand. You do not have to know everything! Alan Knight
expresses this principle as follows?:

Try not to care. Beginning Smalltalk programmers
often have trouble because they think they need to
understand all the details of how a thing works
before they can use it. This means it takes quite
a while before they can master Transcript show: 'Hello
World'. One of the great leaps in OO is to be able to
answer the question “How does this work?” with “I
don’t care”.

An Open Book

This book is an open book in the following senses:

* The content of this book is released under the Creative Com-
mons Attribution + ShareAlike (by-sa) license. In short, you
are allowed to freely share and adapt this book, as long as you
respect the conditions of the license available at the following
URL.: creativecommons.org/licenses/by-sa/3.0/.

1 Alec Sharp, Smalltalk by Example. McGraw-Hill, 1997 (URL: http/stephane.ducasse.
free.fr/FreeBooks/ByExample/>.
2www.surfscranton.c:om/architecture/KnightsPrinciples.htm

stephane.ducasse.free.fr/FreeBooks.html
creativecommons.org/licenses/by-sa/3.0/
http://stephane.ducasse.free.fr/FreeBooks/ByExample/
http://stephane.ducasse.free.fr/FreeBooks/ByExample/
www.surfscranton.com/architecture/KnightsPrinciples.htm

X0

¢ This book just describes the core of Squeak. Ideally we would
like to encourage others to contribute chapters on the parts of
Squeak that we have not described. If you would like to partici-
pate in this effort, please contact us. We would like to see this
book grow!

More details can be found on the web site for this book: scg.unibe.
ch/SBE.

The Squeak community

The Squeak community is friendly and active. Here is a short list of
resources that you may find useful:

* www.squeak.org is the main web site of Squeak. (Do not confuse it
with www.squeakland.org which is dedicated to the eToy environ-
ment built on top of Squeak but whose audience is elementary
school teachers.)

* www.squeaksource.com is the equivalent of sourceforge for Squeak
projects.

About mailing-lists. There are a lot of mailing-lists and sometimes
they can be just a little bit too active. If you do not want to get flooded
by mail but would still like to participate we suggest you to use
news.gmane.org or www.nabble.com/Squeak-f14152.html to browse the lists.

You can find the complete list of Squeak mailing-lists at lists.
squeakfoundation.org/mailman/listinfo.

* Note that Squeak-dev refers to the developers’ mailing-list, which
can be browsed here:
news.gmane.org/gmane.comp.lang.smalltalk.squeak.general

* Newbies refers to a friendly mailing-list for beginners where any
question can be asked:
news.gmane.org/gmane.comp.lang.smalltalk.squeak.beginners

scg.unibe.ch/SBE
scg.unibe.ch/SBE
www.squeak.org
www.squeakland.org
www.squeaksource.com
news.gmane.org
www.nabble.com/Squeak-f14152.html
lists.squeakfoundation.org/mailman/listinfo
lists.squeakfoundation.org/mailman/listinfo
news.gmane.org/gmane.comp.lang.smalltalk.squeak.general
news.gmane.org/gmane.comp.lang.smalltalk.squeak.beginners

xvi Preface

(There is so much to learn that we are all beginners in some
aspect of Squeak!)

IRC. Have a question that you need answered quickly? Would you
like to meet with other squeakers around the world? A great place
to participate in longer-term discussions is the IRC channel on the
“#squeak” channel at irc.freenode.net. Stop by and say “Hi!”

Other sites. There are several websites supporting the Squeak com-
munity today in various ways. Here are some of them:

* people.squeakfoundation.org is the site of SqueakPeople, which is a
kind of “advogato.org” for squeakers. It offers articles, diaries and
an interesting trust metric system.

® planet.squeak.org is the site of PlanetSqueak which is an RSS ag-
gregator. It is good place to get a flood of squeaky things. This
includes the latest blog entries from developers and others who
have an interest in Squeak.

* www.frappr.com/squeak is a site that tracks Squeak users around the
world.

Examples and Exercises

We make use of two special conventions in this book.

We have tried to provide as many examples as possible. In particu-
lar, there are many examples that show a fragment of code which can
be evaluated. We use the symbol — to indicate the result that
you obtain when you select an expression and print it:

3+4 —— 7 'ifyou select 3+4 and 'print it', you will see 7"

The second convention that we use is to display the icon % to
indicate when there is something for you to do:

1 Go ahead and read the next chapter!

e

irc.freenode.net
people.squeakfoundation.org
advogato.org
planet.squeak.org
www.frappr.com/squeak

Acknowledgments

We would like to thank Hilaire Fernandes and Serge Stinckwich who al-
lowed us to translate parts of their columns on Smalltalk, and Damien
Cassou for contributing the chapter on streams.

We also thank Tim Rowland for the use of the Squeak logo, and
Frederica Nierstrasz for the original cover art.

Part1

Getting Started

Chapter 1

A Quick Tour of Squeak

In this chapter we will give you a high-level tour of Squeak to help
you get comfortable with the environment. There will be plenty of
opportunities to try things out, so it would be a good idea if you have
a computer handy when you read this chapter.

We will use this icon: [to mark places in the text where you
should try something out in Squeak. In particular, you will fire up
Squeak, learn about the different ways of interacting with the system,
and discover some of the basic tools. You will also learn how to define

a new method, create an object and send it messages.

1.1 Getting Started

Squeak is available as a free download from www.squeak.org. There are
three parts that you will need to download, consisting of four files (see
Figure 1.1).

1. The virtual machine (VM) is the only part of the system that is
different for each operating system and processor. Pre-compiled
virtual machines are available for all the major computing en-
vironments. In Figure 1.1 we see the VM for the Mac is called

www.squeak.org

4 A Quick Tour of Squeak

[W
& » TN - (\ /) -
S /)
" (\0 &) » m 00 Squeak3.g m Squeak3.9
queak 3.8.15betalU.app LX3 SqueakV3g.sources final-7067.image e final-7067.changes
e e =X

sources changes

Virtual Machine Shared Sources User specific system files

Figure 1.1: The Squeak download files.

Squeak 3.8.15betalll.app.

2. The sources file contains the source code for all of the parts of
Squeak that don’t change very frequently. In Figure 1.1 it is
called SqueakV39.sources. Note that the file SqueakV39.sources
is only for versions 3.9 and later of Squeak. For earlier versions,
use a sources file corresponding to the main version i.e., 3.0 for
squeak 3.0,... up to 3.8.

3. The current system image is a snapshot of a running Squeak
system, frozen in time. It consists of two files: an .image file,
which contains the state of all of the objects in the system (in-
cluding classes and methods, since they are objects too), and
a .changes file, which contains a log of all of the changes to the
source code of the system. We see that we have installed the
Squeak 3.9-final-7067 image and sources files.

) Download and install Squeak on your computer.

= S

As you work in Squeak, the image and changes files are modified,
so you need to make sure that they are writable. Always keep these
two files together. Never edit them directly with a text editor, as
Squeak uses them to store the objects you work with and to log the
changes you make to the source code. It is a good idea to keep a
backup copy of the downloaded image and changes files so you can
always start from a fresh image and reload your code.

The sources file and the VM can be read-only — they can be shared
between different users. All of these files can be placed in the same
directory, but it is also possible to put the Virtual Machine and sources
file in separate directory where everyone has access to them. Do

Getting Started 5

whatever works best for your style of working and your operating
system.

0ee Squeak3.9-final-7067.image

x B Workspace
Welcome to Squeak - an open Smalltalk system. =

What is this?

Squeak is an open source implementation of Smalltalk with an expansive and rapidly
developing world of objects included.

Squeak includes a fully integrated development environment, networking, sound
synthesis and sampling, speech synthesis, 2 & 3D graphics, arithmetic and data
structure libraries.

The SqueakMap tool (click on -> “SMLoader open" to start it) tool provides easy access
toa large range of packages and projects.

Even the tools to produce the its own virtual machine (VM) are available so that you
can build your own - and most of the VM is written in Smalltalk. Not only is all the
smalltalk source code included and changeable at will, it is also completely open and
free. The Squeak system image runs bit-identically across all platforms, and VMs are
available for just about every computer and operating system available.

To find out exactly which version of Squeak this is click on -> "SystemVersion

current” T
o
Further Documentation 2 o
1
x B Workspace 20 x B Workspace -

Welcome to the finale wersion of 3.9 of 7 of November 2006 fere sre some of the <hanges that have been done in 33 %
You will find more recent versions at hitpt//¥rvy squeak.org/
This image will be used to produce other distributions such as a developer image and a fun With 06n
squeak smage.

- browser spesdup.
We hoge that you will teally appreciate this version and that Squeak will help you making your ~ come green tests
projects reality,

You can alto participate o Squeak at differsnt Kinds of levels. This can beas simpleast ||| |l
- asking questions in the beginner List (beginnersalists.squeskioundation,ore) - class vename fix
or in the dev List {squeak-devlists squeskfoundation.orz)
- ansvering questions 2065
- finding and reporting bugs at htp/ugsimparade [2%
 fizing them, testing fixes and <ommenting them ~ eval fix
- writing tests for uncoversd parts ~ fomt it
- helping for the website
- oreating new cool products, frameworks, applications in squeaic 064
- writing artcles... b T
- fix MC repository

We vish you a Lot of fun and ve veuld like 1o thanke all the fix color of SU0
pecsons st participsted to make this relsase & really good one.
We know who you aret 706

Stephane Ducasse and Marcus Denker o G o

Figure 1.2: A fresh Squeak image.

Launching. To start Squeak, do whatever your operating system
expects: drag the .image file onto the icon of the virtual machine, or
double-click the .image file, or at the command line type the name of
the virtual machine followed by the path to the .image file. In general
it is safer to drag and drop the image onto the virtual machine, so you
are sure that the image is executed by the VM you want. When you
have multiple VMs installed on your machine the operating system
may not automatically pick the right one. So if you have problems
when double-clicking on the image, try dragging and dropping the
image onto the virtual machine.

Once Squeak is running, you should see a single large window,
possibly containing some open workspace windows (see Figure 1.2),

6 A Quick Tour of Squeak

and it’s not obvious how to proceed! You will notice that there is no
menu bar, or at least not a useful one. Instead, Squeak makes heavy
use of context-dependent pop-up menus.

o) Start Squeak. You can close any open workspaces by clicking on the x

e

in the top left corner of the workspace window.

First Interaction. A good place to get started is the world menu
shown in Figure 1.3 (a).

g Click with the mouse on the background of the main window to show

e

the world menu, then choose open ... >workspace fo create a new workspace.

x B Workspace @0
X Word @ e -
Preferences & Services » Aaset font... (&)
e propet st arylan,)
 jump o project.. [E)set slignment,.. {u)
P save project on file. __make project link (P}
Dload projest from file.., (@ tind..o)
undo "move SystemWindow" (z) (@ tind again (z)
restore display (r) " set search string (b} [+
s v = §®do again G}
windows,
changes ?\.mdu @
& help... [loopy (e
@ sppearance P out (0
do.
L4
2 objects (a) [t_\’ B)
Vanew marph... Picesc 6 @ © 0
£ authoring twols Bhdo it (@) % B Workspace @o
fiage. @)mpm “ o5 (@) | [fime nov] g
projecis..
23 print PS 1o file.., () explore it (1)
& debug. @ debuz it
sare i
aceept (s}
Foave s 3 cancel 0) ® @
G save ac new Tersion e = 1
s atan e e
SNaun o @
gor 00000 : Forkspace
(a) The world (b) The contextual (c) The morphic halo
menu menu

Figure 1.3: The world menu (brought up by the red mouse button),
a contextual menu (yellow mouse button), and a morphic halo (blue
mouse button).

Squeak was originally designed for a computer with a three button
mouse. If your mouse has fewer than three buttons, you will have to
press extra keys while clicking the mouse to simulate the extra buttons.
A two-button mouse works quite well with Squeak, but if you have
only a single-button mouse, you should seriously consider buying a

Getting Started 7

two-button mouse with a clickable scroll wheel: it will make working
with Squeak much more pleasant.

Squeak avoids terms like “left mouse click” because different com-
puters, mice, keyboards and personal configurations mean that dif-
ferent users will need to press different physical buttons to achieve
the same effect. Instead, the mouse buttons are labeled with colors.
The mouse button that you pressed to get the “World” menu is called
the red button; it is most often used for selecting items in lists, select-
ing text, and selecting menu items. When you start using Squeak, it
can be surprisingly helpful to actually label your mouse, as shown in
Figure 1.4.

The yellow button is the next most used
button; it is used to bring up a contextual
menu, that is, a menu that offers differ-
ent sets of actions depending on where the
mouse is pointing; see Figure 1.3 (b).

N Type Time now in the workspace. Now
click the yellow button in the workspace. Select
print it.

Finally, there is the blue button, which
is used to activate the “morphic halo”, an
array of handles that are used to perform
operations on the on-screen objects them-
selves, such as rotating them or resizing
them; see Figure 1.3 (c). If you let the mouse
linger over a handle, a help balloon will ex- Figure 1.4: The author’s
plain its function. mouse. Clicking the

scroll wheel activates
N4 Click the blue button on the workspace. the blue button.
Grab the @) handle near the bottom left corner
and drag it to rotate the workspace.

We recommend that right-handed peo-
ple configure their mouse to put the red button on the left side of their
mouse, the yellow button on the right, and use a clickable scroll wheel,
if one is available, for the blue button. If you don’t have a clickable

8 A Quick Tour of Squeak

scroll wheel, then you can get the Mophic halo by holding down the
alt or option key while clicking the red button. If you are using a Macin-
tosh without a second mouse button, you can simulate one by holding
down the g key while clicking the mouse. However, if you are going
to be using Squeak at all often, we recommend investing in a mouse
with at least two buttons.

You can configure your mouse to work the way you want by using
the preferences of your operating system and mouse driver. Squeak
has some preferences for customising the mouse and the meta keys on
your keyboard. You can find the preference browser in the open item
of the World menu. In the preference browser, the general category
contains an option swapMouseButtons that switches the yellow and
blue functions (see Figure 1.5). The keyboard category has options to
duplicate the various command keys.

1 Open the preference browser and find the swapMouseButtons option

e

using the search box.

1.2 The World Menu

N Red-click again on the Squeak background.

You will see the World menu again. Most Squeak menus are not
modal; you can leave them on the screen for as long as you wish by
clicking the push pin icon in the top-right corner. Do this. Also, notice
that menus appear when you click the mouse, but do not disappear
when you release it; they stay visible until you make a selection, or
until you click outside of the menu. You can even move the menu
around by grabbing its title bar.

The world menu provides you a simple means to access many of
the tools that Squeak offers.

¢ Have a closer look at the world>open ... meni.

You will see a list of several of the core tools in Squeak, including
the system browser (one of many available class browsers) and the
workspace. We will encounter most of them in the coming chapters.

Saving, Quitting and Restarting a Squeak Session

% B Preference Browser o

default | zave load | save to disk load from disk | theme... help

Search preferences for:
bwap

Categories Preferefices

detug = duplicateallControlandAliEevys [®] enabled [local [
docking bars = R A
Fileout duplicateControlAndAltEevys [enatled []1ocal
flaps projectsSentTolisk [enatbled []1ocal

lglefllerﬁl swapControlAndaliEevs [ensbled []local
alos

htip proxy swapMouseButtons [enatled []1ocal
Ke';:jpoar'd if true. sSWaps mause butiais £ ard 3

media

menns more
morphic

performance

printing

projects

putlishing

scripting

zorolling

SECUrity

setrvices

updates

window colors

writidawe

-- geatrch results --

Figure 1.5: The Preference Browser.

1.3 Saving, Quitting and Restarting a Squeak
Session

N4 Bring up the world menu. Now select new morph ... and navigate to
from alphabetical list> A-C > BlobMorph. You now have a blob “in hand”. Put
the blob down (by red-clicking) somewhere. It will start to move.

N1 Select World>save as ... , and enter the name “SBE”. Now click on
the Accept(s) button. Now select World>save and quit.

Now if you go to the location where the original image and
changes files were, you will find two new files called “SBE.image”

10 A Quick Tour of Squeak

x| open.. @

<clagz browser
workspace

file list

rackage pane browser
DrOcess browser
method finder
message names

simple change sorter
dual change sorter
file...

tranzcript (1)

Imagze Browset
Language Editor
Language Editor for...
Monticelln Browser
Monticello Configurations
Preference Browser
Setvices Browser
SqueakMagp: Package Loader
Tezt Runtier

mwe project

morphic project

Figure 1.6: The open ... dialogue of the world menu.

New File Name?

SEE]

Acceptis) Cancelil)

Figure 1.8: The saveas... dia-

Figure 1.7: An instance of Blob- logue

Morph.

and “SBE.changes” that represent the working state of the Squeak
image at the moment before you told Squeak to save and quit. If you
wish, you can move these two files anywhere that you like on your
disk, but if you do so you may (depending on your operating system)
need to also move, copy or link to the virtual machine and the .source
file.

Mg Start up Squeak from the newly created “SBE.image” file.

.=

Now you should find yourself in precisely the state you were when
you quit Squeak. The blob is there again and it continues to move
from where it was when you left it.

Saving, Quitting and Restarting a Squeak Session 11

When you start Squeak for the first time, the Squeak virtual ma-
chine loads the image file that you provide. This file contains a snap-
shot of a large number of objects, including a vast amount of pre-
existing code and a large number of programming tools (all of which
are objects). As you work with Squeak, you will send messages to
these objects, you will create new objects, and some of these objects
will die and their memory will be reclaimed (i.e., garbage-collected).

When you quit Squeak, you will normally save a snapshot that
contains all of your objects. If you save normally, you will overwrite
your old image file with the new snapshot. Alternatively you may
save the image under a new name, as we just did.

In addition to the .image file, there is also a .changes file. This file
contains a log of all the changes to the source code that you have made
using the standard tools. Most of the time you do not need to worry
about this file at all. As we shall see, however, the .changes file can
be very useful for recovering from errors, or replaying lost changes.
More about this later!

The image that you have been working with is a descendant of the
original Smalltalk-80 image created in the late 1970s. Some of these
objects have been around for decades!

You might think that the image is the key mechanism for storing
and managing software projects, but you would be wrong. As we
shall see very soon, there are much better tools for managing code and
sharing software developed by teams. Images are very useful, but you
should learn to be very cavalier about creating and throwing away
images, since tools like Monticello offer much better ways to manage
versions and share code amongst developers.

¢ Blue-click on the Blob.

You will see a collection of colored dots that are collectively called
the blob’s morphic halo. Each dot is called a handle. Click in the pink
handle containing the cross; the blob should go away. (You may have
to try several times as the Blob squirms around and tries to get away
from the mouse.)

12 A Quick Tour of Squeak

066 SBE.image

x B Transcript @0

Figure 1.9: The Squeak Tools bar.
1.4 Workspaces and Transcripts

N Close all open windows. Click on the Tools tab at the far right of the
Squeak environment to open the Tools flap.

You will see icons for some of the key tools in Squeak (Figure 1.9).
Drag out a transcript and a workspace.

1 Position and resize the transcript and workspace windows so that the

==

workspace just overlaps the transcript.

You can resize windows either by dragging one of the corners, or
by blue-clicking the window to bring up the morphic handles, and
dragging the yellow, bottom right handle.

Workspaces and Transcripts 13

At any time only one window is active; it is in front and has its
label highlighted. The mouse cursor must be in the window in which
you wish to type.

The transcript is an object that is often used for logging system
messages. It is a kind of “system console”. Pay attention that the
transcript is terribly slow, so if you keep it open and write to it certain
operations can become 10 times slower. In addition the transcript is
not thread-safe so it may confuse you when working with concurrent
programming.

Workspaces are useful for typing snippets of Smalltalk code that
you would like to experiment with. You can also use workspaces
simply for typing arbitrarily text that you would like to remember,
such as to-do lists or instructions for anyone who will use your image.

el Type the following text into the workspace:

e

Transcript show: 'hello world'; cr.

Try double-clicking in the workspace at various points in the text
you have just typed. Notice how an entire word, entire string, or the
whole text is selected, depending on where you click.

N Select the text you have typed and yellow-click. Select do it (d).

Notice how the text “hello world” appears in the transcript window
(Figure 1.10). Do it again.

You have just evaluated your first Smalltalk expression! What you
just did was send the message show: 'hello world' to the Transcript object,
and then you also sent it the message cr (carriage return). The Transcript
then decided what to do with this message, that is, it looked up its
methods for handling show: and cr messages and reacted appropriately.

If you talk to Smalltalkers for a while, you will quickly notice
that they generally do not use expressions like “call an operation” or
“invoke a method”, but instead they will say “send a message”. This
reflects the idea that objects are responsible for their own actions, so
you should never tell an object what to do —instead you ask it politely
by sending it a message. The object selects the method for responding
to your message, not you!

14 A Quick Tour of Squeak

Aaget font,.. (k)
zet ztyle... (K}
E‘E zet alignment... (u)
make project link (P}
(@ find...ir) @m0
| E’jfind again (g) F——
zet search string (h) A
ﬁodo again {j)
@yundo (z)

hello world [Cleopy (e}

o cut (x)

[paste ()
Cipaste...

% B Workspace

Tranzcript show: ‘hello world': or.

x B Transcript

¥ do it ()
By print it (p) v

(l inspect it (1)
(L explore it (1)
I @ detug it

@ accept (s)
Tl | 3 cancel (1)

show bytecodes
<opy himl
MOre...

Figure 1.10: “Doing” an expression

1.5 Keyboard shortcuts

If you want to evaluate an expression, you do not always have to
bring up the yellow-button menu. Instead, you can directly use key-
board shortcuts. These are the parenthesized expressions in the menu.
Depending on your platform, you may have to press one of the modi-
fier keys (control, ALT, command, or meta). (We will indicate these
generically as CMD—key.)

¢! Evaluate the expression in the workspace again, but using the keyboard

shortcut: CMD—d.

In addition to doit, you will have noticed printit, inspectit and
explore it. Let’s have a quick look at each of these.

N Type the expression 3 +4 into the workspace. Now doit with the
keyboard shortcut.

Keyboard shortcuts 15

Do not be surprised if you saw nothing happen! What you just did
is send the message + with argument 4 to the number 3. Normally the
result 7 will have been computed and returned to you, but since the
workspace did not know what to do with this answer, it simply threw
the answer away. If you want to see the result, you should print it
instead. printit actually compiles the expression, executes it, sends the
message printString to the result, and displays the resulting string.

e

g Select 3+4 and printit (CMD—p).

This time we see the result we expect (Figure 1.11).

®x B WOI‘kSpaCE =0
F+d T :

Figure 1.11: “Print it” rather than “do it”.

3+4 — 7

We use the notation — as a convention in this book to indicate
that a particular Squeak expression yields a given result when you
print it.

L Delete the highlighted text “7” (Squeak should have selected it for you,
50 you can just press the delete key). Select 3+4 again and this time inspect it.

Now you should see a new window, called an inspector, with the
heading Smallinteger: 7 (Figure 1.12). The inspector is an extremely
useful tool that will allow you to browse and interact with any object in
the system. The title tells us that 7 is an instance of the class Smallinteger.
The left panel allows us to browse the instance variables of an object,
which are shown in the right panel. The bottom panel can be used to
write expressions to send messages to the object.

16 A Quick Tour of Squeak

x B Smallinteger: 7 @ o
zelf = T B
all inst s =
* B Workspace
T
5

Figure 1.12: Inspecting an object.

Nd Type self squared in the bottom panel of the inspector on 7 and print it.

o) Close the inspector. Type the expression Object in a workspace and this

e

time explore it (CMD-I).

This time you should see a window labelled Object containing the
text » root: Object. Click on the triangle to open it up (Figure 1.13).

The explorer is similar to the inspector, but it offers a tree view of a
complex object. In this case the object we are looking at is the Object
class. We can see directly all the information stored in this class, and
we can easily navigate to all its parts.

1.6 SqueakMap

SqueakMap is a web-based catalog of “packages” — applications and
libraries — that you can download to your image. The packages are
hosted in many different places in the world and maintained by many
different people. Some of them may only work with a specific version
of Squeak.

e

&¢) Open World >open >SqueakMap package loader.

SqueakMap 17

x B Object B o

- oot Object

superclass: Protodbject

methodDict: a MethodDictionarvizize 435)

format: 2

inztanceVariatles: nil

organization: {accessing’ addlnstanceVarNamed; wit
subclagzes: {BalloonState . SoundCodec . StandardFile
name: *0bject

clagzzPool: a Dictionarvi(®*DependentsFields—a Weakld
sharedPools: nil

environment: a SvetemDictionarvy(lotz of glotals)
category: * EKernel-Objects’

traitComposition: il

localselectors: nil

*m

- - - e

*m

Figure 1.13: Exploring an object.

You will need an Internet connection for this to work. After some
time, the SqueakMap loader window should appear (Figure 1.14). On
the left side is a very long list of packages. The field in the top-left
corner is a search pane that can be used to find what you want in the
list. Type “Sokoban” in the search pane and hit the return key. Clicking
on the right-pointing triangle by the name of a package reveals a
list of available versions. When a package or a version is selected,
information about it appears in the right-hand pane. Navigate to
the latest version of Sokoban. With the mouse in the list pane, use
the yellow-button menu to install the selected package. (If Squeak
complains that it is not sure this version of the game will work in
your image, just say “yes” and go ahead.) Notice that once a package
has been installed, it is marked with an asterisk in the list in the
SqueakMap package loader.

18 A Quick Tour of Squeak

% B SqueakMap Package Loader (667/667) @0
Package name: Sokobar =

Sokoban

wersion: 0.4.3

- Soaplpera ()
- SocketStreamsEnh
+ Sokoban ((0.4.30
(0.4.3) %
(0,34}
(0.2.4)

O 14| categories:

browse cache
<opy from cache

Inztall selected package or
release, first downloading

into the cache if needed. v 2005,

lFou smile!
n try beat yourzelf or an

- Sokotan Enhanced foree download into cache
b Solenodon (3 email package maintainers Bll, Bugs are rare,
b Sorrow () help fro changes - Code
B Sort Critter () update map from the net hde.
b Sorting Demo () |yporade all installed packages something you either solve
b SpaceWar 0 upzrade all installed packages confirming each
Spare Widgets () |puf list in paste tuffer
- Spesch () save filters as default [ueak from Apple. The
k- SpeechRemoval (o display only auto-installable packages pase Squeak,
e O display only new available packages Iz - Just a package for
I Squeak versions |0 display only new zafely available packages
Applications O dizplay only installed packages

O dizplay only published packages
uncheck all filters

Clasz libraries
Compatitility leve
Development tools
Entertainment
Licenses
Maturity level
Package format
Package group
Package tvpe

Ceriaais Aiateitaitioe

nploads/Sokoban 03Hov2355,

FY TV TV T W

Figure 1.14: Using SqueakMap to install the Sokoban game.

N After installing this package, start up Sokoban by evaluating
SokobanMorph random openinWorld in a workspace.

The bottom-left pane in the SqueakMap package loader provides
various ways to filter the list of packages. You can choose to see only
those packages that are compatible with a particular version of Squeak,
or only games, and so on.

1.7 The System Browser

The system browser is one of the key tools used for programming. As
we shall see, there are several interesting class browsers available for
Squeak, but this is the basic one you will find in any image.

LJ Open a browser by selecting World >open ... >class browser, or by
dragging a Browser from the Tools flap.

The System Browser 19

x B System Browser: Object (e}
Kernel-Chronology * ' Boolean »| | filter streaming * fullPrintString .
Kernel-Classes 4 DependentsArray 4 finalization 4 isLiteral A
Kernel-Contexts F fla: 1oy
Kernel-Methods Classes gra| Protocols 10 Methods B
Kernel-Numbers ! loc: 1o
Kernel-Objects Object macpal longPrintStringLimite«
ObtjectOut message handling nominallyUnsent:
ObtjectTracer objects from disk printOn:
OtjectViewer parts bin printString
ProtoObject || | printing printStringLimitedTo:
KernelTests-Methods N riptin: propertyList
KernelTests-Numbers [y | instance | ? || <lass | ge)f evaluating vl e .
browse “ senders | implementors ‘ versions linheritance lhierarchy “ inst vars | ¢lass vars | source
printString .

A

"Answer a String whose characters are a description of the receiver,
f you want to print without a character limit, use fullPrintString.”

+ xelf printStringLimitedTo: 50000

name of method code of method

"printString"

method comment

Figure 1.15: The system browser showing the printString method of
class object.

We can see a system browser in Figure 1.15. The title indicates that
we are browsing the class Object.

When the browser first opens, all panes are empty but the leftmost
one. This first pane lists all known system categories, which are groups
of related classes.

1 Click on the category Kernel-Objects.

=

This causes the second pane to show a list of all of the classes in
the selected category.

g Select the class Object.

e

Now the remaining two panes will be filled with text. The third
pane displays the protocols of the currently selected class. These are
convenient groupings of related methods. If no protocol is selected
you should see all methods in the fourth pane.

20 A Quick Tour of Squeak

N1 Select the printing protocol.

You may have to scroll down to find it. Now you will see in the
fourth pane only methods related to printing.

g Select the printString method.

e

Now we see in the bottom pane the source code of the printString
method, shared by all objects in the system (except those that override
it).

1.8 Finding Classes

There are several ways to find a class in Squeak. The first, as we have
just seen above, is to know (or guess) what category it is in, and to
navigate to it using the browser.

A second way is to send the browse message to the class, asking
it to open a browser on itself. Suppose we want to browse the class
Boolean.

N4 Type Boolean browse into a workspace and doit.

A browser will open on the Boolean class (Figure 1.16). There is
also a keyboard shortcut CMD—b (browse) that you can use in any tool
where you find a class name.

g Use the keyboard shortcut to browse the class Boolean.

.=

Notice that when the Boolean class is selected but no protocol or
method is selected, two panes rather than one appear below the four
panes at the top (Figure 1.16). The middle pane is the class definition.
This is nothing more than an ordinary Smalltalk message that is sent
to the parent class, asking it to create a subclass. Here we see that the
class Object is being asked to create a subclass named Boolean with no
instance variables, class variables or “pool dictionaries”, and to put
the class Boolean in the Kernel-Objects category.

The bottom pane shows the class comment — a piece of plain text
describing the class. If you click on the |?|at the bottom of the class

Finding Classes 21

x B System Browser: Boolean B0
SBE-QuickTour ® | Booleaty 8 --all - 8 & .
Eernel-Chronology 4 | Dependentzirray 4| | controlling al == a
Kernel-Clazses Falze COpying atd:

Kernel-Contexts MezsageSend logical operations and:and:
Kernel-Methods Model printing andiandiand:
FKernel-Mumtbers Object zelf evaluating andiandiandiand:
Kernel-Otjects ObjectOut *eTove-*morphic tasicType
Kernel-Processes ObjectTracer clone

Kernel-STE0 Femnants MhizctTipwras deepCopy
KernelTests-Chronology

¥
OE] [3 eqv:

KernelTestz-Clazses ¥ || instance clazs ¥ |ifFalse: bl

(L] * a4 * CIE] *

|br0wse " zenders " implementors " versions " inheritance ” hierarchy " inst wars " <lazz vars " source|

Otject sutclass: *Eoolean —
inztanceVariableNames: '
clazsVariableNames: '
poolDictionaries: ™
category: 'Kernel-Objects’

EBoolean iz an abstract class defining the protocol for logic testing operations and conditional =
cofuttol structures for the logical walues reprezented by the instances of itz subelazses True and =
Falze.

Boolean redefines #*new zo0 no instances of Boolean can be created. It also redefines several
meszgages in the 'copving' protocol to ensure that only one instatnice of each of itz subtclasses hd

Figure 1.16: The system browser showing the definition of class
Boolean.

pane, you can see the class comment in a dedicated pane.

If you would like to explore Squeak’s inheritance hierarchy, the
hierarchy browser can help you. This can be useful if you are looking for
an unknown subclass or superclass of a known class. The hierarchy
browser is like the system browser, except that the list of classes is
arranged as an indented tree mirroring the inheritance hierarchy.

N Click on in the browser while the class Boolean is selected.

This will open a hierarchy browser showing the superclasses and
subclasses of Boolean. Navigate to the immediate superclass and sub-
classes of Boolean.

Often, the fastest way to find a class is to search for it by name. For
example, suppose that you are looking for some unknown class that
represents dates and times.

o1 Put the mouse in the system category pane of the system browser and

=

22 A Quick Tour of Squeak

type CMD—f, or select find class ... (f) from the yellow-button menu. Type
“time” in the dialog box and accept it.

You will be presented with a list of classes whose names contain “time”
(see Figure 1.17). Choose one, say, Time, and the browser will show it,
along with a class comment that suggests other classes that might be
useful. If you want to browse one of the others, select its name (in any
text pane), and type CMD—-b.

x B System Browser

Kernel-C* Lot
Eernel-] 1128
Eernel-{ ConnectionTimedOut me

Kernel-]1DatedndTime
Eernel-] DateAndTimeEpochTest
Kernel-i| lateAndlimeleapTest
Kernel-]DateandTimeTest h
Kernel-i LedTimerMorph
KernelTy & : o
% B System Browser YernelT| TimeMeazuringTest
TimeProfileBrowser
Class name or fragment? - Eernell TimeStam]E
ensor a Kernell) 1 P
ensorConstants = = TimeStampTest
enzor @ TimeTest Eraio
r TimeZone
rDelay Object s1 Timeddut
inzt TiMESpAL
decaptiz) Cancel(l) et clad TimespanDoSpanAVearTest
ToET ITeTIEE (o= I UTITIT, FITCEE: TimespanDoTest
KernelTests-Classes ProcessorScheduler | PO0) TimespanTest

KernelTestz-Methods . CR T TECTTITTCIIITUIIOT
EernelTestz-Numbers [

time

Q0

rl

r

Figure 1.17: Searching for a class by name.

Note that if you type the complete (and correctly capitalized) name
of a class in the find dialog, the browser will go directly to that class
without showing you the list of options.

1.9 Finding Methods

Sometimes you can guess the name of a method, or at least part of the
name of a method, more easily than the name of a class. For example,
if you are interested in the current time, you might expect that there
would be a method called “now”, or containing “now” as a substring.
But where might it be? The method finder can help you.

¢l Drag the method finder icon out of the Tools flap. Type “now” in the

=<

Finding Methods 23

top left pane, and accept it (or just press the RETURN key).

The method finder will display a list of all the method names that
contain the substring “now”. To scroll to now itself, type “n”; this trick
works in all scrolling windows. Select “now” and the right-hand pane
shows you the three classes that define a method with this name, as
shown in Figure 1.18. Selecting any one of them will open a browser
on it.

% B Method Finder m o

o DateAndTime claszs now .
Time <lazz now —
TimeStamp <lass now

MotrphicUnknowtnEvent .

morphalnknownToTheirOwel

nameForwWellKthiownTCPPort

10w

nowHazDef

nowHazRef

nowPlavitig =

nowRecording [*] [w[« 3

Tvpe a fragment of a zelector in the twop pate, Accept
it,

O, uze an example to find a method in the svstem.
Tvpe receiver, args, and answer in the top pane with

ratinds bhatwracn thae itams b= T "

Figure 1.18: The method finder showing three classes that define a
method named now.

At other times you may have a good idea that a method exists, but
will have no idea what it might be called. The method finder can still
help! For example, suppose that you would like to find a method that
turns a string into upper case, for example, it would translate 'eureka’
into 'EUREKA".

N Type ‘eureka' . 'EUREKA' into the method finder, as shown in Fig-

ure 1.19.

The method finder will suggest a method that does what you want.
A star at the beginning of a line in the right pane of the method

24 A Quick Tour of Squeak

finder indicates that this method is the one that was actually used to
obtain the requested result. So, the star in front of String asUppercase
lets us know that the method asUppercase defined on the class String
was executed and returned the result we wanted. The methods that
do not have a star are just the other methods that have the same name
as the ones that returned the expected result. So Character»asUppercase
was not executed on our example, because 'eureka’ is not a Character
object.

x* B Method Finder o0
‘eureka’, 'EUREKA’ Character asllppercase =
*String aslUppercase A

‘eureka’ asUppetcase --» 'EDREEA™ |®
A

L4
MO »

Twvpe a fragment of a selector in the top pane. Accept it. |i|
Or, uze an examgle to find a method in the system, Type receiver, args,
and answer in the top pane with periods between the items, 3. 4. 7

N+ it thiz nans 12e evamnnles to find & method it the siretem SElact the E

Figure 1.19: Finding a method by example.

You can also use the method finder for methods with arguments;
for example, if you are looking for a method that will find the greatest
common factor of two integers, you might try 25. 35. 5 as an example.
You can also give the method finder multiple examples to narrow the
search space; the help text in the bottom pane explains more.

1.10 Defining a new Method

The advent of Test Driven Development! has changed the way that
we write code. The idea behind Test Driven Development, also called

1Kent Beck, Test Driven Development: By Example. Addison-Wesley, 2003, ISBN 0-321-
14653-0.

Defining a new Method 25

Behavior Driven Development or just TDD, is that we write a test that
defines the desired behavior of our code before we write the code itself.
Only then do we write the code that satisfies the test.

Suppose that our assignment is to write a method that “says some-
thing loudly and with emphasis”. What exactly could that mean?
What would be a good name for such a method? How can we make
sure that programmers who may have to maintain our method in the
future have an unambiguous description of what it should do? We
can answer all of these questions by giving an example:

When we send the message shout to the string “Don’t panic”
the result should be “DON’T PANIC!”.

To make this example into something that the system can use, we turn
it into a test method:

Method 1.1: A test for a shout method

testShout
self assert: ('Don"t panic' shout = 'DON"T PANIC!")

How do we enter a new method into Squeak? First, we have to
decide which class to put the method into. In this case, the shout
method that we are testing will go in class String, so the corresponding
test will, by convention, go in a class called StringTest.

N Open a browser on the class StringTest, and select an appropriate pro-
tocol for our method, in this case tests - converting, as shown in Figure 1.20.
The highlighted text in the bottom pane is a template that reminds you what
a Smalltalk method looks like. Delete this and enter the code from method 1.1.

Once you have typed the text into the browser, notice that the
bottom pane is outlined in red. This is a reminder that the pane
contains unsaved changes. So select accept (s) from the yellow-button
menu in the bottom pane, or just type CMD-s, to compile and save
your method.

Because there is as yet no method called shout, the browser will ask
you to confirm that this is the name that you really want—and it will
suggest some other names that you might have intended (Figure 1.21).

26 A Quick Tour of Squeak

® B System Browser: StringTest B0
Collections-Unordered |® | CharacterTest s --all - = testaslnteger .
Collections-Weak A | stringTest 4| initialize-release & | testhzSmalltalkCommen®
Collections-Stack SvmbolTest testz - tokenizing testCapitalized
CollectionsTeste-Abetras || TextalighmentTest tests - accessing testPercentEncoding Ja
CollectionsTests-Artaye TextandTextStreamTest tests - converting testUnescapePercents
CollectionsTests-Sequen TextEmphaszisTest tests - comparing testUnescapePercentsT
CollectionsTests-Stream: || TextFontChangeTest tests - index0f testWithFirstCharacter
CollectionsTests-Suppor TextFontReferenceTest

CollectiotizTests-Text TextKernTest

CollectionsTestz-Unorde:
CollectionsTests-Weak

CnllectintsTeate-Stack [

¥| =I« r

|browse || zenders || implementors || wersions " inheritance " hierarchy " inst vars " claszz vars " source|

message selector and argument names :
“comfent stating purpoze of message”

| temporary variatle names |
statements

Figure 1.20: The new method template in class StringTest.

This can be quite useful if you have merely made a typing mistake,
but in this case, we really do mean shout, since that is the method we
are about to create, so we have to confirm this by selecting the first
option from the menu of choices, as shown in Figure 1.21.

|browse " zeniders " implementors " versions " inheritance || hierarchy " inst vars " clazz vars " sour‘ce|

tegtihout

zelf azsert: {'Don''t panic’ shout = 'DON''T PANIC!') Unknown selector, please
confirm, correct, or cancel

shouldTimeout

shouldBeLast

zshouldFixTest
shouldRaizeWithException DoTest
shouldRaizseWithSignalboTest
shouldMotlmplement

shortcut

stringForReadout
showComment

shouldCopy

cancel

Figure 1.21: Accepting the testShout method class StringTest.

Defining a new Method 27

N Run your newly created test: open the SUnit TestRunner, either by
dragging it from the Tools flap, or by selecting World >open > Test Runner.

The leftmost two panes are a bit like the top panes in the system
browser. The left pane contains a list of system categories, but it’s
restricted to those categories that contain test classes.

N Select CollectionsTests-Text and the pane to the right will show all of the
test classes in that category, which includes the class StringTest. The names
of the classes are already selected, so click Run Selected to run all these tests.

x B Test Runner a
KernelTestz-Chronology ® CharacterTest 9

KernelTestz-Classes A StringTest &)

EernelTests-Methods SvmbolTest

KernelTestz-Numbers TextTest

KernelTests-Objects WideString Test

FernelTests-Processes TextalignmentTest 0
CollectionsTests-Abstract TextEmphasizTest n
CollestionsTests-Arrayed TextFontChangeTest

CollectionsTests-Sequenceat || TextFontRelerenceTest

CollestionsTests-Streams TextEernTest

CollectionsTests-Support TexthndTextStreamTest

CollectionsTests-Text TextLineEndingsTest

CollectionsTests-Unordered

CollectionsTests-Weak

CollectionsTesta-Stack v
CollectionsTests-SkipLists

Exceptions-Tests StringTest»*es1Shout
Filez-Tests

GraphicsTestz-Primitives

GraphicsTeste-Text

GraphiceTeste-Files

MorphicTests-Basic

MorphicTests-Kernel

MorphicTests-Text Suppott

MorphicTests-Widgets

MorphicTests-Worlds o

Mulnlingual-Display Ll > v

Figure 1.22: Running the String tests.

Q]

You should see a message like that shown in Figure 1.22, which
indicates that there was an error in running the tests. The list of
tests that gave rise to errors is shown in the bottom right pane; as
you can see, StringTest»#testShout is the culprit. (Note that StringTest>>
#testShout is the Smalltalk way of identifying the testShout method of
the StringTest class.) If you click on that line of text, the erroneous test
will run again, this time in such a way that you see the error happen:
“MessageNotUnderstood: ByteString»shout”.

The window that opens with the error message is the Smalltalk

28 A Quick Tour of Squeak

debugger (see Figure 1.23). We will look at the debugger and how to
use it in Chapter 6.

* B MessageNotUnderstood: SBEGame=>=>toggleState @0
SEEGame(Object brdoesNotUnderstand: #toggleState =
SEEGame:toggleNeightoursOf CellAtiat: =
[1 in SEEGamesnewCellatiat: {[zelf toggleNeighboursOfCellat: i at j]}

SBECell-»mouszellp:

SEBECell{Morph handlebMouzeUp:
MouzeButtonEvent»zentTo:

SEECell{Morph > handleEvent; v
Proceed || Restart || Into || Over || Through || Full Stack || Where
toggleMeighboursOfCellAt: i at: j .

3

(i»1)ifTrue: [{zells at i - 1 an j) toggleState].
(i ¢ gelf ¢ellsPerSide) ifTrue: [(cells att i + 1 at {) toggleState],
(> 1) ifTrue: [{(cells at: i at: j - 1) toggleState].
(j ¢« gelf cellsPerSide) ifTrue: [(cells at: i at: j + 1) toggleState],

zelf] 8 | thisCoftext]]
all inst vars A Al lall temp wars A A
boundz i
owhner i
submorphs d v ¥ ¥

Figure 1.23: The (pre-)debugger.

The error is, of course, exactly what we expected: running the
test generates an error because we haven'’t yet written a method that
tells strings how to shout. Nevertheless, it's good practice to make
sure that the test fails because this confirms that we have set up the
testing machinery correctly and that the new test is actually being
run. Once you have seen the error, you can the running test,
which will close the debugger window. Note that often with Smalltalk
you can define the missing method using the button, edit the

newly-created method in the debugger, and then with the
test.

Now let’s define the method that will make the test succeed!

&1 Select class String in the system browser, select the converting protocol,

.=

type the text in method 1.2 over the method creation template, and accept it.

(Note: to geta T, type).

Defining a new Method 29

Method 1.2: The shout method

shout
1 self asUppercase, "'

The comma is the string concatenation operation, so the body of
this method appends an exclamation mark to an upper-case version of
whatever String object the shout message was sent to. The 1 tells Squeak
that the expression that follows is the answer to be returned from the
method, in this case the new concatenated string.

Does this method work? Let’s run the tests and see.

N Click on Run Selected again in the test runner, and this time you
should see a green bar and text indicating that all of the tests ran with no
failures and no errors.

When you get to a green bar?, it’s a good idea to save your work
and take a break. So do that right now!

® B System Browser: String @0
Collectionz-Sequenceat® | ByteString = --all - =l |zhout s
Collections-SkipLists A | BvteSvymbol A | accesFing A |zplitlnteger Al
Collections-Streams Character arithmetic stemAndlumericEulTi
Collectione-Strings String comparing subStrings
Collections-Support Svymtol convering subStrings:
Collectione-Text WideString copving substrings
Collections-TUnordered WideSymtol v |displaving surroundedByiinglely
Collections-Weak encoding translateFrom:toitatle; -
i -, i i i translateTolowarease
ol Seck v fir sreeming g i .

Fmnn st o

|br0wse " zenders " implementors || versions ” inheritance " hierarchy " inst wars " class vars "source|

shout :
+ gelf azlUppercaze , 1"

Figure 1.24: The shout method defined on class String.

2 Actually, you might not get a green bar since some images contains tests for bugs
that need to be fixed. Don’t worry about this. Squeak is constantly evolving.

30 A Quick Tour of Squeak

1.11 Chapter Summary

This chapter has introduced you to the Squeak environment and
shown you how to use some of the major tools, such as the system
browser, the method finder, and the test runner. You have also seen a
little of Squeak’s syntax, even though you may not understand it all

yet.

¢ A running Squeak system consists of a virtual machine, a sources
file, and image and changes files. Only these last two change, as
they record a snapshot of the running system.

* When you restore a Squeak image, you will find yourself in
exactly the same state —with the same running objects — that
you had when you last saved that image.

* Squeak is designed to work with a three-button mouse. The
buttons are known as the red, the yellow and the blue buttons. If
you don’t have a three-button mouse, you can use modifier keys
to obtain the same effect.

¢ Use the red button on the Squeak background to bring up the
World menu and launch various tools. You can also launch tools
from the Tools flap at the right of the Squeak screen.

* A workspace is a tool for writing and evaluating snippets of code.
You can also use it to store arbitrary text.

* You can use keyboard shortcuts on text in the workspace, or any
other tool, to evaluate code. The most important of these are
do it (CMD—d), printit (CMD—p), inspectit (i) and explore it (1).

¢ SqueakMap is a tool for loading useful packages from the inter-
net.

* The system browser is the main tool for browsing Squeak code,
and for developing new code.

* The test runner is a tool for running unit tests. It also supports
Test Driven Development.

31

Chapter 2

A First Application

In this chapter, we will develop a simple game: Quinto. Along the
way we will demonstrate most of the tools that Squeak programmers
use to construct and debug their programs, and show how programs
are exchanged with other developers. We will see the system browser,
the object inspector, the debugger and the Monticello package browser.
Development in Smalltalk is efficient: you will find that you spend far
more time actually writing code and far less managing the develop-
ment process. This is partly because the Smalltalk language is very
simple, and partly because the tools that make up the programming
environment are very well integrated with the language.

2.1 The Quinto Game

To show you how to use Squeak’s programming tools, we will build
a simple game called Quinto. The game board is shown in Figure 2.1;
it consists of rectangular array of light yellow cells. When you click
on one of the cells with the mouse, the four surrounding cells turn
blue. Click again, and they toggle back to light yellow. The object of
the game is to turn blue as many cells as possible.

The Quinto game shown in Figure 2.1 is made up of two kinds

32 A First Application

Figure 2.1: The Quinto game board. The user has just clicked the
mouse as shown by the cursor.

of objects: the game board itself, and 100 individual cell objects. The
Squeak code to implement the game will contain two classes: one for
the game and one for the cells. We will now show you how to define
these classes using the Squeak programming tools.

2.2 Creating a new class Category

We have already seen the system browser in Chapter 1, where we
learned how to navigate to classes and methods, and saw how to
define new methods. Now we will see how to create system categories
and classes.

N4 Open a system browser and yellow-click in the category pane. Select
add item

Type the name of the new category (we will use SBE-Quinto) in
the dialog box and click accept (or just press the return key); the new
category is created, and positioned at the end of the category list. If
you selected an existing category first, then the new category will be
positioned immediately ahead of the selected one.

Defining the Class SBECell 33

x B System Browser

Truelype-Support .

* B System Browser Feleasepuilder x
K 1-Ch: 1 u OE-Standard-Browseers
KZ?E:LU;SM:D el A OB-Standard-Definition
Eernel-Cotl (1 ¢ 0B-Standard-Nodes
EKernel-Met [@rind class... (£ OB-Standard-Services
Kernel-Hug recent classes... (r) OEB-Standard-Ttilities

; t 1 SwetemChangeNotificat:
Kernel-Oby o Morphic-Imported
Eernel-Pro| browse E P

Kernel-ST8{ printOut SBE-Quinto

KernelTests reorganize
KernelTests alphatetize

| browse || senders || implementors ” VErs

EernelTests ypdate F
= Object subclass: #*NamelOfSubelass
E [T mstancel‘?arlableNamﬁs:
I clazsVariableNames:
ﬁremnve L o
g poolDictionaries:

category: "SBE-Quinto’

Figure 2.2: Adding a system cate-

gory. Figure 2.3: The class-creation
Template.

2.3 Defining the Class SBECell

As yet there are of course no classes in the new category. However,
the main editing pane displays a template to make it easy to create a
new class (see Figure 2.3).

This template shows us Smalltalk expression that sends a mes-
sage to a class called Object, asking it to create a subclass called
NameOfSubClass. The new class has no variables, and should belong to
the category SBE-Quinto.

We simply modify the template to create the class that we really
want.

N Modify the class creation template as follows:

* Replace Object by SimpleSwitchMorph.

¢ Replace NameOfSubClass by SBECell.

34 A First Application
e Add mouseAction to the list of instance variables.

The result should look like class 2.1.

Class 2.1: Defining the class SBECell

SimpleSwitchMorph subclass: #SBECell
instanceVariableNames: 'mouseAction’
classVariableNames: "
poolDictionaries: "
category: 'SBE-Quinto’

This new definition consists of a Smalltalk expression that sends
a message to the existing class SimpleSwitchMorph, asking it to create a
subclass called SBECell. (Actually, since SBECell does not exist yet, we
passed as argument the symbol #SBECell which stands for the name of
the class to create.) We also tell it that instances of the new class should
have a mouseAction instance variable, which we will use to define what
action the cell should take if the mouse should click over it.

At this point you still have not created anything. Note that the border
of the class template pane has changed to red (Figure 2.4). This means
that there are unsaved changes. To actually send this message, you must
accept it.

L print it (p) —
|bru:uwse " zenders " implemetitors " versions |[| @)inspect it (i) it
SimpleSwitchMorph subclaszs: #5BECell @)explure it (I3

inzstanceVariabtleNames: 'mouseaction’ a debug it

clazsWVariatleNames: ™

poolDictioniaries:

category: SBE-(uinto’ 5 cancel (1D
show bwtecodes
copy hitml
more,..

Figure 2.4: The class-creation Template.

g Accept the new class definition.

e

Adding Methods to a Class 35

Either yellow-click and select accept, or use the shortcut CMD—s
(for “save”). The message will be sent to SimpleSwitchMorph, which will
cause the new class to be compiled.

Once the class definition is accepted, the class will be created and
appear in the classes pane of the browser (Figure 2.5). The editing
pane now shows the class definition, and a small pane below it will
remind you to write a few words describing the purpose of the class.
This is called a class comment, and it is quite important to write one
that will give other programmers a high-level overview of the purpose
of this class. Smalltalkers put a very high value on the readability
of their code, and detailed comments in methods are unusual: the
philosophy is that the code should speak for itself. (If it doesn’t, you
should refactor it until it does!) A class comment need not contain a
detailed description of the class, but a few words describing its overall
purpose are vital if programmers who come after you are to know
whether to spend time looking at this class.

N Typea class comment for SBECell and accept it; you can always improve
it later.

24 Adding Methods to a Class

Now let’s add some methods to our class.

N Select the protocol --all-- in the protocol pane.

You will see a template for method creation in the editing pane.
Select it, and replace it by the following text.

1

36 A First Application

x B System Browser: SBECell e
TrueType-Sugpport |®| | SEECE] W [--all -- . -
ReleaseBuilder 4 4| |lno messages = =

OB-Standard-Browse
OE-5tandard-Definit
OEB-Standard-Nodes
OB-Standard-Service
OE-5tandard-Utilitie
SyrtemChangeNotifi
Morphic-Imported

¥
SRF-fitta || instance <lazs
LIE > ¥ ¥

|brnwse "senders "implementors "versions || inheritatice || hierarchy ||inst Fars ||c1ass Tars || =0

SimpleSwitchMorpl subclass: #5SEECel =
instanceVariatleNames: 'mousesction’ =
clagsVariatleNames:
poolDictionaries: "'
category: 'SBEE-(uinto’

ﬁ'HIS CLASS HAS NO COMMENT!

Figure 2.5: The newly-created class SBECell

Method 2.2: Initializing instances of SBECell

initialize
super initialize.
self label: ".
self borderWidth: 2.
bounds := 0@0 corner: 16@16.
offColor := Color paleYellow.
onColor := Color paleBlue darker.
self useSquareCorners.
self turnOff

Note that the characters " on line 3 are two separate single quotes with
nothing between them, not a double quote! " denotes the empty string.

) Accept this method definition.

e

What does the above code do? We won't go into all of the details
here (that’s what the rest of the book is for!), but we will give you a
quick preview. Let’s take it line by line.

Adding Methods to a Class 37

Notice that the method is called initialize. The name is very sig-
nificant! By convention, if a class defines a method named initialize,
it will be called right after the object is created. So, when we evalu-
ate SBECell new, the message initialize will be sent automatically to this
newly created object. Initialize methods are used to set up the state of
objects, typically to set their instance variables; this is exactly what we
are doing here.

The first thing that this method does (line 2) is to execute the initialize
method of its superclass, SimpleSwitchMorph. The idea here is that any
inherited state will be properly initialized by the inherit method of
the superclass. It is always a good idea to initialize inherited state
by sending super initialize before doing anything else; we don’t know
exactly what SimpleSwitchMorph'’s initialize method will do, and we don’t
care, but it’s a fair bet that it will set up some instance variables to hold
reasonable default values, so we had better call it, or we risk starting
in an unclean state.

The rest of the method sets up the state of this object. Sending
self label: ", for example, sets the label of this object to the empty string.

The expression 0@0 corner: 16@16 probably needs some explana-
tion. 0@0 represents a Point object with = and y coordinates both set to
0. In fact, 0@0 sends the message @ to the number 0 with argument 0.
The effect will be that the number 0 will ask the Point class to create a
new instance with coordinates (0,0). Now we send this newly created
point the message corner: 16@16, which causes it to create a Rectangle
with corners 0@0 and 16@16. This newly created rectangle will be
assigned to the bounds variable, inherited from the superclass.

Note that the origin of the Squeak screen is the top left, and the y
coordinate increases downwards.

The rest of the method should be self-explanatory. Part of the art
of writing good Smalltalk code is to pick good method names so that
Smalltalk code can be read like a kind of pidgin English. You should
be able to imagine the object talking to itself and saying “Self use square

corners!”, “Self turn off!”.

38 A First Application

2.5 Inspecting an Object

You can test the effect of the code you have written by creating a new
SBECell object and inspecting it.

N Open a workspace. Type the expression SBCell new and inspect it.

x B a SBECell(3283) =/

zelf 8 D@0 corner: 16@16 =
all inst ik o

bounds

OwWher

submorph

fullBound

colotr

extension

torderWid

torderCole™ ¥

Figure 2.6: The inspector used to examine a SBECell object.

The left-hand pane of the inspector shows a list of instance vari-
ables; if you select one (try bounds), the value of the instance variable
is shown in the right pane. You can also use the inspector to change
the value of an instance variable.

Nd Change the value of the bounds variable to 0@0 corner: 50@50 and
accept it.

The bottom pane of the inspector is a mini-workspace. It’s useful
because in this workspace the pseudo-variable self is bound to the
object being inspected.

N4 Type the text self openinWorld in the bottom pane and do it.

The cell should appear at the top left-hand corner of the screen,
indeed, exactly where its bounds say that it should appear. Blue-click
on the cell to bring up the morphic halo. Move the cell with the brown

Defining the Class SBEGame 39

(next to top-right) handle and resize it with the yellow (bottom-right)
handle. Notice how the bounds reported by the inspector also change.

x B a SBECell(3897) @0
self " z6@26 corner: 102@E7 :

all inzt vk
' bounds
OWHEer
submorph
SBECell fullBound
colar
extension
torderWis
borderCole™ ¥

Felt‘ openlnWorld :

Figure 2.7: Resizing the cell.

Delete the cell by clicking on the x in the pink handle.

2.6 Defining the Class SBEGame

Now let’s create the other class that we need for the game, which we
will call SBEGame.

ol Make the class definition template visible in the browser main window.

=<

(Do this by clicking twice on the name of the already-selected class
category, or by displaying the definition of SBECell again (by clicking
the button.) Edit the code so that it reads as follows, and
accept it.

© ® N o o A o N =

40 A First Application

Class 2.3: Defining the SBEGame class

BorderedMorph subclass: #SBEGame
instanceVariableNames: "
classVariableNames: "
poolDictionaries: "
category: 'SBE-Quinto’

Here we subclass BorderedMorph; Morph is the superclass of all of the
graphical shapes in Squeak, and (surprise!) a BorderedMorph is a Morph
with a border. We could also insert the names of the instance variables
between the quotes on the second line, but for now, let’s just leave that
list empty.

Now let’s define an initialize method for SBEGame.

) Type the following into the browser as a method for SBEGame and try

=

to accept it:

Method 2.4: Initializing the game

initialize
| sampleCell width height n |
super initialize.
n := self cellsPerSide.
sampleCell := SBECell new.
width := sampleCell width.
height := sampleCell height.
self bounds: (5@5 extent: ((width=n) @(height+n)) + (2 « self borderWidth)).
cells := Matrix new: n tabulate: [:i ;j | self newCellAt: i at: j].

Squeak will complain that it doesn’t know the meaning of some
of the terms. Squeak tells you that it doesn’t know of a message
cellsPerSide, and suggests a number of corrections, in case it was a
spelling mistake.

But cellsPerSide is not a mistake — it is just a method that we haven't
yet defined —we will do so in a minute or two.

N So just select the first item from the menu, which confirms that we
really meant cellsPerSide.

Defining the Class SBEGame 41

Unknown selector, please
onufirm, correct, or cancel
cellzPerSide
cellSpacing
<learlnzide
isClassSide Unknown variable: cells please correst, or cancel:
defaultside declare temp
m1ClassSide
instancelide
<laszSide
alternateSide

bounds
color

zeellazzSide cancel

celllnzet
cancel

“ Figure 2.9: Declaring a new instance variable.

Figure 2.8: Squeak de-
tecting an unknown se-
lector.

Next, Squeak will complain that it doesn’t know the meaning of
cells. It offers you a number of ways of fixing this.

Ng1 - Choose declare instance because we want cells to be an instance vari-
able.

Finally, Squeak will complain about the message newCellAt:at: sent
on the last line; this is also not a mistake, so confirm that message too.

If you now look at the class definition once again (which you can
do by clicking on the button), you will see that the browser
has modified it to include the instance variable cells.

Let’s look at this initialize method. The second line, | sampleCell width
height n |, declares 4 temporary variables. They are called temporary
variables because their scope and lifetime are limited to this method.
Temporary variables with explanatory names are helpful in making
code more readable. Smalltalk has no special syntax to distinguish
constants and variables, and in fact all four of these “variables” are
really constants. Lines 4-7 define these constants.

How big should our game board be? Big enough to hold some
integral number of cells, and big enough to draw a border around
them. How many cells is the right number? 5? 10? 100? We don’t
know yet, and if we did, we would probably change our minds later.

42 A First Application

So we delegate the responsibility for knowing that number to another
method, which we will call cellsPerSide, and which we will write in a
minute or two. It’s because we are sending the cellsPerSide before we
define a method with that name that Squeak asked us to “confirm,
correct, or cancel” when we accepted the method body for initialize.
Don’t be put off by this: it is actually good practice to write in terms
of other methods that we haven’t yet defined. Why? Well, it wasn’t
until we started writing the initialize method that that we realized that
we needed it, and at that point, we can give it a meaningful name, and
move on, without interrupting our flow.

The fourth line uses this method: the Smalltalk self cellsPerSide
sends the message cellsPerSide to self, i.e., to this very object. The
answer, which will be the number of cells per side of the game board,
is assigned to n.

The next three lines create a new SBECell object, and assign its
width and height to the appropriate temporary variables.

Line 8 sets the bounds of the new object. Without worrying too
much about the details just yet, just believe us that the expression in
parentheses creates a square with its origin (i.e., its top-left corner) at
the point (5,5) and its bottom-right corner far enough away to allow
space for the right number of cells.

The last line sets the SBEGame object’s instance variable cells to a
newly created Matrix with the right number of rows and columns.
We do this by sending the message new:tabulate: to the Matrix class
(classes are objects too, so we can send them messages). We know
that new:tabulate: takes two arguments because it has two colons (:) in
its name. The arguments go right after the colons. If you are used to
languages that put all of the arguments together inside parentheses,
this will look weird at first. Don’t panic, it’s only syntax! It turns out
to be a very good syntax because the name of the method can be used
to explain the roles of the arguments. For example, it is pretty clear
that Matrix rows: 5 columns: 2 has 5 rows and 2 columns, and not 2 rows
and 5 columns.

Matrix new: n tabulate: [:i ;j | self newCellAt: i at: j] creates a new nxn ma-
trix and initializes its elements. The initial value of each element will
depend on its coordinates. The (i) element will be initialized to the

Organizing Methods into Protocols 43

result of evaluating self newCellAt: i at: j.

That’s initialize. When you accept this message body, you might
want to take the opportunity to pretty-up the formatting. You don't
have to do this by hand: from the the yellow-button menu select
more ... >prettyprint, and the browser will do it for you. You have to
accept again after you have pretty-printed a method, or of course
you can cancel (CMD-1 —that’s a lower-case letter L) if you don’t
like the result. Alternatively, you can set up the browser to use the
pretty-printer automatically whenever it shows you code: use the the
right-most button in the button bar to adjust the view.

If you find yourself using more... a lot, it's useful to know that
you can hold down the SHIFT key when you click to directly bring up
the more ... menu.

2.7 Organizing Methods into Protocols

Before we define any more methods, let’s take a quick look at the third
pane at the top of the browser. In the same way that the first pane of
the browser lets us categorize classes so we are not overwhelmed by a
very long list of class names in the second pane, so the third pane lets
us categorize methods so that we are not overwhelmed by a very long
list of method names in the fourth pane. These categories of methods
are called “protocols”. protocol

If there are only a few methods in a class, the extra level of hier-
archy provided by protocols is not really necessary. This is why the
browser also offers us the --all-- virtual protocol, which, you will not
be surprised to learn, contains all of the methods in the class.

If you have followed along with this example, the third pane may
well contain the protocol as yet unclassified.

N Select the yellow button menu item categorize all uncategorized fo fix
this, and move the initialize methods to a new protocol called initialization.

How does Squeak know that this is the right protocol? Well, in
general Squeak can’t know, but in this case there is also an initialize

44 A First Application

@O
--all -- =| initialize .
as vet unclagsified |& =
I "y
browse
printdut
fileOut
reorganize
alphatetize
reMmove empty categories
. o " ¥
!
eritarl [Inew category.., . E
rename. .. =
TEMove r
i &

Figure 2.10: Categorize all uncategorized methods.

method in a superclass, and Squeak assumes that our initialize method
should go in the same category as the one that it overrides.

You may find that Squeak has already put your initialize method into
the initialization protocol. If so, it’s probably because you have loaded a
package called AutomaticMethodCategorizer into your image.

A typographic convention. Smalltalkers frequently use the notation
“>>" to identify the class to which a method belongs, so, for exam-
ple, the cellsPerSide method in class SBEGame would be referred to as
SBEGame>>cellsPerSide. To indicate that this is not Smalltalk syntax, we
will use the special symbol » instead, so this method will appear in the
text as SBEGame»cellsPerSide

From now on, when we show a method in this book, we will write
the name of the method in this form. Of course, when you actually
type the code into the browser, you don’t have to type the class name
or the »; instead, you just make sure that the appropriate class is
selected in the class pane.

Now let’s define the other two methods that are used by the
SBEGames»initialize method. Both of them can go in the initialization proto-
col.

Organizing Methods into Protocols 45

Method 2.5: A constant method.

SBEGame»cellsPerSide
"The number of cells along each side of the game"
T10

This method could hardly be simpler: it answers the constant 10.
One advantage of representing constants as methods is that if the
program evolves so that the constant then depends on some other
features, the method can be changed to calculate this value.

Method 2.6: An initialization helper method

SBEGame»newCellAt: i at: j
"Create a cell for position (i,j) and add it to my on-screen
representation at the appropriate screen position. Answer the new cell"
| ¢ origin |
¢ := SBECell new.
origin := self innerBounds origin.
self addMorph: c.
¢ position: ((i - 1) = c width) @ ((j - 1) = ¢ height) + origin.
¢ mouseAction: [self toggleNeighboursOfCellAt: i at: j].

N Add the methods SBEGame»cellsPerSide and SBEGame»newCellAt:at:.

Confirm the spelling of the new selectors toggleNeighboursOfCellAt:at:
and mouseAction:.

Method 2.6 answers a new SBECell, specialized to position (i,)
in the Matrix of cells. The last line defines the new cell’s mouseAction
to be the block [self toggleNeighboursOfCellAt: i at: j]. In effect, this defines
the callback behaviour to perform when the mouse is clicked. The
corresponding method also needs to be defined.

Method 2.7: The callback method

SBEGame»toggleNeighboursOfCellAt: i at: j
(i>1)ifTrue: [(cells at: i — 1 at: j) toggleState].
(i < self cellsPerSide) ifTrue: [(cells at: i + 1 at: j) toggleState].
(j > 1) ifTrue: [(cells at: i at: j - 1) toggleState].
(j < self cellsPerSide) ifTrue: [(cells at: i at: j + 1) toggleState].

46 A First Application

Method 2.7 toggles the state of the four cells to the north, south,
west and east of cell (i, j). The only complication is that the board is
finite, so we have to make sure that a neighboring cell exists before we
toggle its state.

N4 Place this method in a new protocol called game logic.

To move the method, you can simply click on its name and drag it
to the newly-created protocol (Figure 2.11).

x B System Browser: SBEGame

ReleazeBuilder ® | SBECell u | --all --
OB-Standard-Browses| | SEEGame 4| pame logic | f
OE-Standard-Definit initialization &

OB-Standard-Nodes
OB-Ztandard-Service
OB-Standard-Utilitie
SvstemChangeNotifi
Morphic-Imported
SEE-Nuinta

¥
[|| instance <lass i
u|« > ¥ [w]« >

|br0wse "senders "implementors ||Versions ”inheritance " hierarchy ”inst vars "class vars " =0

toggleNeizhtonrel

Figure 2.11: Drag a method to a protocol.

To complete the Quinto game, we need to define two more methods
in class SBECell to handle mouse events.

Method 2.8: A typical setter method

SBECell»mouseAction: aBlock
T mouseAction := aBlock

Method 2.8 does nothing more than set the cell’s mouseAction vari-
able to the argument, and then answers the new value. Any method
that changes the value of an instance variable in this way is called a
setter method; a method that answers the current value of an instance
variable is called a getter method.

If you are used to getters and setters in other programming lan-
guages, you might expect these methods to be called setmouseAction
and getmouseAction. The Smalltalk convention is different. A getter
always has the same name as the variable it gets, and a setter is named
similarly, but with a trailing “:”, hence mouseAction and mouseAction:.

Let’s Try Our Code 47

Collectively, setters and getters are called accessor methods, and
by convention they should be placed in the accessing protocol. In
Smalltalk, all instance variables are private to the object that owns
them, so the only way for another object to read or write those vari-
ables in the Smalltalk language is through accessor methods like this

¢l Define SBECell»mouseAction: and put it in the accessing protocol.

Finally, we need to define a method mouseUp:; this will be called
automatically by the GUI framework if the mouse button is released
while the mouse is over this cell on the screen.

Method 2.9: An event handler

SBECell»mouseUp: anEvent
mouseAction value

N Add the method SBECell»mouseUp: and then
categorize all uncategorized methods.

What this method does is to send the message value to the object
stored in the instance variable mouseAction. Recall that in SBEGame»
newCellAt: i at: j we assigned the following code fragment to mouseAction:

[self toggleNeighboursOfCellAt: i at: j]

Sending the value message causes this code fragment to be evaluated,
and consequently the state of the cells will toggle.

2.8 Let’s Try Our Code

That’s it: the Quinto game is complete!

If you have followed all of the steps, you should be able to play
the game, consisting of just 2 classes and 7 methods.

Ld In a workspace, type SBEGame new openinWorld and do it.

The game will open, and you should be able to click on the cells
and see how it works.

48 A First Application

Well, so much for theory... When you click on a cell, a notifier
window called the PreDebugWindow window appears with an error
message! As depicted in Figure 2.12, it says MessageNotUnderstood:
SBEGame~»toggleState.

x B MessageNotUnderstood: SBEGame=>=>toggleStated O

SBEGameiObject krdoezNotUnderstand: #toggleState
SBEGamestoggleMNeishtours0f CellAt:at:

[1 in SBEGames:newlCellAtiat: {[zelf togzleNeightoursOfCellAt: i at: {1}
SBECell»mouzelp:

SBECell{Morph rhandlebouzellp:

MouzeEuttonEvent--zentTo:

SBECellEMDrph}»handleEvent: v

»|m

Figure 2.12: There is a bug in our game when a cell is clicked!

What happened? To find out, let’s use one of Smalltalk’s more power-
ful tools: the debugger.

N Click on the debug button in the notifer window.

The debugger will appear. In the upper part of the debugger win-
dow you can see the execution stack, showing all the active methods;
selecting any one of them will show, in the middle pane, the Smalltalk
code being executed in that method, with the part that triggered the
error highlighted.

Mg Click on the line mnear the top, Iabelled SBEGame»

=

toggleNeighboursOfCellAt:at:.

The debugger will show you the execution context within this
method where the error occurred (Figure 2.13).

At the bottom of the debugger are two small inspector windows.
On the left, you can inspect the object that is the receiver of the message
that caused the selected method to execute, so you can look here to see
the values of the instance variables. On the right you can inspect an
object that represents the currently executing method itself, so you can

Let’s Try Our Code 49

x B MessageNotUnderstood: SBEGame=>>toggleState @0

SEEGame(Object krdoesNotUnderstand: #toggleState =
SEEGames-toggleNeightours0f Celldt:at: A
[] in SEEGamesnewCellatiat {[self toggleNeightoursOfCellat: i at j]}

SBECell:»mousellp:

SEBECell{Morph handlebMouzeUp:

MouseButtonEventzentTo:

SBECelI{Morphg»handleEvent:]

Proceed || Restart || Into || Over || Through || Full Stack || Where
toggleNeighboursOf CellAt: i at:

(i 1) ifTrue: [{cells at: i - 1 at: j) toggleState].

(i < zelf* cellsPerSide) ifTrue: [{cells at: i + 1 at: i) togzleState].

(> 1) ifTrue: [{(cellz at: i at: j - 1) toggleState].

(j « zelf cellsPerSide) ifTrue: [{cells at: i at: j + 1) togzleState].

»[=

2elf] 8 | thizCofitext]]
all inst vars A Al lall temp vars A A
boundsz i
OWIer i
submorphs d v ¥ ¥

Figure 2.13: The debugger, with the method toggleNeighboursOfCell:at:
selected.

look here to see the values of the method’s parameters and temporary
variables.

Using the debugger, you can execute code step by step, inspect ob-
jects in parameters and local variables, evaluate code just as you can in
a workspace, and, most surprisingly to those used to other debuggers,
change the code while it is being debugged! Some Smalltalkers pro-
gram in the debugger almost all the time, rather than in the browser.
The advantage of this is that you see the method that you are writing
as it will be executed, with real parameters in the actual execution
context.

In this case we can see in the first line of the top panel that the
toggleState message has been sent to an instance of SBEGame, while
it should clearly have been an instance of SBECell. The problem is
probably with the initialization of the cells matrix. Browsing the code
of SBEGame»initialize shows that cells is filled with the return values of
newCellAt:at;, but when we look at that method, we see that there is no

50 A First Application

return statement there! By default, a method returns self, which in the
case of newCellAt:at: is indeed an instance of SBEGame.

N Close the debugger window. Add the expression “1 ¢” to the end of the

method SBEGame»newCellAt:at: so that it returns c. It should now look as
shown in method 2.10.

Method 2.10: Fixing the bug.

SBEGame»newCellAt: i at: j
"Create a cell for position (i,j) and add it to my on-screen
representation at the appropriate screen position. Answer the new cell"
| ¢ origin |
¢ := SBECell new.
origin := self innerBounds origin.
self addMorph: c.
¢ position: ((i - 1) » ¢ width) @ ((j - 1) = ¢ height) + origin.
¢ mouseAction: [self toggleNeighboursOfCellAt: i at: j].
Tc

Recall from Chapter 1 that the construct to return a value from a
method in Smalltalk is 1, which you obtain by typing ~.

Often, you can fix the code directly in the debugger window and
click Proceed to continue running the application. In our case, because
the bug was in the initialization of an object, rather than in the method
that failed, the easiest thing to do is to close the debugger window,
destroy the running instance of the game (with the halo), and create a
new one.

N Do: SBEGame new openinWorld again.

Now the game should work properly.

2.9 Saving and Sharing Smalltalk Code

Now that you have the Quinto game working, you probably want
to save it somewhere so that you can share it with your friends. Of
course, you can save your whole Squeak image, and show off your

Saving and Sharing Smalltalk Code 51

first program by running it, but your friends probably have their own
code in their images, and don’t want to give that up to use your image.
What you need is a way of getting source code out of your Squeak
image so that other programmers can bring it into theirs.

The simplest way of doing this is by filing out the code. The yellow-
button menu in the System Categories pane will give you the option
to file out the whole of category SBE-Quinto. The resulting file (which
is more-or-less human readable, but which is really designed for com-
puters, not humans) can be emailed to your friends and can be filed
back into Squeak using the file list browser.

e Yellow-click on the SBE-Quinto category and fileOut the contents.

You should now find a file called “SBE-Quinto.st” in the same
folder on disk where your image is saved. Have a look at this file with
a text editor.

==

SBE-Quinto.st fileout. Verify that the game now works in the new image.

Ny Open a fresh Squeak image and use the File List tool to filein the

file in the entire contents
of the file, which is
expected to contain

Smalltalk code in fileout

(chunk ") format

x B /Users/oscar/Documents/Projects/SqueakByExample/FirstApp @ £

Eirstapp 5 b (z007.06.18 11:37:04 2,270) SEE-Quinto.st 0
(2007.06.18 11:30:53 113,480} Firsthpp.changes =

* (2007.06.15 12:32:10 16.161,908) Firsthpp.image
f20N7 NE 18 1909109 3 9984 Sersat-Nakary oo |
SimpleSwitchMorph subclass: #SEECell -

. . a
instanseVariableNames: "mouseAstion

clazsVariableNames: "'

poolDictionaries:

category: "SBE-(uinto’!
|SEECell commentStamp: 'on 6/14/2007 15:02" prior: 0!
4 Cell of the Quinto game,!

|SBECell methodsFor: ‘aceessing’ stamp! ‘on 671572007 12:30°!
mousehsction: aBlock
+ mousehstion = aBlock! |

LSRFrall mathadaEnn: tinitinlinatinm ' otacn ne 641E42007 12:E0°1

Figure 2.14: Filing in Squeak source code.

52 A First Application

Monticello Packages Although fileouts are a convenient way of
making a snapshot of the code you have written, they are decidedly
“old school”. Just as most open-source projects find it much more con-
venient to maintain their code in a repository using CVS or Subversion,
so Squeak programmers find it more convenient to manage their code
using Monticello packages. These packages are represented as files
with names ending in .mcz; they are actually zip-compressed bundles
that contain the complete code of your package.

Using the Monticello package browser, you can save packages
to repositories on various types of server, including ftp and HTTP
servers; you can also just write the packages to a repository in a local
file system directory. A copy of your package is also always cached on
your local hard-disk in the package-cache folder. Monticello lets you
save multiple versions of your program, merge versions, go back to
an old version, and browse the differences between versions. In fact, it
supports the same sort of operations that you are used to if you share
your work using CVS or Subversion.

A good trick is to always develop in the same folder. This way you
get a copy of all the code that you publish on squeaksource on your
local machine. You can then backup and browse at will.

You can also send a .mcz file by email. The recipient will have
to place it in her package-cache folder; she will then be able to use
Monticello to browse and load it.

L Open the Monticello browser by selecting
World >open... >Monticello browser.

On the right-hand side of the browser (see Figure 2.15) is a list of
Monticello repositories, which will include all of the repositories from
which code has been loaded into the image that you are using.

At the top of the list in the Monticello browser is a repository in
a local directory called the package cache, which caches copies of the
packages that you have loaded or published over the network. This
local cache is really handy because it lets you keep your own local
history; it also allows you to work in places where you do not have
internet access, or where access is slow enough that you do not want
to save to a remote repository very frequently.

Saving and Sharing Smalltalk Code 53

% B Monticello Browser @O

+Package Erowsze Seripts Histary Changes Backport Save +Repository Open

F9Deprecated (39Deprecated-md. 11) = | fUezersfoscars/Documents/Projects/SqueakBvExan™
Ealloon (Balloon-ar.13) A httpfsource squeakfioundation, org/ 3% &
Collections (Collectioniz-md.70) httpfizource.impara, def/me

CollectionsTests (CollectionsTests-md. 330 http/izource. squeakionndation. orgfinbox
Compiler {Compiler-zd4.57) httpi/fzource equeakioundation, org/Balloon
Compression (Compression-ar.8) httpfizource aqueakioundation org/Compressio
ETovs (EToys-2d.21) hittp/izource. squeakionndation, org/Graphics
Exceptions {(Exceptions-zd.8) hittp /e aqueaksource, com/ToolBuilder

Filez (Files-md. 18} hittp A www . squeaksource. com/Packagelnfo
FixUnderscores (FixUnderscores-cmm,10) httpfizource. squeakionndation. org/Squeakilay
Flash (Flash-ar.5) hittp/izource. squeakioundation. org/network
FlexibleVocabularies (FlexibleVocatularies-al.5) || http://source wiresong . casob/

Graphics (Graphicz-ar.39) httpfizource, wiresong, casfmad

GraphicsTests (GraphicsTests-ar.9)
Kernel (Kernel-sd,150)
EernelTestz (KernelTests-zd.50)

Figure 2.15: The Monticello browser.

Saving and Loading Code with Monticello. On the left-hand side
of the Monticello browser is a list of packages that have a version
loaded into the image; packages that have been modified since they
were loaded are marked with an asterisk. (These are sometimes called
dirty packages.) If you select a package, the list of repositories is
restricted to just those repositories that contain a copy of the selected
package.

What is a package? For now, you can think of a package as a group
of class and method categories that share the same prefix. Since we
put all of the code for the Quinto game into the class category called
SBE-Quinto, we can refer to it as the SBE-Quinto package.

Add the SBE-Quinto package to your Monticello browser using the

button.

SqueakSource: a SourceForge for Squeak. We think that the best
way to save your code and share it is to create an account for your
project on a SqueakSource server. SqueakSource is like SourceForge:
it is a web front-end to a HTTP Monticello server that lets you man-
age your projects. A number of SqueakSource servers around the
Internet provide Monticello repositories and other facilities for de-

54 A First Application

velopment projects, including as a Wiki for documentation, remote
code browsing, an RSS feed for update notification, and automatic
publishing on SqueakMap. There is a public SqueakSource server
at http://www.squeaksource.com, and a copy of the code related to this
book is stored there at hitp://www.squeaksource.com/SqueakByExample.html.
You can look at this project with a web browser, but it’s a lot more
productive to do so from inside Squeak, using a special-purpose tool
called the Monticello browser, which lets you manage your packages.

N Open a web browser to www.squeaksource.com. Create an account for
yourself and then create (i.e., “register”) a project.

SqueakSource will show you the information that you should use
when adding a repository using the Monticello browser.

Once your project has been created on SqueakSource, you have to
tell your Squeak system to use it.

) With the SBE-Quinto package selected, click the button in

the Monticello browser.

You will see a list of the different types of Repository that are
available; to add a SqueakSource repository select HTTP. You will be
presented with a dialog in which you can provide the necessary infor-
mation about the server. You should adapt the template to identify
your SqueakSource project, initials and password:

MCHTttpRepository
location: 'http://www.squeaksource.com/ YourProject'
user: "yourlnitials'
password: 'yourPassword'

If you provide empty initials and password strings, you can still load
the project, but you will not be able to update it:

MCHTttpRepository
location: 'http://www.squeaksource.com/SqueakByExample'
user:"
password: "

Once you have accepted this template, your new repository should
be listed on the right-hand side of the Monticello browser.

http://www.squeaksource.com
http://www.squeaksource.com/SqueakByExample.html
www.squeaksource.com

Chapter Summary 55

x B Repository: http://www.squeaksource.com/SBEQuinto @0

| Refresh I Browse I History | Changes I Load | Merge | Adopt I Copv | Diff
SBE-Quinto 8| | SEE-Quinto-on.2.mez .
A

A | SBE-Quinto-ofi,l.mez

[\Iame: SEE-Quinto-on.2

Author: ot

Time: 18 June 2007, 1:58:02 pm

TUID: 2ag91294-1493-11dc-be02-001451 2f 6dde
Anicestors: SBE-Quinto-of,l

Q0

Added a class comment

Figure 2.16: Browsing a Monticello Repository

1 Click on the button to save a first version of your Quinto game
on SqueakSource.

To load a package into your image, you must first select a particular
version. You can do this in the repository browser, which you can
open with using the button or the yellow-button menu. Once
you have selected a version, you can load it onto your image.

e

{1 Open the SBE-Quinto repository you have just saved.

Monticello has many more capabilities, which will be discussed in
depth in Chapter 6. You can also look at the on-line documentation
for Monticello at http://www.wiresong.ca/Monticello/.

210 Chapter Summary

In this chapter you have seen how to create categories, classes and
methods. You have see how to use the system browser, the inspector,
the debugger and the Monticello browser.

* Categories are groups of related classes.

http://www.wiresong.ca/Monticello/

56

A First Application

A new class is created by sending a message to its superclass.
Protocols are groups of related methods.

A new method is created or modified by editing its definition in
the browser and then accepting the changes.

The inspector offers a simple, general-purpose GUI for inspect-
ing and interacting with arbitrary objects.

The system browser detects usage of undeclared methods and
variables, and offers possible corrections.

The initialize method is automatically executed after an object is
created in Squeak. You can put any initialization code there.

The debugger provides a high-level GUI to inspect and modify
the state of a running program.

You can share source code filing out a category.

A better way to share code is to use Monticello to manage an ex-
ternal repository, for example defined as a SqueakSource project.

57

Chapter 3

Syntax in a Nutshell

Squeak, like most modern Smalltalk dialects, adopts a syntax very
close to that of Smalltalk-80. The syntax is designed so that program
text can be read aloud as though it were a kind of pidgin English:

(Smalltalk includes: Class) ifTrue: [Transcript show: Class superclass]

Squeak’s syntax is minimal. Essentially there is syntax only for sending
messages (i.e., expressions) and declaring methods. Expressions are built
up from a very small number of primitive elements. There are only
6 keywords, and there is no syntax for control structures or declar-
ing new classes. Instead, nearly everything is achieved by sending
messages to objects. For instance, instead of an if-then-else control
structure, Smalltalk sends messages like ifTrue: to Boolean objects. New
(sub-)classes are created by sending a message to their superclass.

3.1 Syntactic Elements

Expressions are composed of the following building blocks: (i) six
reserved keywords, or pseudo-variables: self, super, nil, true, false, and
thisContext, (ii) constant expressions for literal objects including numbers,
characters, strings, symbols and arrays, (iii) variable declarations, (iv)

58 Syntax in a Nutshell
Syntax What it represents
startPoint a variable name
Transcript a global variable name
self pseudo-variable
1 decimal integer
2r101 binary integer
1.5 floating point number
2.4e7 exponential notation
$a the character ‘a’
"Hello’ the string “Hello”
#Hello the symbol #Hello
#(123) a literal array
{1.2.1+2} a dynamic array
"a comment” a comment
[xy] declaration of variables x and y
X =1 assign 1 to x
[x+Yy] a block that evaluates to x+y
<primitive: 1> virtual machine primitive or annotation
3 factorial unary message
3+4 binary messages

2 raisedTo: 6 modulo: 10

keyword message

T true
Transcript show: ’hello’. Transcript cr
Transcript show: ’hello’; cr

return the value true
expression separator
message cascade

Table 3.1: Squeak Syntax in a Nutshell

assignments, (v) block closures, and (vi) messages.

We can see examples of the various syntactic elements in Table 3.1.

Local variables startPoint is a variable name, or identifier. By conven-
tion, identifiers are composed of words in “camelCase” (i.e., each
word except the first starting with an upper case letter). The
first letter of an instance variable, method or block argument,

Syntactic Elements 59

or temporary variable must be lower case. This indicates to the
reader that the variable has a private scope.

Shared variables Identifiers that start with upper case letters are
global variables, class variables, pool dictionaries or class
names. Transcript is a global variable, an instance of the class
TranscriptStream.

The receiver. self is a keyword that refers to the object inside which
the current method is executing. We call it “the receiver” because
this object will normally have received the message that caused
the method to execute. self is called a “pseudo-variable” since
we cannot assign to it.

Integers. In addition to ordinary decimal integers like 42, Squeak also
provides a radix notation. 2r101 is 101 in radix 2 (i.e., binary),
which is equal to decimal 5.

Floating point numbers can be specified with their base-ten expo-
nent: 2.4e7 is 2.4 x 107.

Characters. A dollar sign introduces a literal character: $a is the literal
for ‘a’. Instances of non-printing characters can be obtained by
sending appropriately named messages to the Character class,
such as Character space and Character tab.

Strings. Single quotes are used to define a literal string. If you want a
string with a quote inside, just double the quote, as in 'G"day".

Symbols are like Strings, in that they contain a sequence of characters.
However, unlike a string, a literal symbol is guaranteed to be
globally unique. There is only one Symbol object #Hello but there
may be multiple String objects with the value 'Hello'.

Compile-time arrays are defined by #(), surrounding space-
separated literals. Everything within the parentheses must be
a compile-time constant. For example, #(27 #(true false) abc) is a
literal array of three elements: the integer 27, the compile-time
array containing the two booleans, and the symbol #abc.

60 Syntax in a Nutshell

Run-time arrays. Curly braces { } define a (dynamic) array at run-time.
Elements are expressions separated by periods. So {1.2. 1+2}
defines an array with elements 1, 2, and the result of evaluating
1+2.

Comments are enclosed in double quotes. "hello"is a comment, not a
string, and is ignored by the Squeak compiler. Comments may
span multiple lines.

Local variable definitions. Vertical bars | | enclose the declaration of
one or more local variables in a method (and also in a block).

Assignment. := assigns an object to a variable. Sometimes you will
see «— used instead. Unfortunately, since this is not an ASCII
character, it will appears as an underscore unless you are using
a special font. So, x := 1 is the same as x «+— 1 or x _ 1. You should
use := since the other representations have been deprecated since
Squeak 3.9.

Blocks. Square brackets [] define a block, also known as a block clo-
sure or a lexical closure, which is a first-class object representing
a function. As we shall see, blocks may take arguments and can
have local variables.

Primitives. <primitive: ...> denotes an invocation of a virtual machine
primitive. (<primitive: 1> is the VM primitive for Smallinteger»+.)
Any code following the primitive is executed only if the prim-
itive fails. Since Squeak 3.9, the same syntax is also used for
method annotations.

Unary messages consist of a single word (like factorial) sent to a re-
ceiver (like 3).

Binary messages are operators (like +) sent to a receiver and taking a
single argument. In 3+4, the receiver is 3 and the argument is 4.

Keyword messages consist of multiple keywords (like raisedTo:
modulo:), each ending with a colon and taking a single argu-
ment. In the expression 2 raisedTo: 6 modulo: 10, the message selec-
tor raisedTo:modulo: takes the two arguments 6 and 10, one follow-
ing each colon. We send the message to the receiver 2.

Pseudo-variables 61

Method return. 7 is used to return a value from a method or a block.
(You must type ~ to obtain the T character.)

Sequences of statements. A period or full-stop (.) is the statement
separator. Putting a period between two expressions turns them
into independent statements.

Cascades. Semicolons can be used to send a cascade of messages to a
single receiver. In Transcript show: 'hello’; cr we first send the key-
word message show: 'hello’ to the receiver Transcript, and then we
send the same receiver the unary message cr.

The classes Number, Character, String and Boolean are described in
more detail in Chapter 8.

3.2 Pseudo-variables

In Smalltalk, there are 6 reserved keywords, or pseudo-variables: nil,
true, false, self, super, and thisContext. They are called pseudo-variables
because they are predefined and cannot be assigned to. true, false,
and nil are constants while the values of self, super, and thisContext vary
dynamically as code is executed.

true and false are the unique instances of the Boolean classes True and
False. See Chapter 8 for more details.

self always refers to the receiver of the currently executing method.
super also refers to the receiver of the current method, but when you
send a message to super, the method-lookup changes so that it starts
from the superclass of the class containing the method that uses super.
For further details see Chapter 5.

nil is the undefined object. It is the unique instance of the class
UndefinedObject. Instance variables (and Class variables) are initialized
to nil.

thisContext is a pseudo-variable that represents the top frame of the
run-time stack. In other words, it represents the currently executing
MethodContext or BlockContext. thisContext is not normally of interest to

62 Syntax in a Nutshell

most programmers, but it is essential for implementing development
tools like the debugger.

3.3 Message Sends

There are three kinds of messages in Squeak.

1. Unary messages take no argument. 1 factorial sends the message
factorial to the object 1.

2. Binary messages take exactly one argument. 1+2 sends the
message + with argument 2 to the object 1.

3. Keyword messages take an arbitrary number of arguments. 2
raisedTo: 6 modulo: 10 sends the message consisting of the message
selector raisedTo:modulo: and the arguments 6 and 10 to the object
2.

Unary message selectors consist of alphanumeric characters, and
start with a lower case letter.

Binary message selectors consist of one or more characters from
the following set:

+-N\r~v<>=@%| & ?,

Keyword message selectors consist of a series of alphanumeric
keywords, where each keyword starts with a lower-case letter and
ends with a colon.

Unary messages have the highest precedence, then binary mes-
sages, and finally keyword messages, so:

2 raisedTo: 1 + 3 factorial —— 128

(First we send factorial to 3, then we send + 6 to 1, and finally we send
raisedTo: 7 to 2.) Recall that we use the notation expression — result
to show the result of evaluating an expression.

Method Syntax 63

Precedence aside, evaluation is strictly from left to right, so
1+2+«3 — 9

not 7. Parentheses must be used to alter the order of evaluation:

1+(2+3 — 7

Message sends may be composed with periods and semi-colons. A
period-separated sequence of expressions causes each expression in
the series to be evaluated as a statement, one after the other.

Transcript cr.
Transcript show: 'hello world'.
Transcript cr

This will send cr to the Transcript object, then send it show: hello world',
and finally send it another cr.

When a series of messages is being sent to the same receiver, then
this can expressed more succinctly as a cascade. The receiver is specified
just once, and the sequence of messages is separated by semi-colons:

Transcript cr;
show: 'hello world’;
cr

This has precisely the same effect as the previous example.

3.4 Method Syntax

Whereas expressions may be evaluated anywhere in Squeak (for ex-
ample, in a workspace, in a debugger, or in a browser), methods are
normally defined in a browser window, or in the debugger. (Methods
can also be filed in from an external medium, but this is not the usual
way to program in Squeak.)

Programs are developed one method at a time, in the context of
a given class. (A class is defined by sending a message to an exist-
ing class, asking it to create a subclass, so there is no special syntax
required for defining classes.)

64 Syntax in a Nutshell

Here is the method lineCount in the class String. (The usual conven-
tion is to refer to methods as ClassName»methodName, so we call this
method String»lineCount.)

Method 3.1: Line count

String»lineCount
"Answer the number of lines represented by the receiver,
where every cr adds one line."
| cr count |
cr := Character cr.
count :=1 min: self size.
self do:
[:c | ¢ == crifTrue: [count := count + 1]].
T count

Syntactically, a method consists of:

1. the method pattern, containing the name (i.e., lineCount) and any
arguments (none in this example);

2. comments (these may occur anywhere, but the convention is to
put one at the top that explains what the method does);

3. declarations of local variables (i.e., cr and count); and

4. any number of expressions separated by dots; here there are
four.

The evaluation of any expression preceded by a T (typed as ") will
cause the method to exit at that point, returning the value of that
expression. A method that terminates without explicitly returning
some expression will implicitly return self.

Arguments and local variables should always start with lower
case letters. Names starting with upper-case letters are assumed to be
global variables. Class names, like Character, for example, are simply
global variables referring to the object representing that class.

Block Syntax 65

3.5 Block Syntax

Blocks provide a mechanism to defer the evaluation of expressions.
A block is essentially an anonymous function. A block is evaluated
by sending it the message value. The block answers the value of the
last expression in its body, unless there is an explicit return (with 1), in
which case it does not answer any value.

[1T+2]value — 3

Blocks may take parameters, each of which is declared with a lead-
ing colon. A vertical bar separates the parameter declaration(s) from
the body of the block. To evaluate a block with one parameter, you
must send it the message value: with one argument. A two-parameter
block must be sent value:value:, and so on, up to 4 arguments.

[x]1+x]value:2 — 3
[x:y|x+y]value:1value:2 — 3

If you have a block with more than four parameters, you must use
valueWithArguments: and pass the arguments in an array. (A block with
a large number of parameters is often a sign of a design problem.)

Blocks may also declare local variables, which are surround by
vertical bars, just like local variable declarations in a method. Locals
are declared after any arguments:

[x:wy]||z]|z:=x+y.z]value: 1value:2 — 3

Blocks are actually lexical closures, since they can refer to vari-
ables of the surrounding environment. The following block refers the
variable x of its enclosing environment:

[x|
X :=1.
['y|x+y]value:2 — 3

Blocks are instances of the class BlockContext. This means that they
are objects, so they can be assigned to variables and passed as ar-
guments just like any other object. For both understandability and

66 Syntax in a Nutshell

performance, it is better for blocks to refer only to their parameters
and local variables; blocks that do not refer external variables are
optimized by the compiler. However, the ability to refer (“capture”)
non-local variables can be very powerful when it is needed.

Caveat: In the current version (3.9), Squeak does not actually sup-
port true block-closures, since block arguments are actually simulated
as temporary variables of the enclosing method. There is a new com-
piler that supports full block closures, but it is still being worked on
and is not used by default. In somewhat obscure situations this prob-
lem can lead to naming conflicts. This situation arises because Squeak
is based on an early implementation of Smalltalk. If you encounter
this problem, have a look at the senders of the method fixTemps, or load
the Closure Compiler.

3.6 Conditionals and Loops in a Nutshell

Smalltalk offers no special syntax for control constructs. Instead, these
are typically expressed by sending messages to booleans, numbers
and collections, with blocks as arguments.

Conditionals are expressed by sending one of the messages ifTrue:,
ifFalse: or ifTrue:ifFalse: to the result of a boolean expression. See Chap-
ter 8 for more about booleans.

(17 « 13 > 220)
ifTrue: ['bigger']
ifFalse: ['smaller] — 'bigger'

Loops are typically expressed by sending messages to blocks, inte-
gers or collections. Since the exit condition for a loop may be repeat-
edly evaluated, it should be a block rather than a boolean value. Here
is an example of a very procedural loop:

n:=1.
[n <1000] whileTrue: [n := n«2].
n — 1024

whileFalse: reverses the exit condition.

Conditionals and Loops in a Nutshell 67

n:=1.
[n>1000] whileFalse: [n :=n+2]1].
n — 1024

timesRepeat: offers a simple way to implement a fixed iteration:

n:=1.
10 timesRepeat: [n :=n«2].
n — 1024

We can also send the message to:do: to an number which then acts
as the initial value of a loop counter. The two arguments are the upper
bound, and a block that takes the current value of the loop counter as
its argument:

n:=0.
1 to: 10 do: [:counter | n := n + counter].
n — 55

High-Order Iterators. Collections comprise a large number of dif-
ferent classes, many of which support the same protocol. The most
important messages for iterating over collections include do:, collect:,
select:, reject;, detect: and injectiinto:. These messages define high-level
iterators that allow one to write very compact code.

An Interval is a collection that lets one iterate over a sequence of
numbers from the starting point to the end. 1 to: 10 represents the
interval from 1 to 10. Since it is a collection, we can send the message
do: to it. The argument is a block that is evaluated for each element of
the collection.

n:=0.
(1to: 10) do: [:element | n :=n + element].
n — 55

collect: builds a new collection of the same size, transforming each
element.

(1to: 10) collect: [:each | each xeach] —— #(149 1625 36 49 64 81 100)

68 Syntax in a Nutshell

select: and reject: build new collections, each containing a subset of
the elements satisfying (or not) the boolean block condition. detect:
returns the first element satisfying the condition. Don’t forget that
strings are also collections, so you can iterate over all the characters.

'hello there' select: [:char | charisVowel] —— 'eoee’
'hello there' reject: [:char | charisVowel] —— ‘hll thr'
'hello there' detect: [:char | charisVowel] — $e

Finally, you should be aware that collections also support a
functional-style fold operator in the injectinto: method. This allows
one to repeatedly evaluate an expression, starting with a seed value
and then using each element of the collection to produce a cumulative
result, such as a product or a sum.

(1 to: 10) inject: 0 into: [:sum :each | sum + each] — 55

This is equivalent to 0+1+2+3+4+5+6+7+8+9+10.

More about collections and streams can be found in Chapter 9 and
Chapter 10.

3.7 Primitives and Pragmas

In Smalltalk everything is an object, and everything happens by send-
ing messages. Nevertheless, at certain points we hit rock bottom.
Certain objects can only get work done by invoking virtual machine
primitives.

For example, the following are all implemented as primitives:
memory allocation (new, new:), bit manipulation (bitAnd:, bitOr:, bitShift:),
pointer and integer arithmetic (+, -, <, >, +,/, =, ==...), and array access
(at:, at:put:).

Primitives are invoked with the syntax <primitive: aNumber>. A

method that invokes such a primitive may also include Smalltalk
code, which will be evaluated only if the primitive fails.

Here we see the code for Smallinteger»+. If the primitive fails, the
expression super + aNumber will be evaluated and returned.

Chapter Summary 69

Method 3.2: A primitive method

+ aNumber
"Primitive. Add the receiver to the argument and answer with the result
if it is a Smallinteger. Fail if the argument or the result is not a
Smalllnteger Essential No Lookup. See Object documentation
whatlsAPrimitive."

<primitive: 1>
T super + aNumber

Since Squeak 3.9, the angle bracket syntax is also used for method
annotations called pragmas.

3.8 Chapter Summary

e Squeak has (only) six reserved identifiers also called pseudo-
variables: true, false, nil, self, super, and thisContext.

* There are five kinds of literal objects: numbers (5, 2.5, 1.9e15, 2
r111), characters ($a), strings (‘hello’), symbols (#hello), and arrays
(#(hello' #hello))

® Strings are delimited by single quotes, comments by double
quotes. To get a quote inside a string, double it.

¢ Unlike strings, symbols are guaranteed to be globally unique.

® Use #(...) to define a literal array. Use { ... } to define a dynamic
array. Note that
#(1+2)sizeé — 3,but
{1+2}size — 1

* There are three kinds of messages: unary (e.g., 1 asString, Array new
), binary (e.g., 3 + 4, 'hi', ' there"), and keyword (e.g., 'hi" at: 2 put: $o)

® A cascaded message send is a sequence of messages sent to the
same target, separated by semi-colons: OrderedCollection new add:
#calvin; add: #hobbes; size — 2

70

Syntax in a Nutshell

Local variables are declared with vertical bars. Use := for assign-
ment; — or _ will work as well but are deprecated since Squeak
3.9. |x| x:=1

Expressions consist of message sends, cascades and assignments,
possibly grouped with parentheses. Statements are expressions
separated by periods.

Block closures are expressions enclosed in square brackets.
Blocks may take arguments and can contain temporary vari-
ables. The expressions in the block are not evaluated until you
send the block a value... message with the correct number of ar-
guments.

[x|x+2]value:4 — 6.

There is no dedicated syntax for control constructs, just messages
that conditionally evaluate blocks.
(Smalltalk includes: Class) ifTrue: [Transcript show: Class superclass]

71

Chapter 4

Understanding Message
Syntax

Although Smalltalk’s message syntax is extremely simple, it is un-
conventional and can take some getting used to. This chapter offers
some guidance to help you get acclimatized to this special syntax for
sending messages. If you already feel comfortable with the syntax,
you may choose the skip this chapter, or come back to it later.

4.1 Identifying Messages

In Smalltalk, except for the syntactic elements listed in Chapter 3 (:= 1.

;#(0 {[:1]), everything is a message send. As in C++, you can define
operators like + for your own classes, but all operators have the same
precedence. Moreover, one cannot change the arity of a method: - is
always a binary message, and there is no way to have a unary form
with a different overloading.

In Smalltalk the order in which messages are sent is determined
by the kind of message. There are just three kinds of messages: unary,
binary, and keyword messages. Unary messages are always sent first,

72 Understanding Message Syntax

then binary messages and finally keyword ones. As in most languages,
parentheses can be used to change the order of evaluation. These rules
make Smalltalk code as easy to read as possible. And most of the time
you do not have to think about the rules.

As most computation in Smalltalk is done by message passing,
correctly identifying messages is crucial. The following terminology
will help us:

* A message is composed of the message selector and the optional
message arguments.
* A message is sent to a receiver.

¢ The combination of a message and its receiver is called a message
send as shown in Figure 4.1.

message

total <= max

T

receiver message selector message arguments

\

Colorr:1g:0b: 0

message
a message send

Figure 4.2: aMorph color: Color
yellow is composed of two expres-
Figure 4.1: Two messages com- sions: Color yellow and aMorph color:
posed of a receiver, a method se- ~ Color yellow.

lector, and a set of arguments.

A message is always sent to a receiver, which can be
a single literal or a variable or the result of evaluating
another expression.

We propose you to help you with a graphical notation: We un-
derline the receiver to help you identify it. We also surround each

Identifying Messages 73

Expression Message type Result

Color yellow unary Creates a color.

aPen go: 100. keyword The receiving pen moves
forward 100 pixels.

100 + 20 binary The number 100 receives
the message + with the
number 20.

Browser open unary Opens a new browser.

Pennewgo: 100 unary and keyword A pen is created and
moved 100 pixels.

aPengo: 100 + 20 keyword and binary = The receiving pen moves
forward 120 pixels.

Table 4.1: Examples of Messages

expression in an ellipse and number expressions starting from the first
one that will be sent to help you see the order in which messages are
sent.

Figure 4.2 represents two message sends, Color yellow and aMorph
color: Color yellow, hence there are two ellipses. The expression Color
yellow is sent first so its ellipse is numbered 1. There are two receivers:
aMorph which receives the message color: ... and Color which receives
the message yellow. Both receivers are underlined.

A receiver can be the first element of a message, such as 100 in the
expression 100 + 200 or Color in the expression Color yellow. However,
a receiver can also be the result of other messages. For example in
the message Pen new go: 100, the receiver of the message go: 100 is the
object returned by the expression Pen new. In all the cases, a message is
sent to an object called the receiver which may be the result of another
message send.

Table 4.1 shows several examples of messages. You should note
that not all messages have arguments. Unary messages like open do
not have arguments. Single keyword and binary messages like go: 100
and + 20 each have one argument. There are also simple messages and
composed ones. Color yellow and 100 + 20 are simple: a message is sent

74 Understanding Message Syntax

to an object, while the expression aPen go: 100 + 20 is composed of two
messages: + 20 is sent to 100 and go: is sent to aPen with the argument
being the result of the first message. A receiver can be an expression
which returns an object. In Pen new go: 100, the message go: 100 is sent
to the object that results from the evaluation of the expression Pen new.

4.2 Three Kinds of Messages

Smalltalk defines a few simple rules to determine the order in which
the messages are sent. These rules are based on the distinction between
3 different kinds of messages:

* Unary messages are messages that are sent to an object without
any other information. For example in 3 factorial, factorial is a
unary message.

® Binary messages are messages consisting of operators (often arith-
metic). They are binary because they always involve only two
objects: the receiver and the argument object. For example in 10
+ 20, + is a binary message sent to the receiver 10 with argument
20.

* Keyword messages are messages consisting of one or more key-
words, each ending with a colon (:) and taking an argument.
For example in anArray at: 1 put: 10, the keyword at: takes the ar-
gument 1 and the keyword put: takes the argument 10.

Unary Messages

Unary messages are messages that do not require any argument. They
follow the syntactic template: receiver messageName. The selector is
simply made up of a succession of characters not containing : (e.g.,
factorial, open, class).

Three Kinds of Messages 75

89 sin — 0.860069405812453
3 sgrt — 1.732050807568877
Float pi — 3.141592653589793
'blop’ size — 4

true not — false

Objectclass —— Object class "The class of Object is Object class (!)"

Unary messages are messages that do not require
any argument.
They follow the syntactic template: receiver selector

Binary Messages

Binary messages are messages that require exactly one argument and
whose selector consists of a sequence of one or more characters from
theset: +,-,%,/,&, =,>,], <, ~, and @. Note that -- is not allowed for
parsing reasons.

100@100 — 100@100 ‘creates a Point object"

3+4 — 7

10-1 — 9

4<=3 — false

(4/3)«3=4 — true "equality is just a binary message, and Fractions are
exact”

(3/4) == (3/4) —— false "two equal Fractions are not the same object”

Binary messages are messages that require exactly
one argument and whose selector is composed of a
sequence of characters from: +, -, +,/, & =, >, |, <, ~,
and @. -- is not possible.

They follow the syntactic template: receiver selector
argument

76 Understanding Message Syntax

Keyword messages

Keyword messages are messages that require one or more arguments
and whose selector consists of one or more keywords each ending in :.
Keyword messages follow the syntactic template: receiver selectorWor-
dOne: argumentOne wordTwo: argumentTwo

Each keyword takes an argument. Hence r:g:b: is a method with
three arguments, playFileNamed: and at: are methods with one argument,
and at:put: is a method with two arguments. To create an instance of the
class Color one can use the method r:g:b: as in Color r: 1 g: 0 b: 0, which
creates the color red. Note that the colons are part of the selector.

In Java or C++, the Smalltalk method invocation
Color r: 1 g: 0 b: 0 would be written Color.rgb(1,0,0).

1to0: 10 — (1to:10) "create an interval”
Colorr:1g:0b: 0 —— Color red "create a new color"
12 between: 8 and: 15 —— true

nums := Array newFrom: (1 to: 5).
nums at: 1 put: 6.
nums — #(62345)

Keyword based messages are messages that require
one or more arguments. Their selector consists of
one or more keywords each ending in a colon (:).
They follow the syntactic template:

receiver selectorWordOne: argumentOne wordTwo: argu-
mentTwo

4.3 Message Composition

The three kinds of messages each have different precedence, which
allows them to be composed in an elegant way.

Message Composition 77

1. Unary messages are always sent first, then binary messages and
finally keyword messages.

2. Messages in parentheses are sent prior to any kind of messages.

3. Messages of the same kind are evaluated from left to right.

These rules lead to a very natural reading order. Now if you want
to be sure that your messages are sent in the order that you want
you can always put more parentheses as shown in Figure 4.3. In
this figure, the message yellow is an unary message and the message
color: a keyword message, therefore the expression Color yellow is sent
first. However as expressions in parentheses are sent first putting
(unnecessary) parentheses around Color yellow just emphasizes that it
will be sent first. The rest of the section illustrates each of these points.

aPen color: Color yellow;

is equivalent to (aPen color: { (Color yellow

)

Figure 4.3: Unary messages are sent first so Color yellow is sent. This
returns a color object which is passed as argument of the message
aPen color:.

Unary > Binary > Keywords
Unary messages are sent first, then binary messages, and finally key-

word messages. We also say that unary messages have a higher prior-
ity over the other kinds of messages.

Rule One. Unary messages are sent first, then binary
messages, and finally keyword based messages.
Unary > Binary > Keyword

As these examples show, Smalltalk’s syntax rules generally ensure
that expressions can be read in a natural way:

78 Understanding Message Syntax

1000 factorial / 999 factorial —— 1000
2 raisedTo: 1 + 3 factorial — 128

Unfortunately the rules are a bit too simplistic for arithmetic ex-
pressions, so you must introduce parentheses whenever you want to
impose a priority over binary operators:

1+2+83 — 9
1+(2+3) — 7

The following example, which is a bit more complex (!), offers a
nice illustration that even complicated Smalltalk expressions can be
read in a natural way:

[:aClass | aClass methodDict keys select: [:aMethod | (aClass>>aMethod)
isAbstract]] value: Boolean —— an IdentitySet(#or: #| #and: #&
#ifTrue: #ifTrue:ifFalse: #ifFalse: #not #ifFalse:ifTrue:)

Here we want to know which methods of the Boolean class are ab-
stract. We ask some argument class, aClass, for the keys of its method
dictionary, and select those methods of that class that are abstract.
Then we bind the argument aClass to the concrete value Boolean. We
need parentheses only to send the binary message >>, which selects
a method from a class, before sending the unary message isAbstract
to that method. The result shows us which methods must be imple-
mented by Boolean’s concrete subclasses True and False.

Example. In the message aPen color: Color yellow, there is one unary
message yellow sent to the class Color and a keyword message color: sent
to aPen. Unary messages are sent first so the expression Color yellow is
sent (1). This returns a color object which is passed as argument of
the message aPen color: aColor (2) as shown in example 4.1. Figure 4.3
shows graphically how messages are sent.

Message Composition 79

Example 4.1: Decomposing the evaluation of aPen color: Color yellow

aPen color: Color yellow

(1) Color yellow "unary message is sent first"
— aColor
(2) aPen color: aColor "keyword message is sent next"

Example. In the message aPen go: 100 + 20, there is a binary message
+20 and a keyword message go:. Binary messages are sent prior to
keyword messages so 100 + 20 is sent first (1): the message + 20 is sent
to the object 100 and returns the number 120. Then the message aPen
go: 120 is sent with 120 as argument (2). Example 4.2 shows how the
expression is evaluated.

Example 4.2: Decomposing aPen go: 100 + 20
aPen go: 100 + 20

(1) 100 + 20 "binary message first"
— 120
(2) aPen go: 120 "then keyword message”

Figure 4.4: Unary messages are

sent first so Color yellow is sent. Figure 4.5: Decomposing Pen new
This returns a color object which go: 100 + 20

is passed as argument of the mes-

sage aPen color:.

Example. As an exercise we let you decompose the evaluation of
the message Pen new go: 100 + 20 which is composed of one unary, one
keyword and one binary message (see Figure 4.5).

80 Understanding Message Syntax

Parentheses First

Rule Two. Parenthesised messages are sent prior to
other messages.
(Msg) > Unary > Binary > Keyword

1.5 tan rounded asString = (((1.5 tan) rounded) asString) —— true "
parentheses not needed here"

3 + 4 factorial — 27 "(not 5040)"

(3 + 4) factorial —— 5040

Here we need the parentheses to force sending lowMajorScaleOn:
before play.

(FMSound lowMajorScaleOn: FMSound clarinet) play

"(1) send the message clarinet to the FMSound class to create a clarinet sound.

(2) send this sound to FMSound as argument to the lowMajorScaleOn: keyword
message.

(3) play the resulting sound.”

Example. The message (65@325 extent: 134 @ 100) center returns the
center of a rectangle whose top left point is (65, 325) and whose size
is 134x100. Example 4.3 shows how the message is decomposed and
sent. First the message between parentheses is sent: it contains two
binary messages 65@325 and 134@100 that are sent first and return
points, and a keyword message extent: which is then sent and returns
a rectangle. Finally the unary message center is sent to the rectangle
and a point is returned. Evaluating the message without parentheses
would lead to an error because the object 100 does not understand the
message center.

Example 4.3: Example of Parentheses.

(65 @ 325 extent: 134 @ 100) center
(1) 65@325 "binary"
— aPoint
(2) 134@100 "binary"
—— anotherPoint

Message Composition 81

2

|

Figure 4.6: Decomposing Pen new down

(3) aPoint extent: anotherPoint "keyword"
— aRectangle
(4) aRectangle center "unary"

— 132@375

From Left to Right

Now we know how messages of different kinds or priorities are han-
dled. The final question to be addressed is how messages with the
same priority are sent. They are sent from the left to the right. Note
that you already saw this behavior in example 4.3 where the two point
creation messages (@) were sent first.

Rule Three. When the messages are of the same
kind, the order of evaluation is from left to right.

Example. In the expression Pen new down all messages are unary mes-
sages, so the leftmost one, Pen new, is sent first. This returns a newly
created pen to which the second message down is sent, as shown in
Figure 4.6.

Arithmetic Inconsistencies

The message composition rules are simple but they result in inconsis-
tency for the evaluation of arithmetic expressions expresed in terms

82 Understanding Message Syntax

of binary messages. Here we see the common situations where extra
parentheses are needed.

3+4+5 — 35 "(not 23) Binary messages sent from left to right”
3+(4+5) — 23

1+1/3 — (2/3) "and not 4/3"

1+ (1/3) — (4/3)

1/3 +2/3 — (7/9) "andnot 1"

(1/3) + (2/3) — 1

Example. In the expression 20 + 2 « 5, there are only binary messages
+ and «. However in Smalltalk there is no specific priority for the
operations + and «. They are just binary messages, hence + does not
have priority over +. Here the leftmost message + is sent first (1) and
then the » is sent to the result as shown in example 4.4.

Example 4.4: Decomposing 20 + 2 » 5

"As there is no priority among binary messages, the leftmost message + is
evaluated first even if by the rules of arithmetic the = should be sent first."

20+2+5
(1) 2042 — 22
@ 22 +«5 — 110

As shown in example 4.4 the result of this expression is not 30 but
110. This result is perhaps unexpected but follows directly from the
rules used to send messages. This is somehow the price to pay for the
simplicity of the Smalltalk model. To get the correct result, we should
use parentheses. When messages are enclosed in parentheses, they are
evaluated first. Hence the expression 20 + (2 « 5) returns the result as
shown in example 4.5.

Message Composition 83

Figure 4.7: Equivalent messages using parentheses.

Example 4.5: Decomposing 20 + (2 « 5)

"The messages surrounded by parentheses are evaluated first therefore + is sent
prior to + which produces the correct behavior."

20 + (2 + 5)
(1) (2«5 — 10
(2) 20 + 10 — 30

In Smalltalk, arithmetic operators such as + and * do
not have different priority. + and « are just binary
messages, therefore « does not have priority over +.
Use parentheses to obtain the desired result.

Note that the first rule stating that unary messages are sent prior
to binary and keyword messages avoids the need to put explicit paren-
theses around them. Table 4.8 shows expressions written following
the rules and equivalent expressions if the rules would not exist. Both
expressions result in the same effect or return the same value.

84 Understanding Message Syntax

Implicit precedence Explicitly parenthesized equivalent
aPen color: Color yellow aPen color: (Color yellow)

aPen go: 100 + 20 aPen go: (100 + 20)

aPen penSize: aPen penSize + 2 aPen penSize: ((aPen penSize) + 2)

2 factorial + 4 (2 factorial) + 4

Figure 4.8: Expressions and their fully parenthesized equivalents

4.4 Hints for Identifying Keyword Messages

Often beginners have problems understanding when they need to add
parentheses. Let’s see how keywords messages are recognized by the
compiler.

Parentheses or not?

The characters [,], and (,) delimit distinct areas. Within such an area,
a keyword message is the longest sequence of words terminated by
: that is not cut by the characters ., or ;. When the characters [,], and
(,) surround some words with colons, these words participate in the
keyword message local to the area defined.

In this example, there are two distinct keyword messages:
rotatedBy:magnify:smoothing: and at:put:.

aDict
at: (rotatingForm
rotateBy: angle
magnify: 2
smoothing: 1)
put: 3

Hints for Identifying Keyword Messages 85

The characters [,], and (,) delimit distinct areas.
Within such an area, a keyword message is the
longest sequence of words terminated by : that is
not cut by the characters ., or ;. When the characters
[, 1, and (,) surround some words with colons, these
words participate in the keyword message local to
the area defined.

Hints. If you have problems with these precedence rules, you may
start simply by putting parentheses whenever you want to distinguish
two messages having the same precedence.

The following expression does not require parentheses because the
expression x isNil is unary hence is sent prior to the keyword message
ifTrue:.

(x isNil)
ifTrue:[...]

The following expression requires parentheses because the mes-
sages includes: and ifTrue: are both keyword messages.

ord := OrderedCollection new.
(ord includes: $a)
ifTrue[...]

Without parentheses the unknown message includes:ifTrue: would be
sent to the collection!

When to use [] or ()

You may also have problems understanding when to use square brack-
ets rather than parentheses. The basic principle is that you should
use [] when you do not know how many times, potentially zero, an
expression should be evaluated. [expression] will create a block closure
(i.e., an object) from expression, which may be evaluated any number of
times (possibly zero), depending on the context.

86 Understanding Message Syntax

Hence the conditional branches of ifTrue: or ifTrue:ifFalse: require
blocks. Following the same principle both the receiver and the argu-
ment of a whileTrue: message require the use of square brackets since
we do not know how many times either the receiver or the argument
should be evaluated.

Parentheses, on the other hand, only affect the order of sending
messages. No object is created, so in (expression), the expression will
always be evaluated exactly once (assuming the sounding code is
evaluated once).

[x isReady] whileTrue: [y doSomething] "both the receiver and the argument
must be blocks"

4 timesRepeat: [Beeper beep] "the argument is evaluated more than
once, so must be a block"

(x isReady) ifTrue: [y doSomething] "receiver is evaluated once, so is not
a block”

4.5 Expression Sequences

Expressions (i.e., messages sends, assignments ...) separated by periods
are evaluated in sequence. Note that there is no period between
a variable definition and the following expression. The value of a
sequence is the value of the last expression. The values returned by all
the expressions except the last one are ignored. Note that the period is
a separator and not a terminator. Therefore a final period is optional.

| box |
box := 20@30 corner: 60@90.
box containsPoint: 40@50 — true

4.6 Cascaded Messages

Smalltalk offers a way to send multiple messages to the same receiver
using a semicolon (;). This is called the cascade in Smalltalk jargon.

Chapter Summary 87

Expression Msgl ; Msg?2
Transcript show: ' Transcript

Squeak is .)) show: 'Squeak is';
Transcript show: 'fun ', IS equivalent to: show: 'fun ';
Transcript cr. cr

Note that the object receiving the cascaded messages can itself be
the result of a message send. In fact the receiver of all the cascaded
messages is the receiver of the first message involved in a cascade. In
the following example, the first cascaded message is setX:setY since
it is followed by a cascade. The receiver of the cascaded message
setX:setY: is the newly created point resulting from the evaluation of
Point new, and not Point. The subsequent message isZero is sent to that
same receiver.

Point new setX: 25 setY: 35;isZero —— false

4.7 Chapter Summary

* A message is always sent to an object named the receiver which
may be the result of other message sends.

® Unary messages are messages that do not require any argument.
They are of the form of receiver selector.

¢ Binary messages are messages that involve two objects, the re-
ceiver and another object and whose selector is composed of one
or two characters from the following list: +, -, «,/, |, &, =,>,<, 7,
and @. They are of the form: receiver selector argument

¢ Keyword messages are messages that involve more than one
object and that contain at least one colon character (:).
They are of the form: receiver selectorWordOne: argumentOne
wordTwo: argumentTwo

88

Understanding Message Syntax

Rule One. Unary messages are sent first, then binary messages,
and finally keyword messages.

Rule Two. Messages in parentheses are sent before any others.

Rule Three. When the messages are of the same kind, the order
of evaluation is from left to right.

In Smalltalk, traditional arithmetic operators such as + and *
have the same priority. + and - are just binary messages, therefore
« does not have priority over +. You must use parentheses to
obtain a different result.

Part 11

Developing in Squeak

89

91

Chapter 5

The Smalltalk Object
Model

Smalltalk’s programming model is simple and uniform: everything
is an object, and objects communicate only by sending each other
messages. However, this simplicity and uniformity can be a source of
difficulty for programmers used to other languages. In this chapter we
present the core concepts of the Smalltalk object model; in particular
we discuss the consequences of representing classes as objects.

5.1 The Rules of the Model

The Smalltalk object model is based on a set of simple rules that are
applied uniformly. The rules are as follows:

Rule 1. Everything is an object.
Rule 2. Every object is an instance of a class.
Rule 3. Every class has a superclass.

Rule 4. Everything happens by message sends.

92 The Smalltalk Object Model

Rule 5. Method lookup follows the inheritance chain.

Let us look at each of these rules in some detail.

5.2 Everything is an Object

The mantra “everything is an object” is highly contagious. After only
a short while working with Smalltalk, you will start to be surprised at
how this rule simplifes everything you do. Integers, for example, are
truly objects, so you can send messages to them, just as you do to any
other object.

3+4 — 7 "send the message '+ 4'to the object 3, yielding the
object 7"

20 factorial —— 2432902008176640000 "send the message factorial,
yielding a big number"

The representation of 20 factorial is certainly different from the repre-
sentation of 7, but because they are both objects, none of the code —not
even the implementation of factorial —needs to now about this.

Perhaps the most fundamental consequence of this rule is the
following:

Classes are objects too.

Furthermore, classes are not second-class objects: they are really first-
class objects that you can send messages to, inspect, and so on. This
means that Squeak is a truly reflective system, which gives a great
deal of expressive power to developers.

Deep in the implementation of Smalltalk, there are three different
kinds of objects. There are ordinary objects with instance variables
that are passed by references, there are small integers that are passed by
value, and there are indexable objects like arrays that hold a contigu-
ous portion of memory. The beauty of Smalltalk is that you normally
don’t care about the differences between these three kinds of object.

Every object is an instance of a class 93

5.3 Every object is an instance of a class

Every object has a class; you can find out which by sending it the
message class.

1 class — Smallinteger

20 factorial class —— LargePositivelnteger
'hello’ class — ByteString

#(1 2 3) class — Array

(4@5) class — Point

Object new class —— Object

A class defines the structure of its instances via instance variables,
and the behavior of its instances via methods. Each method has a name,
called its selector, which is unique within the class.

Since classes are objects, and every object is an instance of a class, it
follows that classes must also be instances of classes. A class whose
instances are classes is called a metaclass. Whenever you create a class,
the system automatically creates a metaclass for you. The metaclass
defines the structure and behavior of the class that is its instance. 99%
of the time you will not need to think about metaclasses, and may
happily ignore them. (We will have a closer look at metaclasses in
Chapter 12.)

Instance variables

Instance variables in Smalltalk are private to the instance itself. This
is in contrast to Java and C++, which allow instance variables (also
known as “fields” or “member variables”) to be accessed by any other
instance that happens to be of the same class. We say that the encap-
sulation boundary of objects in Java and C++ is the class, whereas in
Smalltalk it is the instance.

In Smalltalk, two instances of the same class cannot access each
other’s instance variables unless the class defines “accessor methods”.
There is no language syntax that provides direct access to the instance
variables of any other object. (Actually, a mechanism called meta-
programming does provide a way to ask another object for the values

94 The Smalltalk Object Model

of its instance variables; meta-programming is intended for writing
tools like the object inspector, whose sole purpose is to look inside
other objects.)

Instance variables can be accessed by name in any of the instance
methods of the class that defines them, and also in the methods defined
in its subclasses. This means that Smalltalk instance variables are
similar to protected variables in C++ and Java. However, we prefer to
say that they are private, because it is considered bad style in Smalltalk
to access an instance variable directly from a subclass.

Example

Method Point»dist: (method 5.1) computes the distance between the
receiver and another point. The instance variables x and y of the
receiver are accessed directly by the method body. However, the
instance variables of the other point must be accessed by sending it
the messages x and y.

Method 5.1: the distance between two points

Point»dist: aPoint
"Answer the distance between aPoint and the receiver."
| dx dy |
dx := aPoint x - x.
dy := aPointy -vy.
T ((dx » dx) + (dy = dy)) sqrt

1@1dist: 4@5 — 5.0

The key reason to prefer instance-based encapsulation to class-
based encapsulation is that it enables different implementations of the
same abstraction to coexist. For example, method point»dist:;, need not
know or care whether the argument aPoint is an instance of the same
class as the receiver. The argument object might be represented in
polar coordinates, or as a record in a database, or on another computer
in a distributed system; as long as it can respond to the messages x
and y, the code in method 5.1 will still work.

Every object is an instance of a class 95

Methods

All methods are public.! Methods are grouped into protocols that indi-
cate their intent. Some common protocol names have been established
by convention, for example, accessing for all accessor methods, and
initialization for establishing a consistent initial state for the object. The
protocol private is sometimes used to group methods that should not
be seen from outside. Nothing, however, prevents you from sending a
message that is implemented by such a “private” method.

Methods can access all instance variables of the object. Some
Smalltalk developers prefer to access instance variables only through
accessors. This practice has some value, but it also clutters the interface
of your classes, and worse, exposes private state to the world.

The Instance Side and the Class Side

Since classes are objects, they can have their own instance variables
and their own methods. We call these class instance variables and class
methods, but they are really no different from ordinary instance vari-
ables and methods: class instance variables are just instance variables
defined by a metaclass, and class methods are just methods defined
by a metaclass.

A class and its metaclass are two separate classes, even though the
former is an instance of the latter. However, this is largely irrelevant to
you as a programmer: you are concerned with defining the behavior
of your objects and the classes that create them.

For this reason, the browser helps you to browse both class and
metaclass as if they were a single thing with two “sides”: the “” and
the “”, as shown in Figure 5.1. Clicking on the button browses
the class Color, i.e., you browse the methods that are executed when
messages are sent to an instance of Color, like the color blue. Pressing
the button browses the class Color class, i.e., you see the methods
that will be executed when messages are sent to the class Color itself.

1Well, almost all. In Squeak, methods whose selectors start with the string pvt are
private: a pvt message can be sent only to self. However, pvt methods are not used very
much.

96 The Smalltalk Object Model

eIt {cr s

x B System Browser: Color: o
Graphics-Primitives |8 BitBlt . =1 alpha .
Graphics-Text % Bitmap 1 blue A Key
Graphics-Transformatii | Color brightness g
Graphics-Fonts ColorMap feopying green instance-of
GraphicsTests-Primitive | Pen equality hue
GraphicsTests-Text PenPointRecorder sroups of shades luminance
GraphicsTests-Files Foint Horphic menu. re
Morphic-Balloon Quadrangle other saturation
Morphic-Basic Rectangle printing
Morphic-Basic-NewCur | Transluce queries
Morphic-Borders self evaluating x B System Browser: Color o
Morphic-Collections-Arsy) | nstance || ? || class |Firansformations visE - Y .
el eiah = Graphics-Primitives 8] | BitBlt o[- an-- #| | colorRampEorDepthiex ™
Graphics-Text “ Bitmap 4 class initialization | hotColdShades: O
browse | senders | implementors | versions | inheritance | hierarchy | inst vars [{ Sraphicsfet 0 Bitas class initializari hotcoldShades:
Graphics-Fonts ColorMap Colormaps _
. . GraphicsTests-Primitive || Pen xamples showHSVPalettes
Retura the hue of this color. an sngle in the range [0.0..360.0]- GraphicsTests-Text PenPointRecordpr instance creation showHuesInteractively
Point named colors wheel
| rg b max min span h | Mory other ‘wheel:saturation:brig’
r _self privateRed. Morphic-Basic Rectangle
2 _self privatebreen. Mor; TranslucentCol
Mor
b _self privateBlue, Mor . [instance | 7 | class
mex _ {(r max: g) maxi b). browse | senders | implementors | versions [inheritance | hierarchy | inst vars | class vars | source
min _ ((r min: g) min: b),
span _ (max - min) asFloat, wheel: thisMany
span = 0.0 ifTrue: [+ 0.0] "Return a collection of thisMany colors evenly spaced around the color Wheel.”

“Color showColors: (Color Wheel: 12)"

+ Color wheel: thisMany saturation: 0.9 brightness: 0.7

Figure 5.1: Browsing a class and its metaclass.

For example, Color blue sends the message blue to the class Color. You
will therefore find the method blue defined on the class side of Color,
not on the instance side.

aColor := Color blue. "Class side method blue"

aColor —— Color blue

aColorred — 0.0 "Instance side accessor method red"
aColorblue — 1.0 "Instance side accessor method blue"

You define a class by filling in the template proposed on the in-
stance side. When you accept this template, the system creates not just
the class that you defined, but also the corresponding metaclass. You
can browse the metaclass by clicking on the button. The only
part of the metaclass creation template that makes sense for you to
edit directly is the list of instance variable names.

Once a class has been created, clicking the button lets you
edit and browse the methods that will be possessed by instances of that
class (and of its subclasses). For example, we can see in Figure 5.1 that
the method hue is defined on instances of the class Color. In contrast,

Every object is an instance of a class 97

the button lets you browse and edit the metaclass (in this case
Color class).

Class Methods

Class methods can be quite useful; browse Color class for some good
examples. You will see that there are two kinds of method defined
on a class: those that create instances of the class, like Color class»blue
and those that perform a utility function, like Color class»showColorCube.
This is typical, although you will occasionally find class methods used
in other ways.

It is convenient to place utility methods on the class side because
they can be executed without having to create any additional objects
first. Indeed, many of them will contain a comment designed to make
it easy to execute them.

N Browse method Color class»showColorCube, double-click just inside the
quotes on the comment "Color showColorCube" and type CMD—d.

You will see the effect of executing this method. (Select
World > restore display (r) to undo the effects.)

For those familiar with Java and C++, class methods may seem
similar to static methods. However, the uniformity of Smalltalk means
that they are somewhat different: whereas Java static methods are
really just statically-resolved procedures, Smalltalk class methods are
dynamically-dispatched methods. This means that inheritance, over-
riding and super-sends work for class methods in Smalltalk, whereas
they don’t work for static methods in Java.

Class Instance Variables

With ordinary instance variables, all the instances of a class have the
same set of variable names, and the instances of its subclasses inherit
those names; however, each instance has its own private set of values.
The story is exactly the same with class instance variables: each class
has its own private class instance variables. A subclass will inherit
those class instance variables, but it has its own private copies of those

98 The Smalltalk Object Model

variables. Just as objects don’t share instance variables, neither do
classes and their subclasses share class instance variables.

You could use a class instance variable called count to keep track of
how many instances you create of a given class. However, any subclass
would have its own count variable, so subclass instances would would
be counted separately.

Example: class instance variables are not shared with subclasses.
Suppose we define classes Dog and Hyena, where Hyena inherits the
class instance variable count from Dog.

Class 5.2: Dogs and Hyenas

Object subclass: #Dog
instanceVariableNames: "
classVariableNames: "
poolDictionaries: "
category: 'SBE-CIV'

Dog class
instanceVariableNames: 'count’

Dog subclass: #Hyena
instanceVariableNames: "
classVariableNames: "
poolDictionaries: "
category: 'SBE-CIV'

Now suppose we define class methods for Dog to initialize its count
to 0, and to increment it when new instances are created:

Method 5.3: Keeping count of new dogs

Dog class»initialize
super initialize.
count := 0.

Dog class»new
count := count +1.
T super new

Every object is an instance of a class 99

Dog class»count
T count

Now when we create a new Dog its count is incremented, and so is
that of every Hyena, but they are counted separately:

Dog initialize.

Hyena initialize.

Dog count — 0
Hyenacount — O
Dog new.

Dog count — 1
Dog new.

Dog count — 2
Hyena new.
Hyenacount — 1

Note also that class instance variables are private to a class in
exactly the same way that instance variables are private to the instance.
Since classes and their instances are different objects, this has the
following immediate consequences:

A class does not have access to the instance variables
of its own instances.

An instance of a class does not have access to the
class instance variables of its class.

For this reason, instance initialization methods must always be de-
fined on the instance side — the class side has no access to instance
variables, so cannot initialize them! All that the class can do is to
send initialization messages, which may use using accessors, to newly
created instances.

Similarly, instances can only access class instance variables indi-
rectly, by sending accessor messages to their class.

Java has nothing equivalent to class instance variables. Java and
C++ static variables are more like Smalltalk class variables, which

100 The Smalltalk Object Model

we will discuss in Section 5.7: all of the subclasses and all of their
instances share the same static variable.

Example: Defining a Singleton. The Singleton pattern? provides a
typical example of the use of class instance variables and class methods.
Imagine that we would like to implement a class WebServer and use
the Singleton pattern to ensure that it has only one instance.

Clicking on the button in the browser, we define the class
WebServer as follows (class 5.4).

Class 5.4: A singleton class

Object subclass: #WebServer
instanceVariableNames: 'sessions'
classVariableNames: "
poolDictionaries: "
category: 'Web'

Then, clicking on the button, we add the instance variable
uniguelnstance to the class side.

Class 5.5: The class side of the singleton class

WebServer class
instanceVariableNames: 'uniquelnstance'

The consequence of this is that the class WebServer now has another
instance variable, in addition to the variables that it inherits, such as
superclass and methodDict.

We can now define a class method named uniquelnstance as shown
in method 5.6. This method first checks whether uniquelnstance has
been initialized. If it has not, the method creates an instance and
assigns it to the class instance variable uniquelnstance. Finally the value
of uniquelnstance is returned. Since uniquelnstance is a class instance
variable, this method can directly access it.

2Sherman R. Alpert, Kyle Brown and Bobby Woolf, The Design Patterns Smalltalk
Companion. Addison Wesley, 1998, ISBN 0-201-18462-1.

Every class has a superclass 101

Method 5.6: uniquelnstance (on the class side)

WebServer class»uniquelnstance
uniquelnstance ifNil: [uniquelnstance := self new].
T uniquelnstance

The first time that WebServer uniquelnstance is executed, an instance
of the class WebServer will be created and assigned to the uniquelnstance
variable. The next time, the previously created instance will be re-
turned instead of creating a new one.

Note that the instance creation code inside the conditional in
method 5.6 is written as self new and not as WebServer new. What is
the difference? Since the uniquelnstance method is defined in WebServer
class, you might think that they were the same. And indeed, un-
til someone creates a subclass of WebServer, they are the same. But
suppose that ReliableWebServer is a subclass of WebServer, and inherits
the uniquelnstance method. We would clearly expect ReliableWebServer
uniquelnstance to answer a ReliableWebServer:. Using self ensures that
this will happen, since it will be bound to the respective class. Note
also that WebServer and ReliableWebServer will each have their own
class instance variable called uniquelnstance. These two variables will
of course have different values.

5.4 Every class has a superclass

Each class in Smalltalk inherits its behavior and the description of its
structure from a single superclass. This means that Smalltalk has single
inheritance.

Smallinteger superclass —— Integer

Integer superclass — Number
Number superclass — Magnitude
Magnitude superclass — Object
Object superclass — ProtoObject

ProtoObject superclass — nil

Traditionally the root of the Smalltalk inheritance hierarchy is the
class Object (since everything is an object). In Squeak the root is actually

102 The Smalltalk Object Model

a class called ProtoObject, but you will normally not pay any attention
to this class. ProtoObject encapsulates the minimal set of messages that
objects must have. However, most classes inherit from Object, which
defines many additional messages that almost all objects ought to
understand and respond to. Unless you have a very good reason to
do otherwise, when creating application classes you should normally
subclass Object, or one of its subclasses.

N A new class is normally created by sending the message subclass:
instanceVariableNames: ... fo an existing class. There are a few other methods
to create classes. Have a look at the protocol Kernel-Classes > Class > subclass
creation fo see what they are.

Although Squeak does not provide multiple inheritance, since
version 3.9 it has incorporated a mechanism called traits for sharing
behavior across unrelated classes. Traits are collections of methods that
can be reused by multiple classes that are not related by inheritance.
Using traits allows one to share code between different classes without
duplicating code.

Abstract Methods and Abstract Classes

An abstract class is a class that exists to be subclassed, rather than to
be instantiated. An abstract class is usually incomplete, in the sense
that it does not define all of the methods that it uses. The “missing”
methods — those that the other methods assume, but which are not
themselves defined — are called abstract methods.

Smalltalk has no dedicated syntax to specify that a method or
a class is abstract. By convention, the body of an abstract method
consists of the expression self subclassResponsibility. This is known as a
“marker method”, and indicates that subclasses have the responsibility
to define a concrete version of the method. self subclassResponsibility
methods should always be overridden, and thus should never be
executed. If you forget to override one, and it is executed, an exception
will be raised.

A class is considered abstract if one of its methods is abstract.
Nothing actually prevents you from creating an instance of an abstract

Every class has a superclass 103

class; everything will work until an abstract method is invoked.

Example: the class Magnitude.

Magnitude is an abstract class that helps us to define objects that can
be compared to each other. Subclasses of Magnitude should implement
the methods <, = and hash. Using such messages Magnitude defines
other methods such as >, >=, <=, max:, min: between:and: and others for
comparing objects. Such methods are inherited by subclasses. The
method < is abstract and defined as shown in method 5.7.

Method 5.7: Magnitude»<

Magnitude»< aMagnitude
"Answer whether the receiver is less than the argument.”
Tself subclassResponsibility

By contrast, the method >= is concrete; it is defined in terms of <:

Method 5.8: Magnitude»>=

>= aMagnitude
"Answer whether the receiver is greater than or equal to the argument.”
T (self < aMagnitude) not

The same is true of the other comparison methods.

Character is a subclass of Magnitude; it overrides the
subclassResponsibility method for < with its own version of < (see
method 5.9). Character also defines methods = and hash; it inherits
from Magnitude the methods >=, <=, ~= and others.

Method 5.9: Character»<

Character»< aCharacter
"Answer true if the receiver's value < aCharacter's value."
Tself asciiValue < aCharacter asciiValue

104 The Smalltalk Object Model

Traits

A trait is a collection of methods that can be included in the behavior
of a class without the need for inheritance. This makes it easy for
classes to have a unique superclass, yet still share useful methods with
otherwise unrelated classes.

To define a new trait, simply replace the subclass creation template
by a message to the class Trait.

Class 5.10: Defining a new trait

Trait named: #TAuthor
uses: {}
category: 'SBE-Quinto'

Here we define the trait TAuthor in the category SBE-Quinto. This trait
does not use any other existing traits. In general we can specify a trait
composition expression of other traits to use as part of the uses: keyword
argument. Here we simply provide an empty array.

Traits may contain methods, but no instance variables. Suppose
we would like to be able to add an author method to various classes,
independent of where they occur in the hierarchy. We might do this as
follows:

Method 5.11: An author method

TAuthor»author
"Returns author initials"
T'on' "oscar nierstrasz"

Now we can use this trait in a class that already has its own superclass,
for instance the SBEGame class that we defined in Chapter 2. We
simply modify the class creation template for SBEGame to include a
uses: keyword argument that specifies that TAuthor should be used.

Class 5.12: Using a trait

BorderedMorph subclass: #SBEGame
uses: TAuthor
instanceVariableNames: 'cells’
classVariableNames: "

Everything Happens by Message Sending 105

poolDictionaries: "
category: 'SBE-Quinto’

If we now instantiate SBEGame, it will respond to the author mes-
sage as expected.

SBEGame new author —— ‘'on

Trait composition expressions may combine multiple traits using
the + operator. In case of conflicts (i.e., if multiple traits define methods
with the same name), these conflicts can be resolved by explicitly
removing these methods (with -), or by redefining these methods
in the class or trait that you are defining. It is also possible to alias
methods (with @), providing a new name for them.

Traits are used in the system kernel. One good example is the class
Behavior.

Class 5.13: Behavior defined using traits

Object subclass: #Behavior
uses: TPureBehavior @ {#basicAddTraitSelector:withMethod:->
#addTraitSelector:withMethod:}
instanceVariableNames: 'superclass methodDict format'
classVariableNames: 'ObsoleteSubclasses'
poolDictionaries: "
category: 'Kernel-Classes'

Here we see that the method basicAddTraitSelector:withMethod: defined in
the trait TPureBehavior has been renamed to addTraitSelector:withMethod:.
Support for traits is currently being added to the browsers.

5.5 Everything Happens by Message Send-
ing

This rule captures the essence of programming in Smalltalk.

In procedural programming, the choice of which piece of code to
execute when a procedure is called is made by the caller. The caller
chooses the procedure or function to execute statically, by name.

106 The Smalltalk Object Model

In object-oriented programming, we do not “call methods”: we
“send messages.” The choice of terminology is significant. Each object
has its own responsibilities. We do not tell an object what to do by
applying some procedure to it. Instead, we politely ask an object to
do something for us by sending it a message. The message is not a
piece of code: it is nothing but a name and a list of arguments. The
receiver then decides how to respond by selecting its own method for
doing what was asked. Since different objects may have different
methods for responding to the same message, the method must be
chosen dynamically, when the message is received.

3+4 — 7 "send message + with argument 4 to integer 3"
(1@2)+4 — 5@6 "send message + with argument 4 to point (1@2)"

As a consequence, we can send the same message to different objects,
each of which may have its own method for responding to the message.
We do not tell the Smallinteger 3 or the Point 1@2 how to respond to the
message + 4. Each has its own method for answering this message
send, and responds accordingly.

One of the consequences of Smalltalk’s model of message sending
is that it encourages a style in which objects tend to have very small
methods and delegate tasks to other objects, rather than implementing
huge, procedural methods that assume too much responsibility. Joseph
Pelrine expresses this principle succinctly as follows:

Don’t do anything that you can push off onto some-
one else.

Many object-oriented languages provide both static and dynamic
operations for objects; in Smalltalk there are only dynamic message
sends. Instead of providing static class operations, for instance, classes
are objects and we simply send messages to classes.

Nearly everything in Smalltalk happens by message sends. At some
point action must take place:

e Variable declarations are not message sends. In fact, variable
declarations are not even executable. Declaring a variable just
causes space to be allocated for an object reference.

Method lookup follows the inheritance chain 107

o Assignments are not message sends. An assignment to a variable
causes that variable name to be freshly bound in the scope of its
definition.

® Returns are not message sends. A return simply causes the
computed result to be returned to the sender.

* Primitives are not message sends. They are implemented in the
virtual machine.

Other than these few exceptions, pretty much everything else does
truly happen by sending messages. In particular, since there are no
“public fields” in Smalltalk, the only way to update an instance variable
of another object is to send it a message asking that it update its
own field. Of course, providing setter and getter methods for all the
instance variables of an object does is not good object-oriented style.
Joseph Pelrine also states this very nicely:

Don’t let anyone else play with your data.

5.6 Method lookup follows the inheritance
chain

What exactly happens when an object receives a message?

The process is quite simple: the class of the receiver looks up the
method to use to handle the message. If this class does not have
a method, it asks its superclass, and so on, up the inheritance chain.
When the method is found, the arguments are bound to the parameters
of the method, and the virtual machine executes it.

It is essentially as simple as this. Nevertheless there are a few
questions that need some care to answer:

o What happens when a method does not explicitly return a value?

o What happens when a class reimplements a superclass method?

108 The Smalltalk Object Model

o What is the difference between self and super sends?

o What happens when no method is found?

The rules for method lookup that we present here are conceptual:
virtual machine implementors use all kinds of tricks and optimizations
to speed-up method lookup. That’s their job, but you should never be
able to detect that they are doing something different from our rules.

First let us look at the basic lookup strategy, and then consider
these further questions.

Method lookup

Suppose we create an instance of EllipseMorph.

anEllipse := EllipseMorph new.

If we now send this object the message defaultColor, we get the result
Color yellow:

anEllipse defaultColor —— Color yellow

The class EllipseMorph implements defaultColor, so the appropriate
method is found immediately.

Method 5.14: A locally implemented method

EllipseMorph»defaultColor
"answer the default color/fill style for the receiver"
T Color yellow

In contrast, if we send the message openinWorld to anEllipse, the
method is not immediately found, since the class EllipseMorph does not
implement openinWorld. The search therefore continues in the super-
class, BorderedMorph, and so on, until an openinWorld method is found
in the class Morph (see Figure 5.2).

Method 5.15: An inherited method
Morph»openinWorld

Method lookup follows the inheritance chain 109

"Add this morph to the world. If in MVC, then provide a Morphic window for it.
self couldOpeninMorphic

ifTrue: [self openinWorld: self currentWorld]

ifFalse: [self openInMVC]

1

Morph
initialize
e > defaultColor
openinWorld
fullPrintOn:

BorderedMorph
initialize
fullPrintOn:

Key
instance-of ~——»P
message send ————=>
lookup >

Figure 5.2: Method lookup follows the inheritance hierarchy.

Returning self

Notice that EllipseMorph»defaultColor (method 5.14) explicitly returns
Color yellow whereas Morph»openinWorld (method 5.15) does not appear
to return anything.

Actually a method always answers a message with a value — which
is, of course, an object. The answer may be defined by the 1 construct
in the method, but if execution reaches the end of the method with-
out executing a T, the method still answers a value: it answers the
object that received the message. We usually say that the method
“answers self”, because in Smalltalk the pseudo-variable self represents
the receiver of the message, rather like this in Java.

This suggests that method 5.15 is equivalent to method 5.16:

110 The Smalltalk Object Model

Method 5.16: Explicitly returning self

Morph»openinWorld
"Add this morph to the world. If in MVC,
then provide a Morphic window for it."
self couldOpenInMorphic
ifTrue: [self openinWorld: self currentWorld]
ifFalse: [self openInMVC].
1 self "Don't do this unless you mean it'

Why is writing 1 self explicitly not a good thing to do? Well, when
you return something explicitly, you are communicating that you are
returning something of interest to the sender. When you explicitly re-
turn self, you are saying that you expect the sender to use the returned
value. This is not the case here, so it is best not to explicitly return self.

This is a common idiom in Smalltalk, which Kent Beck refers to as

“Interesting return value”:

Return a value only when you intend for the sender
to use the value.

Overriding and Extension

If we look again at the EllipseMorph class hierarchy in Figure 5.2, we see
that the classes Morph and EllipseMorph both implement defaultColor. In
fact, if we open a new morph (Morph new openinWorld) we see that we
get a blue morph, whereas an ellipse will be yellow by default.

We say that EllipseMorph overrides the defaultColor method that it in-
herits from Morph. The inherited method no longer exists from the
point of view of anEllipse.

Sometimes we do not want to override inherited methods, but
rather extend them with some new functionality, that is, we would
like to be able to invoke the overridden method in addition to the new
functionality we are defining in the subclass. In Smalltalk, as in many

3Kent Beck, Smalltalk Best Practice Patterns. Prentice-Hall, 1997.

Method lookup follows the inheritance chain 111

object-oriented languages that support single inheritance, this can be
done with the help of super sends.

The most important application of this mechanism is in the initialize
method. Whenever a new instance of a class is initialized, it is critical
to also initialize any inherited instance variables. However, the knowl-
edge of how to do this is already captured in the initialize methods of
each of the superclass in the inheritance chain. The subclass has no
business even trying to initialize inherited instance variables!

It is therefore good practice whenever implementing an initialize
method to send super initialize before performing any further initializa-
tion:

Method 5.17: Super initialize

BorderedMorph»initialize
"initialize the state of the receiver"
super initialize.
self borderlnitialize

An initialize method should always start by sending
super initialize.

Self sends and super sends

We need super sends to compose inherited behavior that would oth-
erwise be overridden. The usual way to compose methods, whether
inherited or not, however, is by means of self sends.

How do self sends differ from super sends? Like self, super represents
the receiver of the message. The only thing that changes is the method
lookup. Instead of lookup starting in the class of the receiver, it starts in
the superclass of the class of the method where the super send occurs.

Note that super is not the superclass! It is a common and natural
mistake to think this. It is also a mistake to think that lookup starts in
the superclass of the receiver. We shall see with the following example
precisely how this works.

112 The Smalltalk Object Model

Consider the message initString, which we can send to any morph:

anEllipse initString —— '(EllipseMorph newBounds: (0@0 corner: 50@40)
color: Color yellow) setBorderWidth: 1 borderColor: Color black'

The return value is a string that can be evaluated to recreate the morph.

How exactly is this result obtained through a combination of self
and super sends? First, anEllipse initString will cause the method initString
to be found in the class Morph, as shown in Figure 5.3.

A

initString
“Z|fullPrintOn:

super fullPrintOn:

5

Key
instance-of —>>
message send ———>
lookup >

Figure 5.3: self and super sends

Method 5.18: A self send

Morph»initString
1 String streamContents: [:s | self fullPrintOn: s]

The method Morph»initString performs a self send of fullPrintOn:. This
causes a second lookup to take place, starting in the class EllipseMorph
, and finding fullPrintOn: in BorderedMorph (see Figure 5.3 once again).
What is critical to notice is that the self send causes the method lookup
to start again in the class of the receiver, namely the class of anEllipse.

A self send triggers a dynamic method lookup starting
in the class of the receiver.

Method lookup follows the inheritance chain 113

Method 5.19: Combining super and self sends

BorderedMorph»fullPrintOn: aStream
aStream nextPutAll: '(".
super fullPrintOn: aStream.
aStream nextPutAll: ') setBorderWidth: '; print: borderWidth;
nextPutAll: ' borderColor: ', (self colorString: borderColor)

At this point, BorderedMorph»fullPrintOn: does a super send to extend the
fullPrintOn:behavior it inherits from its superclass. Because this is a super
send, the lookup now starts from the superclass of the class where the
super send occurs, namely in Morph. We then immediately find and
evaluate Morph»fullPrintOn:.

Note that the super lookup did not start in the superclass of the
receiver. This would have caused lookup to start from BorderedMorph,
resulting in an infinite loop!

A super send triggers a static method lookup starting
in the superclass of the class of the method perform-
ing the super send.

If you think carefully about super send and Figure 5.3, you will
realize that super bindings are static: all that matters is the class in
which the text of the super send is found. By contrast, the meaning
of self is dynamic: it always represents the receiver of the currently
executing message. This means that all messages sent to self are looked-
up by starting in the receiver’s class.

Message not Understood

What happens if the method we are looking for is not found? mes-
sage!not understood

Suppose we send the message foo to our ellipse. First the normal
method lookup would go through the inheritance chain all the way
up to Object (or rather ProtoObject) looking for this method. When this
method is not found, the virtual machine will cause the object to send
self doesNotUnderstand: #foo. (See Figure 5.4.)

114 The Smalltalk Object Model

x8 derstood: Ellip: ph>>foo @0

anEllipse foo self doesNotUnderstand: #foo

Key
instance-of —>>
message send ———>
lookup >

Figure 5.4: Message foo is not understood

Now, this is a perfectly ordinary, dynamic message send, so
the lookup starts again from the class EllipseMorph, but this time
searching for the method doesNotUnderstand:. As it turns out, Object

implements doesNotUnderstand:. This method will create a new
MessageNotUnderstood object which is capable of starting a Debugger in
the current execution context.

Why do we take this convoluted path to handle such an obvious
error? Well, this offers developers an easy way to intercept such errors
and take alternative action. One could easily override the method
doesNotUnderstand: in any subclass of Object and provide a different way
of handling the error.

In fact, this can be an easy way to implement automatic delegation
of messages from one object to another. A Delegator object could simply
delegate all messages it does not understand to another object whose
responsibility it is to handle them, or raise an error itself!

Shared Variables 115

5.7 Shared Variables

Now we will look at an aspect of Smalltalk that is not so easily covered
by our five rules: shared variables.

Smalltalk provides three kinds of shared variables: (1) globally
shared variables; (2) variables shared between instances and classes
(class variables), and (3) variables shared amongst a group of classes
(pool variables). The names of all of these shared variables start with a
capital letter, to warn us that they are indeed shared between multiple
objects.

Global Variables.

In Squeak, all global variables are stored in a namespace called Smalltalk
, which is implemented as an instance of the class SystemDictionary.
Global variables are accessible everywhere. Every class is named by a
global variable; in addition, a few globals are used to name special or
commonly useful objects.

The variable Transcript names an instance of TranscriptStream, a
stream that writes to a scrolling window. The following code dis-
plays some information and then goes to the next line in the Transcript.

Transcript show: 'Squeak is fun and powerful'; cr

Before you do it, open a transcript by dragging one from the Tools flap.

Writing to the Transcript is slow, especially when the transcript
window is open. So, if you experience some sluggishness and are writing to
the Transcript, think about collapsing it.

Other useful Global variables.

¢ Smalltalk is the instance of SystemDictionary that defines all of the
globals —including Smalltalk itself. The keys to this dictionary
are the symbols that name the global objects in Smalltalk code.
So, for example,

116

The Smalltalk Object Model

Smalltalk at: #Boolean —— Boolean

Since Smalltalk is itself a global variable,

Smalltalk at: #Smalltalk —— a SystemDictionary(lots of globals)}

and

(Smalltalk at: #Smalltalk) == Smalltalk —— true

Sensor is an instance of EventSensor, and represents input to
Squeak. For example, Sensor keyboard answers the next char-
acter input on the keyboard, and Sensor leftShiftDown answers true
if the left shift key is being held down, while Sensor mousePoint
answers a Point indicating the current mouse location.

World is an instance of PasteUpMorph that represents the screen.
World bounds answers a rectangle that defines the whole screen
space; all Morphs on the screen are submorphs of World.

ActiveHand is the current instance of HandMorph, the graphical rep-
resentation of the cursor. ActiveHand’s submorphs hold anything
being dragged by the mouse.

Undeclared is another dictionary — it contains all the undeclared
variables. If you write a method that references an undeclared
variable, the browser will normally prompt you to declare it, for
example, as a global or as an instance variable of the class. How-
ever, if you later delete the declaration, the code will then ref-
erence an undeclared variable. Inspecting Undeclared can some-
times help explain strange behaviour!

SystemOrganization is an instance of SystemOrganizer: it records
the organization of classes into packages. More precisely, it
categorizes the names of classes, so

SystemOrganization categoryOfElement: #Magnitude —— #Kernel-
Numbers'

Shared Variables 117

Current practice is to strictly limit the use of global variables; it is
usually better to use class instance variables or class variables, and to
provide class methods to access them. Indeed, if Squeak were to be
implemented from scratch today, most of the global variables that are
not classes would be replaced by singletons.

The usual way to define a global is just to do it on an assignment
to a capitalized but undeclared identifier. The parser will then offer
to declare the global for you. If you want to define a global progra-
matically, just execute Smalltalk at: #AGlobalName put: nil. To remove it,
execute Smalltalk removeKey: #AGlobalName.

Class Variables

Sometimes we need to share some data amongst all the instances of a
class and the class itself. This is possible using class variables. The term
class variable indicates that the lifetime of the variable is the same
as that of the class. However, what the term does not convey is that
these variables are shared amongst all the instances of a class as well
as the class itself, as shown in Figure 5.5. Indeed, a better name would
have been shared variables since this expresses more clearly their role,
and also warns of the danger of using them, particularly if they are
modified.

In Figure 5.5 we see that rgb and cachedDepth are instance variables
of Color, hence only accessible to instances of Color. We also see that
superclass, subclass, methodDict and so on are class instance variables,
i.e., instance variables only accessible to the Color class.

But we can also see something new: ColorNames and
CachedColormaps are class variables defined for Color. The capitaliza-
tion of these variables gives us a hint that they are shared. In fact, not
only may all instances of Color access these shared variables, but also
the Color class itself, and any of its subclasses. Both instance methods
and class methods can access these shared variables.

A class variable is declared in the class definition template. For
example, the class Color defines a large number of class variables to
speed up color creation; its definition is shown below (class 5.20).

118 The Smalltalk Object Model

Color Color class
-rgh -superclass
-cachedDepth -subclass
CachedColormaps -methodDict
ColorNames initializeNames
name
isBlack y

.... ColorNames...

....ColorNames...

shared
oe.TGD... ColorNames
CachedColormaps
private private
rgb superclass

cachedDepth subclass

Figure 5.5: Instance and class methods accessing different variables.

Class 5.20: Color and its class variables

Object subclass: #Color
instanceVariableNames: 'rgb cachedDepth cachedBitPattern'
classVariableNames: 'Black Blue BlueShift Brown CachedColormaps
ColorChart ColorNames ComponentMask ComponentMax Cyan DarkGray
Gray GrayTolndexMap Green GreenShift HalfComponentMask
HighLightBitmaps IndexedColors LightBlue LightBrown LightCyan
LightGray LightGreen LightMagenta LightOrange LightRed LightYellow
Magenta MaskingMap Orange PaleBlue PaleBuff PaleGreen PaleMagenta
PaleOrange PalePeach PaleRed PaleTan PaleYellow PureBlue PureCyan
PureGreen PureMagenta PureRed PureYellow RandomStream Red
RedShift TranslucentPatterns Transparent VeryDarkGray VeryLightGray
VeryPaleRed VeryVeryDarkGray VeryVeryLightGray White Yellow'
poolDictionaries: "
category: 'Graphics—Primitives'

The class variable ColorNames is an array containing the name of
frequently-used colors. This array is shared by all the instances of Color
and its subclass TranslucentColor. It is accessible from all the instance
and class methods.

Shared Variables 119

ColorNames is initialized once in Color class»initializeNames, but it is
accessed from instances of Color. The method Color»name uses the
variable to find the name of a color. Since most colors do not have
names, it was thought inappropriate to add an instance variable name
to every color.

Class initialization

The presence of class variables raises the question: how do we ini-
tialize them? One solution is lazy initialization. This can be done
by introducing an accessor method which, when executed, initializes
the variable if it has not yet been initialized. This implies that we
must use the accessor all the time and never use the class variable
directly. This furthermore imposes the cost of the accessor send and
the initialization test. It also arguably defeats the point of using a class
variable, since in fact it is no longer shared.

Method 5.21: Color class»colorNames

Color class»colorNames
ColorNames ifNil: [self initializeNames].
T ColorNames

Another solution is to override the class method initialize.

Method 5.22: Color class»initialize

Color class»initialize

self initializeNames

If you adopt this solution, you need to remember to invoke the initialize
method after you define it, e.g., by evaluating Color initialize. Although
class side initialize methods are executed automatically when code is
loaded into memory, they are not executed automatically when they
are first typed into the browser and compiled, or when they are edited
and re-compiled.

120 The Smalltalk Object Model

Pool Variables

Pool variables are variables that are shared between several classes
that may not be related by inheritance. Pool variables were originally
stored in pool dictionaries; now they should be defined as class vari-
ables of dedicated classes (subclasses of SharedPool). Our advice is to
avoid them; you will need them only in rare and specific circumstances.
Our goal here is therefore to explain pool variables just enough so that
you can understand them when you are reading code.

A class that accesses a pool variable must mention the pool in its
class definition. For example, the class Text indicates that it is using
the pool dictionary TextConstants, which contains all the text constants
such as CR and LF. This dictionary has a key #CR that is bound to the
value Character cr, i.e., the carriage return character.

Class 5.23: Pool dictionaries in the Text class

ArrayedCollection subclass: #Text
instanceVariableNames: 'string runs'
classVariableNames: "
poolDictionaries: 'TextConstants’
category: 'Collections-Text'

This allows methods of the class Text to access the keys of the
dictionary in the method body directly, i.e., by using variable syntax
rather than an explicit dictionary lookup. For example, we can write
the following method.

Method 5.24: Text»testCR

Text»testCR
T CR == Character cr

Once again, we recommend that you avoid the use of pool variables
and pool dictionaries.

Chapter Summary 121

5.8 Chapter Summary

The object model of Squeak is both simple and uniform. Everything is
an object, and pretty much everything happens by message sends.

¢ Everything is an object. Primitive entities like integers are objects,
but also classes are first-class objects.

¢ Every object is an instance of a class. Classes define the structure
of their instances via private instance variables and the behavior
of their instances via public methods. Each class is the unique
instance of its metaclass. Class variables are private variables
shared by the class and all the instances of the class. Classes
cannot directly access instance variables of their instances, and
instances cannot access class variables of their class. Accessors
must be defined if this is needed.

¢ Every class has a superclass. The root of the single inheritance
hierarchy is ProtoObject. Classes you define, however, should nor-
mally inherit from Object or its subclasses. There is no syntax for
defining abstract classes. An abstract class is simply a class with
an abstract method — one whose implementation consists of the
expression self subclassResponsibility. Although Squeak supports
only single inheritance, it is easy to share implementations of
methods by packaging them as traits.

¢ Everything happens by message sends. We do not “call meth-
ods”, we “send messages”. The receiver then chooses its own
method for responding to the message.

¢ Method lookup follows the inheritance chain; self sends are dy-
namic and start the method lookup again in the class of the
receiver, whereas super sends are static, and start in the super-
class of class in which the super send is written.

¢ There are three kinds of shared variables. Global variables are
accessible everywhere in the system. Class variables are shared
between a class, its subclasses and its instances. Pool variables
are shared between a select set of classes. You should avoid
shared variables as much as possible.

123

Chapter 6

The Squeak Programming
Environment

The goal of this chapter is to show you how to develop programs in
the Squeak programming environment. You have already seen how to
define methods and classes using the system browser; this chapter will
show you more of the features of the system browser, and introduce
you to some of the other browsers.

Of course, very occasionally you may find that your program does
not work as you expect. Squeak has an excellent debugger, but like
most powerful tools, it can be confusing on first use. We will walk you
through a debugging session and demonstrate some of the features of
the debugger.

One of the unique features of Smalltalk is that while you are pro-
gramming, you are living in a world of live objects, not in a world of
static program text. This makes it possible to get very rapid feedback
while programming, which makes you more productive. There are
two tools that let you look at, and indeed change, live objects: the
inspector and the explorer.

The consequence of programming in a world of live objects rather
than with files and a text editor is that you have to do something

124 The Squeak Programming Environment

explicit to export your program from your Smalltalk image. The old
way of doing this, supported by all Smalltalks, is by creating a fileout
or a change set, which are essentially encoded text files that can be
imported into another system. The new way of doing this in Squeak
is to upload your code to a versioned repository on a server. This is
done using a tool called Monticello, and is a much more powerful and
effective way to work, especially in a team.

Finally, you may find a bug in Squeak as you work; we explain
how to report bugs, and how to submit bug fixes.

6.1 Overview

Smalltalk and modern graphical interfaces were developed together.
Even before the first public release of Smalltalk in 1983, Smalltalk had
a self-hosting graphical development environment, and all Smalltalk
development was taking place in it. Lets start by looking at the main
tools in Squeak, all of which can be dragged out of the Tools flap.
Depending on your personal settings, the Tools flap can be opened by
mousing over or clicking on the orange tab on the right-hand edge of
Squeak’s main window.

* The Browser is the central development tool. You will use it to
create, define, and organize your classes and methods. Using
it you can also navigate through all the library classes: unlike
other environments where the source code is stored in separate
files, in Smalltalk all classes and methods are contained in the
image.

¢ The Message Names tool is used to look at all of the methods with
a particular selector, or with a selector containing a substring.

* The Method Finder tool will also let you find methods, but accord-
ing to what they do as well as what they are called.

* The Monticello Browser is the starting point for loading code from,
and saving code in, Monticello packages.

The System Browser 125

e The Process Browser provides a view on all of the processes
(threads) executing in Smalltalk.

e The Test Runner lets you run and debug SUnit tests, and is de-
scribed in Chapter 7.

e The Transcript is a window on the Transcript output stream, which
is useful for writing log messages and has already been described
in Section 1.4.

* The Workspace is a window into which you can type input. It
can be used for any purpose, but is most often used for typing
Smalltalk expressions and executing them as do its. The use of
the workspace was also illustrated in Section 1.4.

The Debugger has an obvious role, but you will discover that it has
a more central place compared to debuggers for other programming
languages, because in Smalltalk you can program in the debugger.
The debugger is not launched from a menu or from the Tools flap;
it is normally entered by running a failing test, by typing CMD-. to
interrupt a running process, or by inserting a self halt expression in
code.

6.2 The System Browser

There are actually several browsers in Squeak: the standard system
browser, the package browser, the Omnibrowser, and the Refactoring
Browser. We will take a look at the standard system browser first,
since the others are variations on it. Figure 6.1 shows the browser as it
appears when you first drag it out of the Tools flap.

The four small panes at the top of the browser represent a hierarchic
view of the methods in the system, much in the same way as the
NeXTstep File Viewer and the Mac OS X Finder in column mode provide
a view of the files on the disk. The leftmost pane lists categories of
classes; select one (say Kernel-Objects) and the pane immediately to the
right will then show all of the classes in that category.

126 The Squeak Programming Environment

® B System Browser g0
Kernel-Chronology s O O (]
Eernel-Clazzes [a] al al n

Kernel-Contexts
Fernel-Methods
Fernel-Numbets
Kernel-Otjects
Kernel-Processes
Kernel-5T80 Remnants
KernelTests-Chronology
KernelTestz-Claszzes

¥ernelTestz-Numbers

v

|browse || zenders || implementors || wersions " inheritance " hierarchy " inst vars " claszz vars " source|

0
Al

Figure 6.1: The System Browser

Similarly, if you select one of the classes in the second pane, say,
Model (see Figure 6.2), the third pane will show all of the protocols
defined for that class, as well as a virtual protocol --afl--, which is
selected by default. Protocols are a way of categorizing methods;
they make it easier to find and think about the behaviour of a class
by breaking it up into smaller, conceptually coherent pieces. The
fourth pane shows the names of all of the methods defined in the
selected protocol. If you then select a method name, the source code
of the corresponding method appears in the large pane at the bottom
of the browser, where you can view it, edit it, and save the edited
version. If you select class Model, protocol dependents and the method
myDependents, the browser should look like Figure 6.3.

Unlike directories in the Mac OS X Finder, the four top panes of the
browser are not quite equal. Whereas classes and methods are part
of the Smalltalk language, system categories and message protocols
are not: they are a convenience introduced by the browser to limit

The System Browser 127

% B System Browser: Model @0
Kernel-Chronology ® | Boolean W - all - " | additem: .
Kernel-Clazses Dependentsidrray & | copving AllarrowEey:ifrom: A
Kernel-Contexts Falze dependents canDizcardEdits
Kernel-Methods MezsageSend keyboard containingWindow
Kernel-Numbters Model MEernns haszUnacceptedEditz
Kernel-Otjects Object *zervices-base myDhependents
Kernel-Processes OtjectOut *Tools myDhependents:
Kernel-3TE0 Remnants ObjectTracer performioriendlo:
KernelTests-Chronology | | OhiectWiewrer] requestor
KernelTests-Classes 2ld r selectedClass
KernelTestz-Methods - atE:
EernelTasta-Humhers [0 ¥ rnn%iﬁw ¥

|browse ” senders ” implementors || wersions " inheritance " hierarchy " inst vars " class vars " source|

Otject subt<lass: *Model <

instanceVariatleNames: "dependents’
classWariableMNames: "
poolDictionaries:

category: ‘Kernel-Objects’

Provides a superclass for <lasses that function ag models, The only tehavior provided iz fast
dependents maintenance, which bypasses the generic DependentsFields mechanism, 1/23/96 sw

Figure 6.2: System Browser with the class Model selected

the amount of information that needs to be shown in each pane. For
example, if there were no protocols, the browser would have to show
a list of all of the methods in the selected class; for many classes this
list would be too large to navigate conveniently.

Because of this, the way that you create a new category or a new
protocol is different from the way that you create a new class or a new
method. To create a new category, select new category from the yellow
button menu in the category pane; to create a new protocol, select
new protocol from the yellow button menu in the protocol pane. Enter
the name of the new thing in the dialog, and you are done: there is
nothing more to a category or a protocol than its name and its contents.

In contrast, to create a new class or a new method, you will actu-
ally have to write some Smalltalk code. If you deselect the currently
selected class, so that no class is selected at all, the main browser pane
will display a class creation template (Figure 6.4). You create a new

128 The Squeak Programming Environment

x B System Browser: Model @0
Kernel-Chronology ® | Boolean 8 --all - ® | canDiscardEdits .
Kernel-Clazses Dependentzirray & copving Al containingWindow A
Kernel-Contexts Falze dependeanits hasUnacceptedEdits
Kernel-Methodz MezsageSend kevboard myDependents
Kernel-Numbers Model menus myDependents:
Kernel-Otjects Object *zervices-base topWiew
Kernel-Processes Objectlut *Toolz

Kernel-5T50 Remnants ObjectTracer

KernelTestz-Chronology || OhiectUisweer ¥

KernelTestz-Classes 24 r

FernelTestz-Methods

Krrnal Trsta-Mimbers 7 ¥ ¥
|br0wse " zenders " implementors " versions " inheritance ” hierarchy " inst wars " <lazz vars " source|
myDependents —

+ dependents =

Figure 6.3: System Browser showing the myDependents method in class
Model

class by editing this template: replace Object by the name of the existing
class of which you wish to create a subclass, replace NameOfSubclass
by the name that you would like to give to your new subclass, and
fill in the instance variable names if you know them. The category for
the new class is by default the currently selected category, but you can
change this too if you like. If you already have the browser focussed
on the class that you wish to subclass, you can get the same template
with slighlty different initialization by using the yellow button menu
in the class pane, and selecting more ... >subclass template . You can also
just edit the definition of an existing class, changing the class name
to something new. In all cases, when you accept the new definition,
the new class (the one whose name follows the #) is created (as is
the corresponding metaclass). Creating a class also creates a global
variable that references the class, which is why you can refer to all of
the existing classes by using their names.

Can you see why the name of the new class has to appear as a

The System Browser 129

® B System Browser B0
Kernel-Contexts % | Boolean = = =
Kernel-Methods Dependentzirray = — =
Kernel-Numbers Falze

Kernel-Otjects MezsazeSend

Kernel-Processes Model

Kernel-5T80 Remnants Otject
KernelTests-Chronology OtjectOut
KernelTestz-Clazzes ObjectTracer
KernelTestz-Methods Ohiectiiemr ey
KernelTestz-Humbers

L AL
KernelTestz-Objectz N

¥ernel Testz-Proceises

)
>
clazz

v v

|browse || zenders || implementors || wersions " inheritance " hierarchy " inst vars " claszz vars " source|

bbject subclass: *NameOf Subclass I

instanceVariableNames: ™
clazsV¥ariatleNames: ™
poolDictionaries:
category! ‘Kernel-Objects’

Figure 6.4: System Browser showing the class-creation template

Symbol (i.e., prefixed with #) in the class creation template, but after
the class is created, code can refer to the class by using the name as an
identifier (i.e., without the #)?

The process of creating a new method is similar. First select the
class in which you want the method to live, and then select a protocol.
The browser will display a method-creation template, as shown in
Figure 6.5, which you can fill-in or edit.

The Button Bar

The system browser provides several tools for exploring and analysing
code. Those tools are most simply accessed from the horizontal button
bar in the middle of the browser window. The buttons are labeled
[browse|, [senders|, [implementors]. .. Figure 6.5 shows the complete set.

v 4

130 The Squeak Programming Environment

x B System Browser: Model a0
Kernel-Contexts ®! | Booleaty s --all - = performiorSendTo .
Kernel-Methods Dependentzirray & | copving *! | zelectedClass A
Kernel-NHumbers Falze dependents step

Kernel-Otjects MezsageSend keytoard trash

Kernel-Processes Model men trash:

Fernel-5T30 Remnants Object *zervices-base

FKernelTests-Chronology || ObjectOut *Tools

KernelTestz-Clazzes ObjectTracer

KernelTestz-Methods OhiectTiewres b

KernelTests-Numbers e -

KernelTestz-Objectz - hi
rﬁf‘ﬂﬁ]TEﬂTi-pf‘Acﬁﬁﬂﬁﬂ [b J 1 £ L4

|browse || zenders || implementors || wersions " inheritance " hierarchy " inst vars " claszz vars " source|

0
Al

message selector and argument names
“comfent stating purpoze of message”

| temporary variatle names |
statements

Figure 6.5: System Browser showing the method-creation template

Browsing Code

The button opens a new system browser on the class or method
that is currently selected. It’s often useful to have multiple browsers
open at the same time. When you are writing code you will almost
certainly need at least two: one for the method that you are typing,
and another to browse around the system to see what to type. You can
also open a browser on a class named by any selected text using the
CMD-b keyboard shortcut.

N Try this: in a workspace window, type the name of a class (for instance
ScaleMorph), select it, and then press CMD—b. This trick is often useful; it
works in any text window.

The System Browser 131

Senders and Implementors of a Message

The button will give you a list of all methods that may use
the selected method. With the browser open on ScaleMorph, click on
the checkExtent: method in the method pane near the top right corner
of the browser; the body of checkExtent: displays in the bottom part of
the browser. If you now press the button, a menu will appear
with checkExtent: as the topmost item, and below it, all the messages
that checkExtent: sends (see Figure 6.6). Selecting an item in this menu
will open a browser with the list of all methods in the image that send
the selected message.

® B System Browser: ScaleMorph @0
MorphicExtras-Widzetz ® | ScaleMorph 8 --all - # tuildLatels .
MorphicExtraz-EBooks SerollatleField & | accessing A | caption [a]
MorphicExtras-Posteeriy || SimpleSliderMorph drawing caption:
MorphicExtraz-Support SimpleSwitchMorph geometty captiondbove:
MorphicExtras-Eernel StarMorph initialization checkExtent:
MorphicExtras-3T80 StringButtonMorph objects from disk convertToburrentWers:
MorphicExtras-Soundln ThumbnailMorph stepping and presenter) | | defaultBorderWidth
MorphicExtras-Undo TickIndicatorMorph defauliColor
MorphicExtraz-Compong | | TinsrPaint] drawMajorTicksOn:
MorphicExtraz-Postzeriy r drawhlinorTicksOn:
o —

.4
MorphicExtraz-PartsBir,
MorrhicErtras-Addit nnEl

T

"nheritance " hietrarchy || itst wars " <lass vars " source|

checkExtent: :
pixPerTic idth * 2) - 1 / {{gtop - start) asFloat / minorTick).
pixPerTick @

agFloat

borderWidth
detentEyiatMultiples0f i snap:
newWidth | *

+ (newwi

7 sFloat / minorTick) + (self borderWidth * 2} + 1,

Figure 6.6: A Class Browser opened on the ScaleMorph class. Note the
horizontal bar of buttons at the center of the browser; here we are

using the button.

The button works in a similar way, but instead of list-

ing the senders of a message, it lists all of the classes that implement a
method with the same selector. To see this, select drawOn: in the mes-
sage pane and then bring up the “implementors of drawOn:” browser,

132 The Squeak Programming Environment

either using the button, or the yellow button menu on

the method pane, or just by typing CMD-m (for implementors) in
the method pane with drawOn: selected. You should get a method
list window showing a scrolling list of 96 classes that implement a
drawOn: method. It shouldn’t be all that surprising that so many classes
implement this method: drawOn: is the message that is understood by
every object that is capable of drawing itself on the screen. While
viewing any one of these method, try browsing the senders of the
drawOn: message: we found 63 methods that send this message. You
can also bring up an implementors browser at any time by selecting
a message (including the arguments if it is a keyword message) and
typing CMD-m.

If you look at the send of drawOn: in AtomMorph»drawOn:, you will
see that it is a super send. So we know that the method that will be
executed will be in AtomMorph’s superclass. What class is that? Click

the button and you will see that it is EllipseMorph.

* B Senders of drawOn: [63] @0

AtomMorph drawOn: {drawing} .
BackgroundMorph drawln: {drawing} A
BouncingdtomsMorph drawin: {drawing}

CachingMorph drawin: {drawing}

Canvas draw; {drawing-generall

ColorPickerMorch drawOn: {drawinsg! d

|browse ||senders ||implementors " Versions ||inheritance ||hiera.rchv " inst vars ”cla.ss vars ” FOUrce |

draw: anObject -

tanObiest drawin: self =

Figure 6.7: The Senders Browser showing that the Canvas»draw method
sends the drawOn: message to its argument.

Now look at the fifth sender in the list, Canvas»draw, shown in
Figure 6.7. You can see that this method sends drawOn: to whatever
object is passed to it as argument, which could potentially be an
instance of any class at all. Dataflow analysis can help figure out
the class of the receiver of some messages, but in general, there is

The System Browser 133

x B Recent versions of mouseUp: 20

apt 12/3/2006 01:08 SBECell mouszelp: {event handling} -
apb 12/2/2006 16:41 SBECell mouselUp: {event handling} A
apt 12/2/2006 06:57 SEECell mouseUp: {event handling}
apb 11/29/2006 14:43 SBECell mouszeUp: {event handling}
apb 11/29/2006 14:43 SBECell mouszeUp: {event handling}

v

compare to current || revert || remove from changes || help |E|diffs Oprettyhirts
mouselp: anEvent :
(zelf containsPoint Sensor mousePoint) ifTrue [mousedction value]
snoatdotise mralos

Figure 6.8: The versions browser showing several versions of the
SBECell»mouseUp: method

no simple way for the browser to know which message-sends might
cause which methods to be executed. For this reason, the “senders”
browser shows exactly what its name suggests: all of the senders of the
message with the chosen selector. The button is nevertheless
extremely useful when you need to understand how you can use a
method: it lets you navigate quickly through example uses. Since all
of the methods with the same selector ought to be used in the same
way, all of the uses of a given message ought to be similar.

Versions of a Method

When you save a new version of a method, the old one is not lost.
Squeak keeps all of the old versions, and allows you to compare
different versions and to go back (“revert”) to an old version. The
button gives access to the successive modifications made to

134 The Squeak Programming Environment

the selected method. In Figure 6.8 we can see the versions of the
mouseUp: method that one of the authors created while writing the
Quinto game described in Chapter 2.

The top pane displays one line for each version of the method,
listing the initials of the programmer who wrote it, the date and time
at which it was saved, the names of the class and the method, and
the protocol in which it was defined. The current (active) version is
at the top of the list; whichever version is selected is displayed in the
bottom pane. If the diffs checkbox is selected, as it is in Figure 6.8, the
display also shows the differences between the selected version and
the one immediately older. Buttons are also provided for displaying
the differences between the selected method and the current version,
and for reverting to the selected version. The prettyDiffs checkbox
is useful if there have been changes to layout: it pretty-prints both
versions before differencing, so that the differences that are displayed
exclude formatting changes.

The existence of the versions browser means that you never have
to worry about preserving code that you think might no longer be
needed: just delete it. If you find that you do need it, you can always
revert to the old version, or copy the needed code fragment out of
the old version and paste it into a another method. Get into the habit
of using versions; “commenting out” code that is no longer needed
is a bad practice because it makes the current code harder to read.
Smalltalkers rate code readability extremely highly.

What if you delete a method entirely, and then decide that you want
it back? You can find the deletion in a change set, where you can ask to see
versions with the yellow button menu. The change set browser is described
in Section 6.8

Method Overridings

The |inheritance | button opens a specialized browser that displays all the
methods overridden by the displayed method. To see how it works,
display the ScaleMorph~defaultColor method and click [inheritance|. This
method definition overrides RectangleMorph»defaultColor, which itself

The System Browser 135

x B Inheritance of defaultColor [3] @0

Morph defaultColor {initialization} A
RectangleMorph defaultColor {initialization}
ScaleMorph defaultColor {initialization}

dgd 271442005 Z2:28 - initialization - 121 implementors - in no change set -

|browse " senders " implementors " versions " inheritance " hierarchy " inst vars " <lagz vars " sourceHE

defaultColor A
“grrewar the default colaryfill stvle for the receiver”
+ Color tlue
v

Figure 6.9: ScaleMorph»defaultColor and the methods that it overrides, in
inheritance order. The button is gold because the displayed
method is overridden in a subclass

overrides Morph»defaultColor, as shown in Figure 6.9. The colour of the
button depends on how the overriding occurs. The colours

are explained in a help balloon:

pink: the displayed method overrides another method but
doesn’t use it;

green: the displayed method overrides another method and
uses it via super;

gold: the displayed method is itself overridden in a subclass;

salmon: the displayed method overrides another method, and it
itself overridden;

violet: the displayed method overrides, is overridden, and
makes a super-send.

Note that there are currently two versions of the inheritance
browser. If you are using the version of the system browser based on
the OmniBrowser framework, the button does not change
colour, and the inheritance browser looks different. It also displays
more information: it shows not only the methods on the inheritance
chain, but also their siblings. This version of the inheritance browser
is shown in Figure 6.10.

136

The Squeak Programming Environment

* B Inheritance of #defaultColor @ o
MorpherdefauliColor |&| RectangleMorphedefa)al ScaleMorphrdefauliCol & A
ReferenceMorphedefa TextFieldMorphe:defan.

PolygonMorphs:defaul | ThumbnailMorphs:def:

SelectionMorphrdefan | PlanoRollScoreborphs:

PasteUpMorphedefaul— AliznmentMorghe-defa
BorderedSubpaneDbivid ZoomandScrollContralls
MagnifierMorphedefa | AbstractMediaEventMo
MovieMorphedefaulthi_, TextMorphsdefaultCols

v CachinsMntrohe:defanl ClickFyetraizer:rdefailt hd

dgd 2/14/200% 22:30 ¥ ScaleMorph ¥ initialization ¥ 121 implementors ¥ in no change set

| trowse || hierar<hy || variables || implementors || inhetritatnice || senders || wverzions || Tiew. ..

defauliColor A
“srewer the default oolor il stvle For the recsiver”
+ Color lightGreen

Figure 6.10: ScaleMorph»defaultColor and the methods that it overrides,
as shown by the new OmniBrowser based inheritance browser. The
siblings of the selected methods are shown in the scrolling lists.

The Hierarchy Browser

The button opens a hierarchy browser on the current class;
this browser can also be opened by using the browse hierarchy menu
item in the class pane. The hierarchy browser is similar to the sys-
tem browser, but instead of displaying the system categories and the
classes in each category, it shows a single list of classes, indented to
represent inheritance. The category of the selected class is displayed
in the small annotation pane at the top of the browser. The hierarchy
browser is designed to make it easy to navigate through the inher-
itance hierarchy, but does not show all of the classes in the system:
only the superclasses and subclasses of the initial class are shown. In
Figure 6.11, the hierarchy browser reveals that the direct superclass of
ScaleMorph is RectangleMorph.

The System Browser 137

% B Hierarchy Browser: ScaleMorph @0
MorphicExtraz-Widgets
Morph Al |--all - A tuildLatels A
Borderedborph acces_sing capt@on
RectangleMorph drawing caption:
ScaleMorph ZEOmEy captiondtove:
¥ |initialization checkExtent: >
: otjects from disk cotvvertToCurrentVersion ref 5
| instance ” ? " class | stepping and presenter ¥ 4 >

Clazz definition for ScaleMorph

|br0wse " senders " implementors ”versions " inheritance ”hierarchv " inst vars " <lass vars " sourceHE

RectangleMorph sutclazs: *5caleMorph A
instanceVariatleNames: 'caption start stop minorTick minorTickLength majorTick
majorTickLength tickPrintBlock latelsAtove captiondbowve’
classWariatleNames: "
poolDictionaries: "
category: ‘MorphicExtras-Widgets'

v
Rewrite of ScaleMorph - March 2000 (Russell Swan), Added accessors, Added two Eooleans, Y
latelzdbove and captionidbove, Determines where the label: and captions print. if they exist,
Tick marks ¢an either go up or down. For ticks going up. put in majorTickLength » 0. Negative
walue will make ticks go down., Examples on Claszs side.

b

Figure 6.11: A hierarchy browser open on ScaleMorph.

Finding Variable References

The [inst vars| and [class vars| buttons help you find where an instance
variable or a class variable is used; the same information is accessible
from the yellow button menu items instvarrefs and class var refs in
the class pane. The menu also includes inst var defs, which shows the
subset of the instance variable references that assign to the variable.
Once you click on the button or select the menu item, you will be
presented with a dialog that invites you to choose a variable from all
of the variables defined in the current class, and all of the variables
that it inherits. The list is in inheritance order; it can often be useful
to bring up this list just to remind yourself of the name of an instance
variable. If you click outside the list, it will go away and no variable
browser will be created.

Also available from the yellow button menu on the class pane is
class vars, which opens an inspector showing the class variables of the

138 The Squeak Programming Environment

current class and their values, and class refs (N) which displays a list of
all of the methods that directly reference the current class.

Source

The button brings up the “what to show” menu, which allows
you to choose what the browser shows in the source pane. Options in-
clude the source code, prettyPrinted source code, byteCodes and source
code decompile d from the byte codes. The label on the button changes
if you select one of the other modes. There are other options too; if
you let the mouse linger over the names, a help balloon will appear.
Try some of them.

Note that selecting prettyPrint in the “what to show” menu is not
the same as prettyPrinting a method before you save it. The menu
controls only what the browser displays, and has no effect on the code
stored in the system. You can verify this by opening two browsers, and
selecting prettyPrint in one and source in the other. In fact, focussing
two browsers on the same method and selecting byteCodes in one and
decompile in another is a good way to learn about the Squeak virtual
machine’s byte-coded instruction set.

Refactoring

Did you notice the small @ at the end of the button bar? Although
unobtrusive, this button gives access to one of the most powerful and
important features of the Smalltalk environment. Clicking on [R] gives
you access to a hierarchy of menus for refactoring your code. The same
refactoring engine is also available in several other ways, for example,
through the yellow button menu in the class, method and code panes.
Refactoring was formerly available only in a special browser called
the refactoring browser, but it can now be accessed from any browser.

The Browser Menus

Many additional functions are available from the browser’s yellow
button menu. Since yellow button menus are context-sensitive, each

The System Browser 139

pane in the browser has its own menu. Even if the labels on the menu
items are the same, their meaning is context dependent. For example,
the category pane, the class pane, the protocol pane and the messages
pane all have a file out menu item. However, they do different things:
the category pane’s file out menu files out the whole category, the
class pane’s file out menu files-out the whole class, the protocol pane’s
file out menu files out the whole protocol, and the method pane’s
file out menu files-out just the displayed method. Although this may
seem obvious, it can be a source of confusion for beginners.

Possibly the most useful menu item is find class. .. (f) in the category
pane. Although the categories are useful for the code that we are
actively developing, most of us do not know the categorization of the
whole system, and it is much faster to type CMD—f followed by the
first few characters of the name of a class than to guess which category
it might be in. recent classes. .. (r) can also help you quickly go back to
a class that you have browsed recently, even if you have forgotten its
name.

In the class pane, there are two menu items find method and
find method wildcard. .. that can be useful if you want to browse a par-
ticular method. However, unless the list of methods is very long, it is
often quicker to browse the --all-- protocol (which is the default), place
the mouse in the method pane, and type the first letter of the name of
the method that you are looking for. This will usually scroll the pane
so that the sought-for method name is visible.

5 Try both ways of navigating to OrderedCollection»removeAt:

There are many other options available in the menus. It pays to
spend a few minutes working with the browser and seeing what is
there.

N Compare the result of Browse Protocol, Browse Hierarchy, and
Show Hierarchy in the class pane menu.

140 The Squeak Programming Environment

Other Class Browsers

At the beginning of this section we mentioned another class browser:
the package pane browser. This can be opened from the world menu:
World 1>open. .. >package pane browser It’s basically the same as the class
browser, but it knows about the naming convention for system cate-
gories. You will have noticed that the names of categories have two
parts. For example, the ScaleMorph class belongs to the Morphic-Widgets
category. The package browser assumes that the part before the hy-
phen, Morphic is the name of a “package”, and adds a fifth pane that
allows you to browse only those categories in a particular package.
However, if you select no package at all, then all the categories are
available, just as with the ordinary four-pane browser.

Unfortunately, the meaning of the term package has changed since
the package pane browser was developed. “Package” now has a more
precise meaning, related to the Monticello packaging tool, as we will
discuss in the next section. At present there is no tool that lets one
browse packages as defined by Monticello, although one is under
development.

The Squeak community is in the process of developing a whole new
family of browsers based on a new, highly customizable framework
call the OmniBrowser. The OmniBrowser is worth looking at as an
example of object-oriented design, but from the outside, most of the
OmniBrowser-based tools look very similar to the ones that we have
just described. The main enhancement that you will notice in the Omni
System Browser is the addition of virtual protocols. In addition to the
traditional programmer-defined protocols, each class has a number
of virtual protocols defined on it by definitional rules. For example,
the --supersend-- protocol includes all of the methods that send to super,
while the --required-- protocol lists all of the messages that are sent
by the methods in the current class but not defined by it or by its
superclasses.

The System Browser 141

Browsing Programatically

The class SystemNavigation provides a number of utility method that
are useful for navigating around the system. Many of the functions
offered by the classic browser are implemented by SystemNavigation.

N Open a workspace and do it the following code to browse the senders
of checkExtent::

SystemNavigation default browseAllCallsOn: #checkExtent: .

To restrict the search for senders to the methods of a specific class:

SystemNavigation default browseAllCallsOn: #drawOn: from: ScaleMorph .

Because the development tools are objects, they are completely accesi-
ble from programs and you can develop your own tools or adapt the
existing tools to your needs.

The programmatic equivalent to the button is:

SystemNavigation default browseAlllmplementorsOf: #checkExtent: .

To learn more about what is available, explore the class
SystemNavigation with the browser. Further examples can be found
in Chapter A.

Summary

As you have seen, there are many ways to navigate around Smalltalk
code. You may find this confusing at first, in which case you can
always fall back to the traditional system browser. However, we
usually find that once beginners gain more experience with Squeak,
the different browsers become one of its most valued features, because
they give one a great many ways to help understand and organizing
code. And that is one of the greatest challenges of large-scale software
development.

142 The Squeak Programming Environment

6.3 Monticello

We gave you a quick overview of Monticello, Squeak’s packaging tool,
in Section 2.9. However, Monticello has many more features than were
discussed there. Because Monticello manages Packages, before telling
you more about Monticello, it’s important that we first explain exactly
what a package is.

Packages: Declarative Categorization of Squeak Code

The package system is a simple, lightweight way of organizing
Smalltalk source code. It leverages the long-used naming conven-
tion mentioned above (Section 6.2), but adds to it in an important
way.

Let’s explain this using an example. Suppose that you are devel-
oping a framework named to facilitate the use of relational databases
from Squeak. You have decided to call your framework SqueakLink,
and have created a series of system categories to contain all of the
classes that you have written, e.g.,

Category 'SqueakLink-Connections' contains OracleConnection
MySQLConnection PostgresConnection
Category 'SqueakLink-Model' contains DBTable DBRow DBQuery

and so on. However, not all of your code will reside in these classes.
For example, you may also have a series of methods to convert objects
into an SQL-friendly format:

Object»asSQL
String»asSQL
Date»asSQL

These methods belong in the same package as the classes in the cat-
egories SqueakLink-Connections and SqueakLink-Model. But clearly the
whole of class Object does not belong in your package! So you need a
way of putting certain methods in a one package, even though the rest
of the class is in another package.

Monticello 143

The way that you do this is by placing those methods in a protocol

(of Object, String, Date, and so on) named *squeaklink (note the initial

star, and the lower-case name). The combination of the SqueakLink-

. categories and the *squeaklink protocols form a package named

SqueakLink. To be precise, the rules for what goes in a package are as
follows.

A package named Foo contains:

1. all class definitions of classes in the category Foo, or in categories
with names starting with Foo-, and

2. all method definitions in any class in a protocol named *foo
or whose name starts with *foo- (when performing this name
comparison, the case of the letters in the names is ignored), and

3. all methods in classes in the category Foo, or in a category whose
name starts with Foo-, except for those methods in protocols
whose names start with *.

A consequence of these rules is that each class definition and each
method belongs to exactly one package. The except in the last rule
has to be there because those methods must belong to other packages.
The reason for ignoring case in rule 2 is that, by convention, protocol
names are all lower case (and may include spaces), while category
names use CamelCase (and don’t include spaces).

The class Packagelnfo implements these rules, and one way to get a
feel for them is to experiment with this class.

N Try this in your image, which should contain the classes Packagelnfo
and RefactoringBrowser.

The Refactoring Browser code uses these package naming conven-
tions, with RefactoringEngine as the package name. In a workspace,
create a model of this package with

refactory := Packagelnfo named: 'RefactoringEngine'.

It is now possible to introspect on this package. For exam-
ple, refactory classes will return the long list of classes that make

144 The Squeak Programming Environment

up the Refactoring Engine and the Refactoring Browser. refactory
coreMethods will return a list of MethodReferences for all of the meth-
ods in those classes. refactory extensionMethods is perhaps one of the
most interesting queries: it will return a list of all methods con-
tained in the RefactoringEngine package but not contained within a
RefactoringEngine class. This includes, for example, ClassDescription>
chooseThisClasslInstVarThenDo: and SharedPool class»keys.

Packages are a relatively new addition to Squeak, but since the
package naming conventions were based on those used already in use,
it is possible to use Packagelnfo to analyze older code that has not been
explicitly adapted to work with it.

N1 Evaluate (Packagelnfo named: 'Collections') externalSubclasses; this ex-
pression will answer a list of all subclasses of Collection that are not in the
Collections package.

You can send fileOut to an instance of Packagelnfo to get a change set
of the entire package. For more sophisticated versioning of packages,
we use Monticello.

Basic Monticello

Monticello is named after the mountaintop home of Thomas Jeffer-
son, third president of the United States and author of the Statute of
Virginia for Religious Freedom. The name means “little mountain”
in Italian, and so it is always pronounced with an Italian “c”, which
sounds like the “ch” in chair: Mont-y’-che-llo.

When you open the Monticello browser, you will see two list panes
and a row of buttons, as shown in Figure 6.12. The left-hand pane lists
all of the packages that have been loaded into the image that you are
running; the particular version of the package is shown in parentheses
after the name.

The right-hand pane lists all of the source-code repositories that
Monticello knows about, usually because it has loaded code from
them. If you select a package in the left pane, the right pane is filtered
to show only those repositories that contain versions of the selected
package.

Monticello 145

% B Monticello Browser @0

+Package | Browse | Scripts Hiztory Changes Backport Save +Repository Open

F9Deprecated {39Deprecated-md.11) = | fUzersdblack/PSU/Classess ddvancedProgrammin™
AST (AST-me.137) A httpr/izource. squeakfoundation. org/ 3% A
AutomaticMethodCategorizer (AwtomaticMethodCs | | http://source.impara.de/me
AutomaticMethodCategorizerServices (Automatic] | httpi//zource.squeakfoundation.org/inbox

Balloony (Balloon-ar.13) httptfizouree, squeakioundation.org/Ealloon
ClassSelectorSets (ClassSelectorSets-de. 1) httpidieouree, squeakioundation org/Compressio
Collections {(Collections-ede.84) http/fzouree, squeakfoundation. org/Graphics
CollectionsTestz (CollectionsTestz-ede.70) http/dwrww, squeakzource, com/ToolBuilder
Compiler {Compiler-ede, 600 httpiddwrww, equeaksource, com/Packagelnfo
Compression (Compression-ar.8) httpdizouree. squeakfoundation. org/SqueakMag
DynamicProtocols (DynamicProtocols-de. 500 httpi/izource squeakioundation. org/network
ECompletion (ECompletion-de, 850 httpi/feoures, wiresong, calob/
ECompletionOmniBrowszer (ECompletionOmniBrow | hitp:d//zource, wiresong.oa/me

ETovs (ETovs-ede.23) hittp:ffzource, aqueakfoundation. org/310

Exceptions (Exceptions-zd.8)

Files (Files-edc.20)

FlexitleVocatularies (FlexibleVocatularies-al.5)

Graphics (Graphics-ede.40)

GraphicsTestz (GraphicsTestz-ede.10)

ImageForDevelopers {lmageForDevelopers-ms, 127

Installer ()

Installer-Core (Installer-Core-kph.92)

Eernel (Kernel-edc, 156)

KernelTestsf (KernelTestz-eds, 5‘\3) v v

Figure 6.12: The Monticello browser.

One of the repositories is a directory named package-cache, which is
a sub-directory of the directory in which your image is running. When
you load code from or write code to a remote repository, a copy is also
saved in the package cache. This can be useful if the network is not
available and you need to access a package. Also, if you are given a
Monticello (.mcz) file directly, for example as an email attachment, the
most convenient way to access it is to place it in the package-cache
directory.

To add a new repository to the list, click the , and choose
the kind of repository from the pop-up menu. Let’s add an HTTP

repository.

%41 Open Monticello, click on [+Repository|, and select HTTP. Edit the
dialog to read:

146 The Squeak Programming Environment

x B Repository: http://squeaksource.com/SqueakByExi® O -

(Refrssh Browse History Changes Load Merge Adopt Copy Diff

SBE-OuickTour ® SBE-(uickTour-apb.4.mcz -
SBE-Streams & SBEHhickTour-apb.J.mcz i
w ¥

-

A

Figure 6.13: A Repository browser.

MCHttpRepository
location: 'http://squeaksource.com/SqueakByExample'
user: "
password: "

Then click on to open a repository browser on this repository.
You should see something like Figure 6.13. On the left is a list of all
of the packages in the repository; if you select one, then the pane on
the right will show all of the versions of the selected package in this
repository.

If you select one of the versions, you can it (without loading
it into your image), it, or look at the that will be made
to your image by loading the selected version. You can also make a
of a version of a package, which you can then write to another
repository.

As you can see, the names of versions contain the name of the
package, the initials of the author of the version, and a version number.
The version name is also the name of the file in the repository. Never
change these names; correct operation of Monticello depends on them!
Monticello version files are just zip archives, and if you are curious

Monticello 147

x B System Browser: SBEGoodClass @Oy
OEUniverse-Commands ® SEEGoodClazs = --all -- = trialMethod]
OEUniverse-Nodes [%] SBEEettercClass Al az vet unclazzified A A
OBUniverse-Panels -- Required —-
OBUniverse-Ttilities -- Local -
ImageForDevelopers -- RecentlyModified —-
Parse Numeral v
SEE-MonticelloExample

F ; :
apb 8/23/2007 17:57 « az vet unclassified - 1 implementor - only in change set Tnnamed]

trowse || hierarchy ” variatles || implementors || inheritance || senders || wersions

trialMethod =

"This methad is here fust so the class waon't be empty”

Figure 6.14: Two classes in the “SBE” package.

you can unpack them with a zip tool, but the best way to look at their
contents is using Monticello itself.

To create a package with Monticello, you have to do two things:
write some code, and tell Monticello about it.

Ng Create a category called SBE-Monticello, and put a couple of classes in it,
as shown in Figure 6.14. Also, create a method in an existing class, and put
it in the same package as your classes, using the rules from page 143 — see

Figure 6.15.

To tell Monticello about your package, click on and type
the name of the package, in this case “SBE”. Monticello will add SBE to

its list of packages; the package entry will be marked with an asterisk
to show that the version in the image has not yet been written to any
repository.

Initially, the only repository associated with this package will be
your package cache, as shown in Figure 6.16. That’s OK, you can still
save the code, which will write it to the cache. Just click and
you will be invited to provide a log message for the version of the

148 The Squeak Programming Environment

x B System Browser: Object @Oy
Kernel-Otjects = ObjectTracer = *universes ®| examplebethod .
Kernel-Proceszes [a] ObjectVWiewer Al #¥rbe-example | A
Kertniel-5T80 Eemnants Proto0tject -- Required —-

KernelTestz-Chronology Object -- Detugging —-

KernelTestz-Claszes Boolean -- Long -

KernelTesta-Methodz Falae w —- Local -

KernelTestz-Numbers SO -- RecentlyMoaodified --

KernelTestz-Otjects | - v v

apbk 8/23/2007 17:49 .« *sbe-example - 1 implementor - only in <hange set Unnamed]

trowse || hierarchy ” variatles || implementors || inheritance || senders || wersions
erampleMethod =
"Thic fe here fust to demonstrate the fdes of class ertension” =
+ 4
v
| =]

Figure 6.15: An extension method that will also be in the “SBE” pack-
age.

package that you are about to save, as shown in Figure 6.17; when
you accept the message, Monticello will save your package, and the
asterisk decorating the name in Monticello’s package pane will be
replaced by the version name.

If you then make a change to the package—say by adding a
method to one of the classes —the asterisk will re-appear, showing
that you have unsaved changes. If you open a repository browser on
the package cache, you can select the saved version, and use
and the other buttons. You can of course save the new version to the
repository too; once you the repository view, it should look
like Figure 6.18.

To save our new package to another repository (other than the
package cache), you need to first make sure that Monticello knows
about the repository, adding it if necessary. Then you can use the
in the package-cache repository browser, and select the repository
to which the package should be copied. You can also associate the
desired repository with the package by using the yellow button menu

Monticello 149

x B Monticello Browser o

+Package | Erowse | Scripte | History
Parse Numeral (Parse Numeral-apt.5) ® ning/Squeak-Working/squeak-dev-beta-123/package-ca®
A A

PreferenceBrowser {FreferenceBrowser-hpt,32)
Protocols (Protocols-md, 12)
RefactoringEngine (RefactoringEngine-de.35)
ReleazeBuilder (ReleaseBuilder-ede.25)
RoelTyper (RoelTyper-rw.59)

SBE ()}

SMEBasze (SMBaze-ed:.d6)

SMLoader (SMLoader-gk,37)

STa0 (ST80-edec.39)

Snit (3Thit-md,33)

SUnitGUI {SUnitGUI-sd.7)

SeriptLoader {ScriptLoader-sd,324)
SeriptManager (ScriptManager-tbn.6)

Tpryrices-Fase (Seriwices-Fase-md 331

Figure 6.16: The as-yet unsaved SBE package in Monticello.

r 1
% B Edit Version Name and Message: 0
_ .
SBE-apb.1 =
A Jummv pa¢kagelf‘cnr the Squeak Bv Example book :
L)
Accept Caticel

Figure 6.17: Providing a log message for a new version of a package.

item add to package... on the repository, as shown in Figure 6.19. Once
the package knows about a repository, you can save a new version by
selecting the repository and the package in the Monticello Browser,
and clicking [Save|. Of course, you must have permission to write to a
repository. The SqueakByExample repository on SqueakSource is world
readable but not world writable, so if you try and save there, you will
see an error message. However, you can create your own repository
on SqueakSource by using the web interface at http://www.squeaksource.
com, and use this to save your work. This is especially useful as a

http://www.squeaksource.com
http://www.squeaksource.com

150 The Squeak Programming Environment

% B Repository: /Users/black/PSU/Classes/Advancedf® O |

| Refrezh | Erowsze | Hiztorvy | Changes | Load | Merge | Adopt |E0p‘,.r | Diff |

Parze Numetal ®| SEE-apb.2.mez .
SBE A SBE-apt.l.mcz -
CE510ap-HW9

CE5510ap-Parsers

Cz510ap-HW9

ImageFizes
PAOD
EHNEAtORE

.4 hd
Wame: SEE-aph.2 =
Author: apb =

Time: 23 August 2007, 6:252% pm
T e20820e0-51e0-11de-a6fc-000493 330036
Aticestors: SBE-apt. 1

added a zecond method

Figure 6.18: Two versions of our package are now in the package
cache.

mechanism to share your code with friends, or if you use multiple
computers.

If you do try and save to a repository where you don’t have write
permission, a version will nevertheless be written to the package-cache.
So you can recover by editing the repository information (yellow but-
ton menu in the Monticello Browser) or choosing a different repository,
and then using from the package-cache browser.

6.4 The Inspector and Explorer

One of the things that makes Smalltalk so different from many other
programming environments is that it is provides you with a window
onto a world a live objects, not a world of static code. Any of those
objects can be examined by the programmer, and even changed —

The Inspector and Explorer

% B Monticello Browser

F9Deprecated (39Deprecated-md. 11} =
AST (AST-ms.137) [l
AutomatichMethodtategorizer (AutomaticMethodCategorizy
AutomaticMethodCategorizerServices {AutomaticMethodC

151

W o

httpiddesonres. impara, dedme

httpidfzouree. squeakfoundation.orgfinbox
hitpidfzource.squeakioundation.orgs/Balloon
httptddeonres, squeakioundation. org/Compression

0
n

Ealloon (Balloon-ar.13)

ClazsSelectorsets (ClassSelectorsSets-da.1)

Collestions {Collections-sde.4)

CollestionsTests (CollectionsTests-eds, 700

Compiler (Compiler-ede.60)

Compression (Compression-ar.8)

DIynamicProtocols {DynamicProtocols-de.500
ECompletion (ECompletion-dz.85)
ECompletionOmniBrowser (ECompletionOmniBrowser-bar
ETovs (ETovs-edc.E5)

Frepntinns (Fresntictiz-ad 21
1]

httprddeonree squeakioundation. org/Graphics
hitpAfwww squeakiouree, com/ ToolEuilder
httpiddwww. squeaksouree, com/Packagelnfo
httpiddeonres squeakioundation, org/SqueakMag
httptddeonree, squeakioundation. org/network
hitpiAfsouree, wiresong, cafobs

httpiddsoures, wiresong, ca/mes

httpidfsoures, squeakioundation org/310
httpldiwww. squeaksouree, com/sddvancedProgramming
hitp:i/fsqueaksiyopen repository ple
dit repository info

™

> 1]

load repositories

zave repositories
flush cached versions
store diffs

Figure 6.19: Adding a repository to the set of repositories associated
with a package.

although some care is necessary when changing the basic objects that
support the system. By all means experiment, but save your image
first!

The Inspector

N4 Asanillustration of what you can do with an inspector, type TimeStamp

now in a workspace, and then choose inspect it from the yellow button menu.

(It's not necessary to select the text before using the menu; if no
text is selected, the menu operations work on the whole of the current
line. You can also type CMD-i for inspectit.)

A window like that shown in Figure 6.20 will appear. This is an
inspector, and can be thought of as a window onto the internals of
a particular object —in this case, the particular instance of TimeStamp
that was created when you evaluated the expression TimeStamp now.
The title bar of the window shows the class of the object that is being
inspected. If you select self at the top of the left pane, the right pane
will show the printstring of the object. If you select all inst vars in the

152 The Squeak Programming Environment

% B TimeStamp @04

zell I -

all inst vars (& =

Zecotids

of fzet

jdtn

a0

¥ ¥

| |
r
¥

Figure 6.20: Inspecting TimeStamp now

left pane, the right pane will show a list of the instance variables in the
object, and the printstring for each one. The remaining items in the left
pane represent the instance variables; this makes it easy to examine
them one at a time, and also to change them.

The horizontal pane at the bottom of the inspector is a small
workspace window. It is useful because in this window, the pseudo-
variable self is bound to the very object that you are inspecting. So, if
you inspect it on

self - TimeStamp today

in the workspace pane, the result will be a Duration object that rep-
resents the time interval between midnight today and the instant at
which you evaluated TimeStamp now and created the TimeStamp object
that you are inspecting. You can also try evaluating TimeStamp now -
self; this will tell you how long you have spent reading this section of
this book!

In addition to self, all the instance variables of the object are in
scope in the workspace pane, so you can use them in expressions or
even assign to them. For example, if you evaluate jdn :=jdn - 1 in the
workspace pane, you will see that the value of the jdn instance variable

The Inspector and Explorer 153

% 8 27 August 2007 6:04:16 pm=a O | x 8 27 August 2007 6:04:16 pm®& O |
I root: 27 August 2007 6:04:16 pm . = rootl 27 August 2007 6:04:16 pm L]
= b zeconds: 65056 B
B offset: 0:00:00:00
B idn: 2454340
B tuatioz: O
i . -
= A
i) v

Figure 6.21: Exploring TimeStamp ~ Figure 6.22: Exploring the in-
now stance variables

will indeed change, and the value of TimeStamp now - self will increase
by one day.

You can change instance variables directly by selecting them, re-
placing the old value in the right-hand pane by a Squeak expression,
and accepting. Squeak will evaluate the expression and assign the
result to the instance variable.

There are special variants of the inspector for Dictionaries, Ordered-
Collections, CompiledMethods and a few other classes that make it
easier to examine the contents of these special objects.

The Object Explorer

The object explorer is conceptually similar to the inspector, but presents
its information in a different way. To see the difference, we’ll explore
the same object that we were just inspecting.

N Select self in the inspector’s left-hand pane, and choose explore (l) from
the yellow button menu.

The explorer window looks like Figure 6.21. If you click on the
small triangle next to root, the view will change to Figure 6.22, which

154 The Squeak Programming Environment

shows the instance variables of object that you are exploring. Click
on the triangle next to offset, and you will see its instance variables.
The explorer is really useful when you need to explore a complex
hierarchic structure —hence the name.

The workspace pane of the object explorer works slightly differ-
ently to that of the inspector. self is not bound to the root object, but
rather to the object that is currently selected; the instance variables of
the selected object are also in scope.

To see the value of the explorer, let’s use it to explore a deeply-
nested structure of objects. 1 Open a browser, and blue-click twice on

the method pane to bring-up the Morphic halo on the PluggableListMorph that
is used to represent the list of messages. Red-click on the debug handle (Xland
select explore morph from the menu that appears. This will open an Explorer
on the PluggableListMorph object that represents the method list on the screen.
Open the root object (by clicking in its triangle), open its submorphs, and
continue exploring the structure of the objects that underlie this Morph, as
shown in Figure 6.23.

6.5 The Debugger

The debugger is arguably the most powerful tool in the Squeak tool
suite. It is used not just for debugging, but also for writing new code.
To demonstrate the debugger, let’s start by writing a bug!

N Using the browser, add the following method to the class String:

Method 6.1: A buggy method

suffix
"assumes that I'm a file name, and answers my suffix, the part after the last
dot"
| dot dotPosition |
dot := FileDirectory dot.
dotPosition := (self size to: 1 by: -1) detect: [:i | (self at: i) = dot].
1 self copyFrom: dotPosition to: self size

The Debugger 155

% B a PluggableListMorph(3689) & O

- root; a PluggableLiztMorph(3659) A
- tounds: 511@554 corner: 652@703
B Jowner: a SvstemWindow (40)
w zubtmorphs: an Arravia ScrollBari2631) s
I 1: a SerollBar({Z631)

- Z: a ScrollBar{l1216)
bounds: 637@555 corner: 651@653
owner: a FluggableLiztMorph(368t

subtmorphs: an Arrav{a RectangleMo
fullBounds: 637@555 corner: 651@655

color: Color lightGray

extenzion: nil
borderWidth: 0

.bu:urdertu:ulu:ur: Color tlack
[model; a PluggableListMorph (3689
zlotName: "vSorollBar

s

-

opef1: falze
I zlider: a RectangleMorph{Z9158) v
. | >
A
v

Figure 6.23: Exploring a PluggableListMorph

Of course, we are sure that such a trivial method will work, so
instead of writing an SUnit test, we just type 'readme.txt' suffix in a
workspace and printit (p). What a surprise! Instead of getting the ex-
pected answer 'txt', a PreDebugWindow pops up, as shown in Figure 6.24.

The PreDebugWindow has a title-bar that tells us what error occurred,
and shows us a stack trace of the messages that led up to the error.
Starting from the bottom of the trace, UndefinedObject»Dolt represents
the code that was compiled and run when we selected 'readme.txt' suffix
in the workspace and asked Squeak to print it. This code, of course, sent
the message suffix to a ByteString object (‘readme.txt)). This caused the

156 The Squeak Programming Environment

x B Error: Object is not

Interval{Object rerror: A
Interval(Collection kerrorNotFound:

[1 in IntervaliCollection srdetect: {[zelf errorNotFound: aBlock]}
Interval(Collection yrdetect: if None:

Interval(Collection kedetact:

BvteString (String yauffix

Ttidefineddtject=:Dalt v

Figure 6.24: A PreDebugWindow notifies us of a bug.

inherited suffix method in class String to execute; all this information
is encoded in the next line of the stack trace, ByteString(String)»suffix.
Working up the stack, we can see that suffix sent detect:. . . and eventually
detect:ifNone sent errorNotFound.

To find out why the dot was not found, we need the debugger itself,

so click on .

5 You can also open the debugger by red-clicking on any of the lines on
the stack trace. If you do this, the debugger will open already focussed on the
corresponding method.

The debugger is shown in Figure 6.25; it looks intimidating at first,
but it is quite easy to use. The title-bar and the top pane are very
similar to those that we saw in the PreDebugWindow. However, the
debugger combines the stack trace with a method browser, so when
you select a line in the stack trace, the corresponding method is shown
in the pane below. It’s important to realize that the execution that
caused the error is still in your image, but in a suspended state. Each
line of the stack trace represents a frame on the execution stack that
contains all of the information necessary to continue the execution.
This includes all of the objects involved in the computation, with their
instance variables, and all of the temporary variables of the executing
methods.

In Figure 6.25 we have selected the detect:ifNone: method in the top

The Debugger 157

® B Error: Object is n

IntervaliObjectierror:
Interval(Collection errorNotFound:
[1 in IntervaliCollection kdetect: {[zelf errorWotFound: aBlock]}
InterwvaliCollection brdetectiif None:
Interval({Collection detect:
BvteString (String =auffix

TndefinedObject:Dolt
Compiler-evaluatein o notif ving ifFail:logged:

n_TextMorohEditor (P

sma 51272000 11:52 - enumerating - 2 implementors - in no change set -

Proceed || Restart || Into || Owet || Through || Full Stack ” Where |
detect: aflock ifHone: excepticrblock

“Evaluste sflock with esch of the receiver's elemerits ar the srgumert,

Ariswer the firet element for whiiclh ablock evaluates ta true, [rone

evsluate to true. then evaluste the srgumernt. excepticnBlock,”

self do: [ieack | (sBlock walue: sach) ifTrue: [+ eschl]]
+ exceptiornBlock walue

zell thizContext

all inst vars all temp wars
Itart aBlock

stop exceptionBlock
step each

Figure 6.25: The debugger.

pane. The method body is displayed in the center pane; the blue
highlight around the message value shows that the current method has
sent the message value and is waiting for an answer.

The four panes at the bottom of the debugger are really two mini-
inspectors (without workspace panes). The inspector on the left shows
the current object, that is, the object named self in the center pane.
As you select different stack frames, the identity of self may change,
and so will the contents of the self-inspector. If you click on self in
the bottom-left pane, you will see that self is the interval (10 to: 1 by -1),
which is what we expect. The workspace panes are not needed in
the debugger’s mini-inspectors because all of the variables are also
in scope in the method pane; you should fell free to type or select
expressions in this pane and evaluate them. You can always cancel (1)

158 The Squeak Programming Environment

your changes using the menu or CMD—-1.

The inspector on the right shows the temporary variables of the
current context. In Figure 6.25, value was sent to the parameter
exceptionBlock.

N To see the current value of this parameter, click on exceptionBlock in the
context inspector. This will tell you that exceptionBlock s [self errorNotFound:
...} So, it is not surprising that we see the corresponding error message.

Incidentally, if you want to open an full inspector window on
one of the variables shown in the mini-inspectors, just double-click
on the name of the variable, or select the name of the variable and
choose inspect (i) or explore (I) from the yellow button menu. This can
be useful if you want to want to watch how a variable changes while
you execute other code.

Looking back at the method window, we see that we expected the
penultimate line of the method to find dot in the string 'readme.txt, and
that execution should never have reached the final line. Squeak does
not let us run an execution backwards, but it does let us start a method
again, which works very well in code such as this that does not mutate
objects, but instead creates new ones.

N Click , and you will see that the locus of execution returns to
the first statement of the current method. The blue highlight shows that the
next message to be sent will be do: (see Figure 6.26).

The and buttons give us two different ways to step
through the execution. If you click , Squeak executes the current
message-send (in this case the do:) in one step, unless there is an
error. So will take us to the next message-send in the current
method, which is value: this is exactly where we started, and not much
help. What we need to do is to find out why the do: is not finding the
character that we are looking for.

%41 Click [Over| and then click to get back to the situation shown

in Figure 6.26.

N Click Squeak will go into the method corresponding to the high-
lighted message-send, in this case, Collection»do:.

The Debugger 159

x B Error: Object is not in the collection. @0

Interval{Collection p>detect:if Hone: A
Interval(Collection kdetect:

ByteString(String hrsuffix

TUndefined0tiject:=Dolt

Compilersrevaluate:in:ionotif ving ifFail:logged:

[] it TextMorphEditor(ParasraphEditor eevaluateSelection {[revr class evaluatorClass new evall¥
4 »

zma 31272000 11:52 - enumerating « 2 implementors « in no change get -

Proceed || Restart || Into || Ower || Through || Full Stack || Where
detect: shlock ifNone: excepticnblock A
"Evsluste sflock with esch of the recsiver's elemernts ae the argumert,

Arigwer the firet elemernt for wihiich ablock evaluates to true, If nomne
evaluste to true. then evaluste the srgumernt. sroepticnilock.”

self do: [iesch | (sBlock value: easch) ifTrue: [+ eacl]]
+ excepticriBlack walue

hd
self All(10 10 1 by 1) A || thisContext Allll in —
?tlalurltnSt vars :glotzgp vars Interval{Callection detec
Htap e sl s 1 {[2elf errorNotFound:
step each aBlock]}
hi b hd hd

Figure 6.26: The debugger after restarting the detect: ifNone: method

However, it turns out that this is not much help either: we can be
fairly confident that Collection»do: is not broken. The bug is much more
likely to be in what we asked Squeak to do. is the appropriate
button to use in this case: we want to ignore the details of the do: itself
and focus on the execution of the argument block.

N Click on |Through |a few times. Select each in the context window as you
do so. You should see each count down from 10 as the do: method executes.

When each is 7 we expect the ifTrue: block to be executed, but it
isn’t. To see what is going wrong, go the execution of value: as
illustrated in Figure 6.27.

After clicking [Into], we find ourselves in the position shown in
Figure 6.28. It looks at first that we have gone back to the suffix method,
but this is because we are now executing the block that suffix provided
as argument to detect:. If you select i in the context inspector, you can
see its current value, which should be 7 if you have been following

160 The Squeak Programming Environment

x B Error: Object is not in the collection. @0

[1 in IntervaliCollection pedetect:ifHone: {[ieach | {(aBlock walue: each) ifTrue: [+ each]. nill} |a
Intervalsdo;

Interval({Collection pedetect:if None:

Interval{Collection b»detect:

ByteString(String preuffix

Undef inedObject-»Dolt v
4 |
sma 5/12/2000 11:52 - enumerating - 2 impl i e et -
step Into message sends
Proceed || Restart || Inta | O-er Through || Full Stack || Where
detect: shlock ifNone: sroepticibloc A

"Evgluate sblock with ssch of the receiver's slemetils &f the srguiraisd,
Atigwer the first elemernt for which aBlock evalusters to true, IF notie
evaluate to true. thett evaluate thie argunetit. exosptictiblesi,”

self do: [ieach | (aBlock walue: eaclh) ifTrue: [+ each]].
+ excepticieBlock value

v
zelf A (10 10 1 By -1 A | thisContext A7 Y
all inst vars all temp vars
start aBlock
stop exceptionBlock
step each
v v v v

Figure 6.27: The debugger after stepping the do: method
several times

along. You can then select the corresponding element of self from
the self-inspector. In Figure 6.28 you can see that element 7 of the
string is character 46, which is indeed a dot. If you select dot in the
context inspector, you will see that its value is '.". And now you see
why they are not equal: the seventh character of 'readme.txt' is of course
a Character, while dot is a String.

Now that we see the bug, the fix is obvious: we have to convert dot
to a character before starting to search for it.

N Change the code right in the debugger so that the assignment reads
dot := FileDirectory dot asCharacter and accept the change.

Because we are executing code inside a block that is inside a detect:,
several stack frames will have to be abandoned in order to make this
change. Squeak asks us if this is what we want (see Figure 6.29), and,
assuming that we click yes, will save (and compile) the new method.

The Debugger 161

x B Error: Object is not in the collection. @0

[1 in BwvteString(String Jweuffix {1 | {=elf at: i} = dot]}
[1 in IntervaliCollection b-detectiifNone: {[ieach | {aBlock value: eachy ifTrued [+ eachl, nill}
Intervals+do;

Interval{Collection sdetect:if None:

IntervaliCollection detect:

ByteString (String besufTix v
4

apt §/28/2007 15:27 « accessing - 1 implementor - only in change set Unnamed -

Proceed || Restart || Inta || O-er || Through || Full Stack || Where
suffix A

“gesumer that I'm & File tame. sind answers my swlfir. the part after the last dat”

| dat datDasition |

Gt i= FilelMrectory dot,

dotPasition = (self size to: 1 by: -1) detect: [i | (self at: &) = dot 1.

+ zelf copyErom: Jotlosition 1o self size

v
3 A4 A | thizContext Al ry
& all temp vars
7 dot
g dotPozition
9 i
10 v v = =

Figure 6.28: The debugger showing why 'readme.txt' at: 7 is not equal to
dot

L Click and then the debugger window will vanish,

and the evaluation of the expression 'readme.txt' suffix will complete, and print
the answer " txt

Is the answer correct? Unfortunately, we can’t say for sure. Should
the suffix be .txt or txt? The method comment in suffix is not very precise.
The way to avoid this sort of problem is to write an SUnit test that
defines the answer.

Method 6.2: A simple test for the suffix method

testSuffixFound
self assert: 'readme.txt' suffix = "txt'

The effort required to do that was little more than to run the same
test in the workspace, but using SUnit saves the test as executable
documentation, and makes it easy for others to run. Moreover, if you
add method 6.2 to the class StringTest and run that test suite with SUnit,

162 The Squeak Programming Environment

x B Error: Object is not in the collection. @0

[] in BvteString(String esuffiz {[:d | {zelf at: i) = dot]}

[1 in Interval(Collection kedetect:ifHone: {[:each | (aBlock walue: each) ifTrue: [+ each]. nill}
Intervalsdo:

Interval({Collection Fdetectiif None:

Interval(Callestion prdetact:

EyteString{String prsuffix .
4

apt 8/28/2007 15:27 .« accessing - 1 implementor - only in ¢hange set Unnamed -

Proceed || Restart || Into || Ower || Through || Full Stack || Where |
suffix |‘

“agcumer that I'm & file nane. and snewers myoinffir the nser sfter the laor dor

| dot dotPasition | I will have to revert to the method from

ot := FileDirectory dot asCharacter, which thiz block originated, Iz that OK?

dotPasition = (self zize 100 1 by -1) detect: [

+ self copvErom: JdoiPosition tor self zize % No
[v
=elf ™ A [thizContext Al |6 A
all inst vars all temp wvars
1 dot
Z dotPozition
3 i
i v v v v

Figure 6.29: Changing the suffixmethod in the debugger: asking for
confirmation of the exit from an inner block

you can very quickly get back to debugging the error. SUnit opens the
debugger on the failing assertion, but you need only go back down

the stack one frame, the test and go the suffix method, and

you can correct the error, as we are doing in Figure 6.30. It is then only
the work of a second to click on the button in the SUnit
Test Runner, and confirm that the test now passes.

Here is a better test:

Method 6.3: A better test for the suffix method

testSuffixFound
self assert: 'readme.txt' suffix = "txt".
self assert: 'read.me.txt' suffix = "txt'

Why is this test better? Because it tells the reader what the method
should do if there is more than one dot in the target String.

There are a few other ways to get into the debugger in addition

The Debugger 163

x B Test Runner

KernelTests-Chronology ® | CharasterTest
Eernellests-Classes
KernelTests-Methods
EernelTeste-Numbers
EernelTestz-Objects
KernelTests-Processes
EernelTests-Contexts

*F 41 run, 40 passes. 0 expected failures, 1 failures, 0

O
& StringTest *Nerrors. 0 unexpected passes

StringTest-#temSulfizFound

o0

WideStringTest
TextAlisnmentTest
TextEmphasisTest

% B TestFailure: Assertion failed ao

ByteString(String kesuffix =
StringTeststestSulfixFound &
StringTest{TestCase e performTest

[1 in StringTestiTestCase)»runCase {[self sstUf, self performTest]}

ElockContextensure:

StringTest{TesiCase»runCase

[] in StringTestiTestCase)»debug {[{zelf class selectar: test3elector) runCase]}

BlockContextrensure:

StrinaTest{TestCase ndehne
u[4 O

r-‘d

[Proceed || Restart |[mmto |[over |[Through |[Full Stack || Whers || Taly

suffix =
“asrumes that I'm a file name, and answers my suffix, the part after the last dot”
| dot dotPosition |
dot 1= FileDirectory dot asCharacter.
dotPosition := (self size to: 1 by: -1) detect: [:i| (zelf at: i) = dot],
+ self copyFrom: dotPosition + 1[10: self size
LY

pojc

1 LIPS thisContext L
2 4} A all temp wars &

3 dot

4 datPosition

5 i

]

H

g8

a

10

Figure 6.30: Changing the suffix method in the debugger: fixing the
off-by-one error after an SUnit assertion failure

to catching errors and assertion failures. If you execute code that
goes into an infinite loop, you can interrupt it and open a debugger
on the computation by typing CMD-. (that’s a full stop or a period,
depending on where you learned English). You can also just edit the
suspect code to insert self halt. So, for example, we might edit the suffix
method to read as follows:

Method 6.4: Inserting a halt into the suffix method.

suffix
"assumes that I'm a file name, and answers my suffix, the part after the last
dot"
| dot dotPosition |
dot := FileDirectory dot asCharacter.

164 The Squeak Programming Environment

dotPosition := (self size to: 1 by: -1) detect: [:i | (self at: i) = dot].
self halt.
T self copyFrom: dotPosition to: self size

When we run this method, the execution of the self halt will bring up
the pre-debugger, from where we can proceed, or go into the debugger
and look at variables, step the computation, and edit the code.

That’s all there is to the debugger, but it’s not all there is to the suffix
method. The initial bug should have made you realize that if there is
no dot in the target string, the suffix method will raise an error. This
isn’t the behaviour that we want, so let’s add a second test to specify
what should happen in this case.

Method 6.5: A second test for the suffix method: the target has no suffix

testSuffixNotFound
self assert: 'readme’ suffix ="

01 Add method 6.5 to the test suite in class StringTest, and watch the test
raise an error. Enter the debugger by selecting the erroneous test in SUnit,
and edit the code so that the test passes. The easiest and clearest way to do this
is to replace the detect: message by detect: ifNone:, where the second argument

is a block that simply returns the empty string.

We will learn more about SUnit in Chapter 7.

6.6 The Process Browser

Smalltalk is a multi-threaded system: there are many lightweight pro-
cesses (also known as threads) running concurrently in your image.
In the future the Squeak virtual machine may take advantage of mul-
tiprocessors when they are available, but at present concurrency is
implemented by time-slicing.

The process browser is a cousin of the debugger that lets you look
at the various processes running inside Squeak. Figure 6.31 shows
a screenshot. The top-left pane lists all of the processes in Squeak,
in priority order, from the timer interrupt watcher at priority 80 to

The Process Browser 165

(803 351Z2: the timer interrupt watcher A | ProcessBrowsersupdateStackList: A
(60} 2626: the user interrupt watcher ProcessBroweers»updateStackList

(60} 2458: the event tickler ProceszBrowsersprocessListIndex:

(60) 2386: the low 2pace watcher FluggatleLiztMorphychanzeModelSelection:

(500 2397 the Weakirray finalization process FluggatleListMorphrrmouszelp:

(403 119 the UI process PluggatleListMorphiMorph handleMouseUp:

(100 1818: the idle process MouzeButtonEvent»sentTo:

PluggatleListMorphiMorph handleEvent:
FluggableListMorphiMorph handleFocusEvent:
[]1 in HandMorpheendFocusEvent:toiclear; {[Act:
[1 in PasteUpMorphrsbecomedctiveluring: {[aFlc
ElockConitext-ron:do!
PasteTpMorphebecomesdctiveluring:

HandMorph=sendFocusEventitoiclear: hd
hd £ | -
updateStackList: depth A
| suspendedContext oldHighlight |
zelectedProcess

ifHil: [+ zelf changeStackLiztTo: nill,
(stackList notNil and: [stackListlndex » 0 1)
if True: [oldHighlight = stackList at: stackListindex].
zelectedProcess == Processor activeProcess
ifTrue: [self
changeStackListTo: (thisContext stackOfSize: depth)]
ifFalse: [suspendedContext := selectedProcess suspendedContext,

suspendedContext
ifHil: [zelf changeStackListTo: nill v
PR ™

Figure 6.31: The Process Browser

the idle process at priority 10. Of course, on a uniprocessor, the only
process that can be running when you look is the Ul process; all of the
other will be waiting for some kind of event. By default, the display
of processes is static; it can be updated using the yellow button menu,
which also provides an option to turn on auto-update (a)

If you select a process in the top-left pane, its stack trace is dis-
played in the top-right pane, just as with the debugger. If you select
a stack frame, the corresponding method is displayed in the bottom
pane. The process browser is not equipped with mini-inspectors for
self and thisContext, but yellow button menu items on the stack frames
provide equivalent functionality.

166 The Squeak Programming Environment

x B Message names containing “random" 20

Integer atRandom: rY
Matrix atRandom:

SequenceatleCollection atRandom:

Set atRandom:

| Search | | random

atRandom:

createRandomPazsword
generateRandomBitz0f Length:
getierateRandomlengthiain:
handUzerRandomTile

initRandom:

initRandomFromSiring:

initRandomFromTzer
initRandomMNonInteractively
kedamaSetRandomSesd
makeReplicatedTurtles:examplerPlayer: color:of P
makeTurtlezieyamelerPlavercnlor: nf‘Prmmvnﬁ:'n

¥ b
4 >

sma 51272000 12:35 « truncation and round off - 4 implementors - in no change set -

|br0wse || zenders || implementors " wersions || inheritance " hierarchy || inst vars " claszzs vars " source”ﬂ

atRandom: sieriersior F
“dnewer & ratedon ftiteger from 1oto self ploked from afenerstar”

+ aletierstor nextlnt: self

Figure 6.32: The method names browser showing all methods contain-
ing the substring random in their selectors.

6.7 Finding Methods

Two tools exist to help you find messages; both can be dragged out of
the Tools flap. They differ in both interface and functionality.

The method finder was described at some length in Section 1.9; you
can use it to find methods by name or by functionality. However, to
look at the body of a method, the method finder opens a new browser.
This can quickly become overwhelming.

The message names browser has more limited search functionality:
you type a fragment of a message selector in the search box, and the
browser lists all methods that contain that fragment in their names,
as shown in Figure 6.32. However, it is a full-fledged browser: if you
select one of the names in the left pane, all of the methods with that
name are listed in the right pane, and can be browsed in the bottom

Change Sets and the Change Sorter 167

% B Changes go to "SBEChanges" mod
Multilingual-eds. 27 8| |String {Collectionz-Strings} .
71250 nicode-1-kwl Al | StringTest {CollectionsTestz-Text} 0
MC1 TestSubclage {SBE-ExampleCategory)
Tl24FastSmalllntegerPrintSiring
z25PlavWithMelRemoval-wiz-1] Y
auffix {Collections-Strings} =
n
v
kufrix .

“azzumes that I'm a file name, and answers my suffix, the part after the last dot”
| dot dotPogition |

dot := FileDirectory Jdot asCharacter,

dotPosition = (zelf zize w0 1 by -1) detest; [i | (gelf at i) = dot],

+ zelf’ copyFrom: dotPosition to: zelf size

Figure 6.33: The Change Set Browser

pane. As with the class browser, the message names browser has a
button bar that can be used to open other browsers on the selected
method or its class.

6.8 Change Sets and the Change Sorter

Whenever you are working in Squeak, any changes that you make
to methods and classes are recorded in a change set. This includes
creating new classes, re-naming classes, changing categories, adding
methods to existing classes —just about everything of significance.
However, arbitrary doits are not included, so if, for example, you create
a new global variable by assigning to it in a workspace, the variable
creation will not make it into a change set.

At any time, many change sets exist, but only one of them —
ChangeSet current—is collecting the changes that are being made to
the image. You can see which change set is current and can examine
all of the change sets using the change set browser, available from

168 The Squeak Programming Environment

World > open... > simple change sorter or by dragging the Change Set icon
out of the Tools flap.

Figure 6.33 shows this browser. The title bar shows which change
set is current, and this change set is selected when the browser opens.

Other change sets can be selected in the top-left pane; the yellow
button menu allows you to make a different change set current, or
to create a new change set. The top-right pane lists all of the classes
affected by the selected change set (with their categories). Selecting
one of the classes displays the names of those of its methods that are
also in the change set (not all of the methods in the class) in the central
pane, and selecting a method name displays the method definition in
the bottom pane. Note that the browser does not show you whether
the creation of the class itself is part of the change set, although this
information is stored in the object structure that is used to represent
the change set.

The change set browser also lets you delete classes and methods
from the change set using the yellow button menu on the correspond-
ing items. However, for more elaborate editing of change sets, you
should use a second tool, the change sorter, available under that name
in the Tools flap or by selecting World>open...1>dual change sorter, which
is shown in Figure 6.34.

The change sorter is essentially two change set browsers side by
side; each side can focus on a different change set, class, or method.
This layout supports the change sorter’s main feature, which is the
ability to move or copy changes from one change set to another, as
shown by the yellow button menu in Figure 6.34. It is also possible to
copy individual methods from one side to the other.

You may be wondering why you should care about the composition
of a change set. the answer is that change sets provide a simple
mechanism for exporting code from Squeak to the file system, from
where it can be imported into another Squeak image, or into another
non-Squeak Smalltalk. Change set export is known as “filing-out”,
and can be accomplished using the yellow button menu on any change
set, class or method in either browser. Repeated file outs create new
versions of the file, but change sets are not a versioning tool like
Monticello: they do not keep track of dependencies.

Change Sets and the Change Sorter 169

x B Changes go to "String enhancements"

String enhancements |W * T12s0nicode-1-kwl ®| |String {Calle x class list 9
T143¥alueWithinFix-ar & AM 4| |StringTest {C
EToys-ede. 25 Tl2dFastSmalllntegerPr | |TestSubclass
C
714ZReformardnscanFo: T123PlayWithMelRemas
MCL7 SEEChanges ﬁrsmuve glass from system (x)
- = =
Zl?lPrmlmeArravsW{l. ¥ mra . - browse Tull (b}

browse hierarchy (h)
*| testsuffixFound {CollectionsTests-Text} browse protocal (p)

2 printdut

fileOut

inst var refs..

inst var defs..

class war refs...

class vars

class refs (M)

Al more., .

Figure 6.34: The Change Sorter

Before the advent of Monticello, change sets were the main means
for exchanging code between Squeakers. They have the advantage of
simplicity (the file out is just a text file, although we don’t recommend
that you try to edit with a text editor), and a degree of portability. It's
also quite easy to create a change set that makes changes to many
different, unrelated parts of the system — something that Monticello
is not yet equipped to do.

The main drawback of change sets, compared to Monticello pack-
ages, is that they support no notion of dependencies. A filed-out
change set is a set of actions that change any image into which it is
loaded. To successfully load a change set requires that the image be
in an appropriate state. For example, the change set might contain
an action to add a method to a class; this can only be accomplished
if the class is already defined in the image. Similarly, the change set
might rename or re-categorize a class, which obviously will only work
if the class is present in the image; methods may use instance variables
that were declared when they were filed out, but which do not exist in
the image into which they are imported. The problem is that change
sets do not explicitly describe the conditions under which they can be

170 The Squeak Programming Environment

filed in: the file in process just hopes for the best, usually resulting in
a cryptic error message and a stack trace when things go wrong. Even
if the file in works, one change set might silently undo a change made
by another change set.

In contrast, Monticello packages represent code in a declarative
fashion: they describe the state of the image that should pertain after
they have been loaded. This permits Monticello to warn you about
conflicts (when two packages require contradictory final states) and to
offer to load a series of packages in dependency order.

In spite of these shortcomings, change sets still have their uses; in
particular, you will find change sets on the Internet that you want to
look at and perhaps use. So, having filed out a change set using the
change sorter, we will tell you how to file one in. This requires the use
of another tool, the file list browser.

6.9 The File List Browser

The file list browser is in fact a general-purpose tool from browsing the
file system (and also FTP servers) from Squeak. You can open it from
the World>open...i>file list menu, or drag it from the Tools flap. What
you see of course depends on the contents of your local file system,
but a typical view is shown in Figure 6.35.

When you first open a file list browser it will be focussed on the
current directory, that is, the one from which you started Squeak. The
title bar shows the path to this directory. The larger pane on the left-
hand side can be used to navigate the file system in the conventional
way. When a directory is selected, the files that it contains (but not the
directories) are displayed on the right. This list of files can be filtered
by entering a Unix-style pattern in the small box at the top-left of the
window. Initially, this pattern is », which matches all file names, but
you can type a different string there and accept it, changing the pattern.
(Note that a « is implicitly prepended and appended to the pattern that
you type.) The sort order of the files can be changes using the ,
and buttons. The rest of the buttons depend on the name of
the file selected in the browser. In Figure 6.35, the file name has the

The File List Browser 171

% B (Users/black/Development...ak/sq3.9-7067dev07.08.1 20

=) RE fileouts A | (2007.08,29 00:15:39 2,3581,184) 2q43.9-70674ev07.03.2, chanzt A

date changes <ode conflicts

“ ‘ Name inztall ‘ filein ‘

{2007.08.29 00:1%:33 3.745) SqueakDetug log
¥ 1) 8q3.8-7067dev07.08.1 (2007.08.29 00:14:30 21,074,024) £q3.9-7067d8v07.08.2.image
b 15 package-cache (2007,08.28 22:47:33 2) filestream.tat

- o {2007.08.28 22:47:32 0) alestFile
qeak email list attachy || (2007.06.21 01:39:16 6.329) ProtocolTerminalogy. 1.cs

queak 2.6 A {2007.08.21 01:33:15 2,367,009} £43.9-7067dew07.08. 1.change
| o mm W | (2007.03.20 20:38:47 94,752) mv.prefs
4 STt f » (2007.08.06 12:26:58 20,877.432) #43.9-70674ev07.05,1 imagewy
bt A= D= SV = il == e
[Erom Squeak3.? of 7 November 2006 [latest update: #7067] on 21 August 2007 at 1:39:16 am’! &

|Browser methodsFor: 'message category functions' stamgp: ‘apb §/21/2007 01:30°)
messageCategorvMeny: abenu
ServiceGui trowser: zelf messageCategorvyMenu: aMenu,
ServiceGui onlyServices ifTrue: [raMenul.
+ aMenu labels:
‘browae
printlut
fileCut
reorganize
alphatetize
rEMOVE SmMpty protocols
categorize all uncategorized
new protocol... v

Figure 6.35: A file list browser

suffix .cs, so the browser assumes that it is a change set, and provides
buttons to it (which files it in to a new change set whose name is
derived from the name of the file), to browse the in the file,
to examine the in the file, and to the code into the current
change set. You might think that the button would tell you
about changes in the change set that conflicted with existing code in
the image, but it doesn’t. Instead it just checks for potential problems
in the file that might indicate that the file cannot properly be loaded
(such as the presence of linefeeds).

Because the choice of buttons to display depends on the file’s name,
and not on its contents, sometimes the button that you want won’t
be on the screen. However, the full set of options is always available
from the yellow button more... menu, so you can easily work around
this problem.

The button is perhaps the most useful for working with

172 The Squeak Programming Environment

% B File Contents Browser Sgueak Fixes.1l.cs @0
Squeak Fixes.l.cs

Browset Al |- all - A |drawin: A
Hierar<hvBrowser drawing

MCMethodDefinitionTest

Menulcons

PCCEvCompilation

PasteUpMorph

Pozitionableltream

Presenter o]

instance " ? ” class v v

FUPET OIS WUOIL aCEIIveEE,

"draw grid”
{zelf griddingOn
and: [self gridVisitle])
ifTrue: [aCanvas
fillRectangle: zelf tounds
fillstyle: (zelf

Lomlf 1 A oy e .ol [1 i ATTi o]]‘l
ifTena—
. [alasn £illRectasalar 1f t 3
bt feadt—
gridFormOrigin: self gridlrigin
grid: zelf gridModulus v

apt 12/8/2006 22:48 - Method already existz - modified

Figure 6.36: A File Contents Browser

change sets; it opens a browser on the contents of the change set file;
an example is shown in Figure 6.36. The file contents browser is similar
to the system browser except that it does not show categories, just
classes, protocols and methods. For each class, the browser will tell
you whether the class already exists in the system and whether it is
defined in the file (but not whether the definitions are identical). It will
show the the methods in each class, and (as shown in Figure 6.36) will
show you the differences between the current version and the version
in the file. Yellow-button menu items in each of the top four panes will
also let you file in the whole of the change set, or the corresponding
class, protocol or method.

In Smalltalk, You Can’t Lose Code 173

6.10 In Smalltalk, You Can’t Lose Code

It is quite possible to crash Squeak: as an experimental system, Squeak
lets you change anything, including things that are vital to make
Squeak work! For example, try Smalltalk := nil.!

The good news is that you need never loose work, even if you
crash and go back to the last saved version of your image, which
might be hours old. This is because all of the code that you executed
is saved in the .changes file. All of it! This includes one liners that you
evaluate in a workspace, as well as code that you add to a class while
programming.

So here are the instructions on how to get your code back. There is
no need to read this until you need it. However, when you do need it,
you'll find it here waiting for you.

In the worst case, you can use a text editor on the .changes file, but
since it is many megabytes in size, this can be slow. Squeak gives you
better ways.

How to get your code back

Restart Squeak from the most recent snapshot, and select
World > help > useful expressions . This will open a workspace full of use-
ful expressions. The first three,

Smalltalk recover: 10000.
ChangelList browseRecentLog.
ChangelList browseRecent: 2000.

are most useful for recovery.

If you execute ChangeList browseRecentLog, you will be given an op-
portunity to decide how far back in history you wish to browse. Nor-
mally, it’s sufficient to browse changes as far back as the last snapshot.

! Attempting to assign to a global constant, of which Smalltalk is one, is such a
common error that it is checked for, so Smalltalk := nil will raise an error rather than
crashing Squeak. However, there are many other ways to corrupt the global namespace:
Smalltalk become: Dictionary new will work quite well.

174 The Squeak Programming Environment

(You can get much the same effect by editing ChangeList browseRecent:
2000 so that the number 2000 becomes something else, using trial and
error.)

One you have a recent changes browser, showing, say, changes back
as far as your last snapshot, you will have a list of everything that you
have done to Squeak during that time. You can delete items from this
list using the yellow button menu. When you are satisfied, you can
file-in what is left, thus incorporating the changes into your new image.
It's a good idea to start a new change set, using the ordinary change
set browser, before you do the file in, so that all of your recovered code
will be in a new change set. You can then file out this change set.

One useful thing to do in the recent changes browser is to
remove dolts. Usually, you won’t want to file in (and thus re-execute)
dolts. However, there is an exception. Creating a class shows up as a
dolt. Before you can file in the methods for a class, the class must exist. So, if
you have created any new classes, first file-in the class creation dolts,
then remove dolts and file in the methods.

When I am finished with the recover, I like to file out my new
change set, quit Squeak without saving the image, restart, and make
sure that the new change set files back in cleanly.

6.11 Chapter Summary

In ordet to develop effectively with Squeak, it is important to invest
some effort into learning the tools available in the environment.

e The standard system browser is your main interface for browsing
existing class categories, classes, method protocols and methods,
and for defining new ones. The system browser offers several
useful buttons to directly jump to senders or implementors of a
message, versions of a method, and so on.

¢ There exist several different class browsers (such as the Omni-
Browser and the Refactoring Browser), and several specialized
browsers (such as the hierarchy browser) which provide differ-
ent views of classes and methods.

Chapter Summary 175

e From any of the tools, you can highlight the name of a class
or a method and immediately jump to a browser by using the
keyboard shortcut CMD—-b.

* You can also browse the Smalltalk system programmatically by
sending messages to SystemNavigation default.

e Monticello is a tool for exporting, importing, versioning and
sharing packages of classes and methods. A Monticello package
consists of a system category, subcategories, and related methods
protocols in other categories.

¢ The inspector and the explorer are two tools that are useful for
exploring and interacting with live objects in your image. You
can even inspect tools by blue-clicking to bring up their morphic
halo and selecting the debug handle ().

¢ The debugger is a tool that not only lets you inspect the run-
time stack of your program when an error is raised, but it also
enables you to interact with all of the objects of your application,
including the source code. In many cases you can modify your
source code from the debugger and continue executing. The
debugger is especially effective as a tool to support test-first
development in tandem with SUnit (Chapter 7).

® The process browser lets you monitor, query and interact with the
processes current running in your image.

® The method finder and the message names browser are two tools for
locating methods. The first is more useful when you are not sure
of the name, but you know the expected behavior. The second
offers a more advanced browsing interface when you know at
least a fragment of the name.

® Change sets are automatically generated logs of all changes to the
source code of your image. They have largely been superseded
by Monticello as a means to store and exchange versions of your
source code, but are still useful, especially for recovering from
catastrophic failures, however rare these may be.

176 The Squeak Programming Environment

¢ The file list browser is a tool for browsing the file system. It also
allows you to filein source code from the file system.

¢ In case your image crashes before you could save it or backup
your source code with Monticello, you can always recover your
most recent changes using a change list browser. You can then
select the changes you want to replay and file them into the most
recent copy of your image.

177

Chapter 7

SUnit

7.1 Introduction

SUnit is a minimal yet powerful framework that supports the creation
and deployment of tests. As might be guessed from its name, the
design of SUnit focussed on Unit Tests, but in fact it can be used for
integration tests and functional tests as well. SUnit was originally
developed by Kent Beck and subsequently extended by Joseph Pelrine
and others to incorporate the notion of a resource, which we will
describe in Section 7.6.

The interest in testing and Test Driven Development is not limited
to Squeak or Smalltalk. Automated testing has become a hallmark of
the Agile software development movement, and any software devel-
oper concerned with improving software quality would do well to
adopt it. Indeed, developers in many languages have come to appre-
ciate the power of unit testing, and versions of zUnit now exist for
many languages, including Java, Python, Perl, .Net and Oracle. This
chapter describes SUnit 3.3 (the current version as of this writing); the
official web site of SUnit is sunit.sourceforge.net, where updates can be
found.

Neither testing, nor the building of test suites, is new: everybody

sunit.sourceforge.net

178 SUnit

knows that tests are a good way to catch errors. eXtreme Programming
, by making testing a core practice and by emphasizing automated tests,
has helped to make testing productive and fun, rather than a chore that
programmers dislike. The Smalltalk community has a long tradition of
testing because of the incremental style of development supported by
its programming environment. In traditional Smalltalk development,
the programmer would write tests in a workspace as soon as a method
was finished. Sometimes a test would be incorporated as a comment at
the head of the method that it exercised, or tests that needed some set
up would be included as example methods in the class. The problem
with these practices is that tests in a workspace are not available to
other programmers who modify the code; comments and example
methods are better in this respect, but there is still no easy way to keep
track of them and to run them automatically. Tests that are not run
do not help you to find bugs! Moreover, an example method does not
inform the reader of the expected result: you can run the example and
see the — perhaps surprising — result, but you will not know if the
observed behavior is correct.

SUnit is valuable because it allows us to write tests that are self-
checking: the test itself defines what the correct result should be. It
also helps us to organize tests into groups, to describe the context in
which the tests must run, and to run a group of tests automatically.
In less than two minutes you can write tests using SUnit, so instead
of writing small code snippets in a workspace, we encourage you
to use SUnit and get all the advantages of stored and automatically
executable tests.

In this chapter we start by discussing why we test, and what makes
a good test. We then present a series of small examples showing how
to use SUnit. Finally, we look at the implementation of SUnit, so that
you can understand how Smalltalk uses the power of reflection in
supporting its tools.

7.2 Why Testing is Important

Unfortunately, many developers believe that tests are a waste of their
time. After all, they do not write bugs — only other programmers do

What makes a Good Test? 179

that. Most of us have said, at some time or other: “I would write tests
if I had more time.” If you never write a bug, and if your code will
never be changed in the future, then indeed tests are a waste of your
time. However, this most likely also means that your application is
trivial, or that it is not used by you or anyone else. Think of tests
as an investment for the future: having a suite of tests will be quite
useful now, but it will be extremely useful when your application, or
the environment in which it executes, changes in the future.

Tests play several roles. First, they provide documentation of the
functionality that they cover. Moreover, the documentation is active:
watching the tests pass tells you that the documentation is up-to-
date. Second, tests help developers to confirm that some changes that
they have just made to a package have not broken anything else in
the system —and to find the parts that break when that confidence
turns out to be misplaced. Finally, writing tests at the same time
as—or even before — programming forces you to think about the
functionality that you want to design, and how it should appear to the
client, rather than about how to implement it. By writing the tests
first —before the code—you are compelled to state the context in
which your functionality will run, the way it will interact with the
client code, and the expected results. Your code will improve: try it.

We cannot test all aspects of any realistic application. Covering a
complete application is simply impossible and should not be the goal
of testing. Even with a good test suite some bugs will still creep into the
application, where they can lay dormant waiting for an opportunity
to damage your system. If you find that this has happened, take
advantage of it! As soon as you uncover the bug, write a test that
exposes it, run the test, and watch it fail. Now you can start to fix the
bug: the test will tell you when you are done.

7.3 What makes a Good Test?

Writing good tests is a skill that can be learned most easily by prac-
ticing. Let us look at the properties that tests should have to get a
maximum benefit.

180 SUnit

1. Tests should be repeatable. You should be able to run a test as
often as you want, and always get the same answer.

2. Tests should run without human intervention. You should even
be able to run them during the night.

3. Tests should tell a story. Each test should cover one aspect of a
piece of code. A test should act as a scenario that you or some
else can read to understand a piece of functionality.

4. Tests should have a change frequency lower than that of the
functionality they cover: you do not want to have to change all
your tests every time you modify your application. One way
to achieve this is to write tests based on the public interfaces of
the class that you are testing. It is OK to write a test for a pri-
vate “helper” method if you feel that the method is complicated
enough to need the test, but you should be aware that such a
test may have to be changed, or thrown away entirely, when you
think of a better implementation.

A consequence of property (3) is that the number of tests should
be somewhat proportional to the number of functions to be tested:
changing one aspect of the system should not break all the tests but
only a limited number. This is important because having 100 tests
fail should send a much stronger message than having 10 tests fail.
However, it is not always possible to achieve this ideal: in particular,
if a change breaks the initialization of an object, or the set-up of a test,
it is likely to cause all of the tests to fail.

eXtreme Programming advocates writing tests before writing code.
This may seem to go against our deep instincts as software developers.
All we can say is: go ahead and try it. We have found that writing the
tests before the code helps us to know what we want to code, helps us
know when we are done, and helps us conceptualize the functionality
of a class and to design its interface. Moreover, test-first development
gives us the courage to go fast, because we are not afraid that we will
forget something important.

SUnit by Example 181

7.4 SUnit by Example

Before going into the details of SUnit, we will show a step by step
example. We use an example that tests the class Set. Try entering the
code as we go along.

Step 1: Create the test class

=

ExampleSetTest. Add two instance variables so that your new class looks
like this:

Mg First you should create a mnew subclass of TestCase called

Class 7.1: An Example Set Test class

TestCase subclass: #ExampleSetTest
instanceVariableNames: 'full empty'
classinstanceVariableNames: "
category: 'MyTest'

We will use the class ExampleSetTest to group all the tests related to
the class Set. It defines the context in which the tests will run. Here the
context is described by the two instance variables full and empty that
we will use to represent a full and an empty set.

The name of the class is not critical, but by convention it should end
in Test. If you define a class called Pattern and call the corresponding
test class PatternTest, the two classes will be alphabetized together in
the browser (assuming that they are in the same category). It is critical
that your class be a subclass of TestCase.

Step 2: Initialize the test context

The method setUp defines the context in which the tests will run, a bit
like an initialize method. setUp is invoked before the execution of each
test method defined in the test class.

=

¢ Define the setUp method as follows, to initialize the empty variable to

182 SUnit

refer to an empty set and the full variable to refer to a set containing two
elements.

Method 7.2: Setting up a fixture
ExampleSetTest»setUp

empty := Set new.
full := Set with: 5 with: 6

In testing jargon the context is called the fixture for the test.

Step 3: Write some test methods

Let’s create some tests by defining some methods in the class
ExampleSetTest. Each method represents one test; the name of the
method should start with the string ‘test’” so that SUnit will collect
them into test suites. Test methods take no arguments.

) Define the following test methods.

=<

The first test, named testincludes, tests the includes: method of Set.
The test says that sending the message includes: 5 to a set containing
5 should return true. Clearly, this test relies on the fact that the setUp
method has already run.

Method 7.3: Testing set membership

ExampleSetTest»testincludes
self assert: (full includes: 5).
self assert: (full includes: 6)

The second test, named testOccurrences, verifies that the number
of occurrences of 5 in full set is equal to one, even if we add another
element 5 to the set.

SUnit by Example 183

Method 7.4: Testing occurrences

ExampleSetTest»testOccurrences
self assert: (empty occurrencesOf: 0) = 0.
self assert: (full occurrencesOf: 5) = 1.
full add: 5.
self assert: (full occurrencesOf: 5) = 1

Finally, we test that the set no longer contains the element 5 after
we have removed it.

Method 7.5: Testing removal

ExampleSetTest»testRemove
full remove: 5.
self assert: (full includes: 6).
self deny: (full includes: 5)

Note the use of the method deny: to assert something that should not be
true. aTest deny: anExpression is equivalent to aTest assert: anExpression
not, but is much more readable.

Step 4: Run the tests

The easiest way to execute the tests is with the SUnit Test Runner,
which you can open from the World >open... menu, or by dragging the
TestRunner from the Tools flap. The TestRunner, shown in Figure 7.1, is
designed to make it easy to execute groups of tests. The left-most pane
lists all of the system categories that contain test classes (i.e., subclasses
of TestCase); when some of these categories are selected, the test classes
that they contain appear in the pane to the right. Abstract classes
are italicized, and the test class hierarchy is shown by indentation,
so subclasses of ClassTestCase are indented more than subclasses of
TestCase.

N4 Open a Test Runner, select the category MyTest, and click the
Run Selected| button.

You can also run your test by executing a printit on the follow-
ing code: (ExampleSetTest selector: #testRemove) run. This expression is

184 SUnit

% B Test Runner @0

EETﬂEgES:S'E{HUHUlDQY A gang‘;{\v{' . - t‘ 233 run, 233 passes, D expected failures, 0 failures, 0
ernelTestz-Clazses azebdMimeConverterTes

KernelTeste-Methods ArtayTest G, () BEEEEIE pEEEs

KernelTests-Numbers AzsociationTest A

EKernelTestz-Objects FloatdrravTest

KernelTests-Processes HeapTest

CollectionsTestz-Abstract IntervalTest

CollectionsTests-Arrayed LinkedListTest

CollectionsTeste-Sequetice OrderedCollectionTest

CollectionsTestz-Streams ReadWriteStreamTest

CollectionsTests-Support JequenceableCollection’

CollectionsTestz-Text SetTest

CollectionisTests-Thordere WeakldentityKevDictiotn

CollectionsTests-Weak WriteStreamTest

CollectionsTests-Stack CollectionTest

CollectiotisTests-SkipLists DictionaryTest

Exceptions-Tests IdentitvBagTest A

Files-Testz EeadStreamTest

GraphicsTestz-Primitives RunArrayTest

GraphicsTests-Text SharedjueueiTast

GraphicsTests-Files SortedCollectionTest

MorphicTests-Basic StackTest

MorphicTests-Eerniel

MorphicTests-Text Suppot

MorphicTests-Widgetz

MorphicTests-Worlds v

Multilingual-Dizsplay vl 4 > v

Mbanoaten Wotmromde Mhinat

Figure 7.1: The Squeak SUnit Test Runner

equivalent to the shorter ExampleSetTest run: #testRemove. We usually
include an executable comment in our test methods that allows us to
run them with a do it from the browser, as shown in method 7.6.

Method 7.6: Executable comments in test methods

ExampleSetTest»testRemove
"self run: #testRemove"
full remove: 5.
self assert: (full includes: 6).
self deny: (full includes: 5)

N Introduce a bug in ExampleSetTest»testRemove and run the tests again.
For example, change 5 to 4.

The tests that did not pass (if any) are listed in the right-hand
panes of the Test Runner; if you want to debug one, to see why it failed,
just click on the name. Alternatively, you can execute the following
expressions:

The SUnit Cook Book 185

Script 7.7: Debugging a test

(ExampleSetTest selector: #testRemove) debug

or

Script 7.8: Debugging a test

ExampleSetTest debug: #testRemove

Step 5: Interpret the Results

The method assert: , which is defined in the class TestCase, expects a
boolean argument, usually the value of a tested expression. When the
argument is true, the test passes; when the argument is false, the test
fails.

There are actually three possible outcomes of a test. The outcome
that we hope for is that all of the assertions in the test are true, in
which case the test passes. In the test runner, when all of the tests pass,
the bar at the top turns green. However, there are also two kinds of
thing that can go wrong when you run a test. Most obviously, one of
the assertions can be false, causing the test to fail. However, it is also
possible that some kind of error occurs during the execution of the test,
such as a message not understood error or an index out of bounds error. If
an error occurs, the assertions in the test method may not have been
executed at all, so we can’t say that the test has failed; nevertheless,
something is clearly wrong! In the test runner, failing tests cause the
bar at the top to turn yellow, and are listed in the middle pane on the
right, whereas erroneous tests cause the bar to turn red, and are listed
in the bottom pane on the right.

N Modify your tests to provoke both errors and failures.

7.5 The SUnit Cook Book

This section will give you more details on how to use SUnit. If you
have used another testing framework such as JUnit, much of this

186 SUnit

will be familiar, since all these frameworks have their roots in SUnit.
Normally you will use SUnit’s GUI to run tests, but there are situations
where you may not want to use it.

Other assertions

In addition to assert: and deny:, there are several other methods that
can be used to make assertions.

First, assert:description: and deny:description: take a second argument
which is a message string that can be used to describe the reason for
the failure, if it is not obvious from the test itself. These methods are
described in Section 7.7.

Next, SUnit provides two additional methods, should:raise: and
shouldnt:raise: for testing exception propagation. For example, you
would use (self should: aBlock raise: anException) to test that a particular
exception is raised during the execution of aBlock. Method 7.9 illus-
trates the use of should:raise:.
ng Try running this test.

=<

Note that the first argument of the should: and shouldnt: methods is
a block that contains the expression to be evaluated.

Method 7.9: Testing error raising

ExampleSetTest»testlllegal
self should: [empty at: 5] raise: Error.
self should: [empty at: 5 put: #zork] raise: Error

SUnit is portable: it can be used from all dialects of Smalltalk.
To make SUnit portable, its developers factored-out the dialect-
dependent aspects. The class method TestResult class»error answers
the system’s error class in a dialect-independent fashion. You can take
advantage of this: if you want to write tests that will work in any
dialect of Smalltalk, instead of method 7.9 you would write:

The SUnit Cook Book 187

Method 7.10: Portable error handling

ExampleSetTest»testlllegal
self should: [empty at: 5] raise: TestResult error.
self should: [empty at: 5 put: #zork] raise: TestResult error

0 Giveit a try.

Running a Single Test

Normally, you will run your tests using the Test Runner. If you don’t
want to launch the Test Runner from the open... menu or from the
Tools flap, you can execute TestRunner open as a print it.

You can run a single test as follows.

ExampleSetTest run: #testRemove —— 1 run, 1 passed, 0 failed, O errors

Running all the Tests in a Test Class

Any subclass of TestCase responds to the message suite, which will
build a test suite that contains all the methods in the class whose
names start with the string “test”. To run the tests in the suite, send it
the message run. For example:

ExampleSetTest suite run —— 5 run, 5 passed, 0 failed, 0 errors

Must I Subclass TestCase?

In JUnit you can build a TestSuite from an arbitrary class containing
test- methods. In Smalltalk you can do the same but you will then then
have to create a suite by hand and your class will have to implement
all the essential TestCase methods like assert:. We recommend that you
not try to do this. The framework is there: use it.

188 SUnit

7.6 The SUnit Framework

SUnit consists of four main classes: TestCase, TestSuite, TestResult, and
TestResource, as shown in Figure 7.2. The notion of a fest resource was
introduced in SUnit 3.1 to represent a resource that is expensive to
set-up but which can be used by a whole series of tests. A TestResource
specifies a setUp method that is executed just once before a suite of tests;
this is in distinction to the TestCase»setUp method, which is executed
before each test.

TestResource
isAvailable
TestCase isUnavailable
setUp setUp
tearDown / tearDown
TestSuite assert:
run deny:
resources tests |should:raise: TestResult
addTest: shouldnt:raise: \ passedCount
selector: failuresCount
run errorCount
resources runCount
tests

Figure 7.2: The four classes representing the core of SUnit

TestCase

TestCase is an abstract class that is designed to be subclassed; each of
its subclasses represents a group of tests that share a common context
(that is, a test suite). Each test is run by creating a new instance of a
subclass of TestCase, running setUp, running the test method itself, and
then running tearDown.

The context is specified by instance variables of the subclass and by
the specialization of the method setUp, which initializes those instance
variables. Subclasses of TestCase can also override method tearDown,

The SUnit Framework 189

which is invoked after the execution of each test, and can be used to
release any objects allocated during setUp.

TestSuite

Instances of the class TestSuite contain a collection of test cases. An
instance of TestSuite contains tests, and other test suites. That is, a test
suite contains sub-instances of TestCase and TestSuite. Both individual
TestCases and TestSuites understand the same protocol, so they can
be treated in the same way; for example, both can be run. This is in
fact an application of the composite pattern in which TestSuite is the
composite and the TestCases are the leaves —see Design Patterns for
more information on this pattern'.

TestResult

The class TestResult represents the results of a TestSuite execution. It
records the number of tests passed, the number of tests failed, and the
number of errors raised.

TestResource

One of the important features of a suite of tests is that they should be
independent of each other: the failure of one test should not cause an
avalanche of failures of other tests that depend upon it, nor should the
order in which the tests are run matter. Performing setUp before each
test and tearDown afterwards helps to reinforce this independence.

However, there are occasions where setting up the necessary con-
text is just too time-consuming for it to be practical to do it once before
the execution of each test. Moreover, if it is known that the test cases
do not disrupt the resources used by the tests, then it is wasteful to
set them up afresh for each test; it is sufficient to set them up once for
each suite of tests. Suppose, for example, that a suite of tests need to

1Erich Gamma etal., Design Patterns: Elements of Reusable Object-Oriented Software.
Reading, Mass.: Addison Wesley, 1995, ISBN 0-201-63361-2-(3).

190 SUnit

query a database, or do some analysis on some compiled code. In such
cases, it may make sense to set up the database and open a connection
to it, or to compile some source code, before any of the tests start to
run.

Where should we cache these resources, so that they can be shared
by a suite of tests? The instance variables of a particular TestCase
sub-instance won't do, because such an instance persists only for the
duration of a single test. A global variable would work, but using
too many global variables pollutes the name space, and the binding
between the global and the tests that depend on it will not be explicit.
A better solution is to put the necessary resources in a singleton object
of some class. The class TestResource exists to be subclassed by such
resource classes. Each subclass of TextResource understands the mes-
sage current, which will answer a singleton instance of that subclass.
Methods setUp and tearDown should be overridden in the subclass to
ensure that the resource is initialized and finalized.

One thing remains: somehow, SUnit has to be told which resources
are associated with which test suite. A resource is associated with a
particular subclass of TestCase by overriding the class method resources.
By default, the resources of a TestSuite are the union of the resources of
the TestCases that it contains.

Here is an example. We define a subclass of TestResource called
MyTestResource and we associate it with MyTestCase by specializing the
class method resources to return an array of the test classes that it will
use.

Class 7.11: An example of a TestResource subclass

TestResource subclass: #MyTestResource
instanceVariableNames: "

MyTestCase class»resources
"associate the resource with this class of test cases”
T{ MyTestResource }

Advanced Features of SUnit 191

7.7 Advanced Features of SUnit

In addition to TestResource, the current version of SUnit contains asser-
tion description strings, logging support, and resumable test failures.

Assertion Description Strings

The TestCase assertion protocol includes a number of methods that
allow the programmer to supply a description of the assertion. The de-
scription is a String; if the test case fails, this string will be displayed by
the test runner. Of course, this string can be constructed dynamically.

lel
e =42,
self assert: e = 23
description: 'expected 23, got ', e printString

The relevant methods in TestCase are:

#assert:description:
#deny:description:
#should:description:
#shouldnt:description:

Logging Support

The description strings described above may also be logged to a Stream
such as the Transcript, or a file stream. You can choose whether to log by
overriding TestCase»isLogging in your test class; you must also choose
where to log by overriding TestCase»failureLog to answer an appropriate
stream.

Continuing after a Failure

SUnit also allows us to specify whether or not a test should continue
after a failure. This is a really powerful feature that uses the exception

192 SUnit

mechanisms offered by Smalltalk. To see what this can be used for,
let’s look at an example. Consider the following test expression:

aCollection do: [:each | self assert: each even]

In this case, as soon as the test finds the first element of the collection
that isn’t even, the test stops. However, we would usually like to
continue, and see both how many elements, and which elements,
aren’t even, and maybe also log this information. You can do this as
follows:

aCollection do:
[:each |
self
assert: each even
description: each printString , ' is not even'
resumable: true]

This will print out a message on your logging stream for each element
that fails. It doesn’t accumulate failures, i.e., if the assertion fails
10 times in your test method, you’ll still only see one failure. All the
other assertion methods that we have seen are not resumable; assert: p
description: s is equivalent to assert: p description: s resumable: false.

7.8 The Implementation of SUnit

The implementation of SUnit makes an interesting case study of a
Smalltalk framework. Let’s look at some key aspects of the implemen-
tation by following the execution of a test.

Running One Test

To execute one test, we evaluate the expression (aTestClass selector:
aSymbol) run.

The method TestCase»run creates an instance of TestResult that will
accumulate the results of the tests, then it sends itself the message run:.
(See Figure 7.3.)

The Implementation of SUnit 193

% [:TestCase | [:TestResult |
T
|

run
|
run: runCase:
) I
setUp runCase
performTest
tearDown
H-=-=--=------ >
R L] i
I
I
I

|
T !
|

Figure 7.3: Running one test

Method 7.12: Running a test case

TestCase»run
| result |
result := TestResult new.
self run: result.
Tresult

The method TestCase»run: sends the message runCase: to the test
result:

Method 7.13: Passing the test case to the test result

TestCase»run: aResult
aResult runCase: self

The method TestResult»runCase: sends the message runCase to an in-
dividual test, to execute the test. TestResult»runCase deals with any
exceptions that may be raised during the execution of a test, runs

194 SUnit

a TestCase by sending it the message runCase, and counts the errors,
failures and passes.

Method 7.14: Catching test case errors and failures

TestResult»runCase: aTestCase
| testCasePassed |
testCasePassed := true.
[[aTestCase runCase]
on: self class failure
do:
[:signal |
failures add: aTestCase.
testCasePassed := false.
signal return: false]]
on: self class error
do:
[:signal |
errors add: aTestCase.
testCasePassed := false.
signal return: false].
testCasePassed ifTrue: [passed add: aTestCase]

The method TestCase»runCase sends the messages setUp and
tearDown as shown below.

Method 7.15: Test case template method

TestCase»runCase
self setUp.
[self performTest] sunitEnsure: [self tearDown]

Running a TestSuite

To run more than one test, we send the message run to a TestSuite that
contains the relevant tests. TestCase class provides some functionality
to build a test suite from its methods. The expression MyTestCase
buildSuiteFromSelectors returns a suite containing all the tests defined in
the MyTestCase class. The core of this process is

The Implementation of SUnit 195

Method 7.16: Auto-building the test suite

TestCase~testSelectors
Tself selectors asSortedCollection asOrderedCollection select: [:each |
(‘test+' match: each) and: [each numArgs isZero]]

The method TestSuite»run creates an instance of TestResult, verifies
that all the resource are available, and then sends itself the message
run:, which runs all the tests in the suite. All the resources are then
released.

Method 7.17: Running a test suite

TestSuite»run
| result |
result := TestResult new.
self areAllResourcesAvailable
ifFalse: [T TestResult signalErrorWith:
'Resource could not be initialized'].
[self run: result] sunitEnsure: [self resources do:
[:each | each reset]].
Tresult

Method 7.18: Passing the test suite to the test result

TestSuite»run: aResult
self tests do:
[:each |
self sunitChanged: each.
each run: aResult]

The class TestResource and its subclasses keep track of their currently
created instances (one per class) that can be accessed and created using
the class method current. This instance is cleared when the tests have
finished running and the resources are reset.

The resource availability check makes it possible for the resource to
be re-created if needed, as shown in the class method TestResource class
»isAvailable. During the TestResource instance creation, it is initialized
and the method setUp is invoked.

196 SUnit

Method 7.19: Test resource availability

TestResource class»isAvailable
Tself current notNil

Method 7.20: Test resource creation

TestResource class»current
current isNil ifTrue: [current := self new].
Tcurrent

Method 7.21: Test resource initialization

TestResource»initialize
self setUp

7.9 Some Advice on Testing

While the mechanics of testing are easy, writing good tests is not. Here
is some advice on how to design tests.

Feathers’ Rules for Unit tests. Michael Feathers, an agile process con-
sultant and author, writes:?

A test is not a unit test if:
e it talks to the database,
® it communicates across the network,
* it touches the file system,
* it can't run at the same time as any of your other unit
tests, or
* you have to do special things to your environment
(such as editing config files) to run it.
Tests that do these things aren’t bad. Often they are worth
writing, and they can be written in a unit test harness.
However, it is important to be able to separate them from
true unit tests so that we can keep a set of tests that we can
run fast whenever we make our changes.

2Gee http://www.artima.com/weblogs/viewpost.jsp?thread=126923. 9 September 2005

http://www.artima.com/weblogs/viewpost.jsp?thread=126923

Chapter Summary 197

Never get yourself into a situation where you don’t want to run
your unit test suite because it takes too long.

Unit Tests vs. Acceptance Tests. Unit tests capture one piece of func-
tionality, and as such make it easier to identify bugs in that
functionality. As far as possible try to have unit tests for each
method that could possibly fail, and group them per class. How-
ever, for certain deeply recursive or complex setup situations,
it is easier to write tests that represent a scenario in the larger
application; these are called acceptance tests or functional tests.
Tests that break Feathers’ rules may make good acceptance tests.
Group acceptance tests according to the functionality that they
test. For example, if you are writing a compiler, you might write
acceptance tests that make assertions about the code generated
for each possible source language statement. Such tests might
exercise many classes, and might take a long time to run because
they touch the file system. You can write them using SUnit, but
you won’t want to run them each time you make a small change,
so they should be separated form the true unit tests.

Black’s Rule of Testing. For every test in the system, you should be
able to identify some property for which the test increases your
confidence. It’s obvious that there should be no important prop-
erty that you are not testing. This rule states the less obvious fact
that there should be no test that does not add value to the system
by increasing your confidence that a useful property holds. For
example, several tests of the same property do no good. In fact
they do harm: they make it harder to infer the behaviour of the
class by reading the tests, and because one bug in the code might
then break many tests at the same time. Have a property in mind
when you write a test.

710 Chapter Summary

This chapter explained why tests are an important investment in the
future of your code. We explained in a step-by-step fashion how to

198 SUnit

define a few tests for the class Set. Then we gave an overview of
the core of the SUnit framework by presenting the classes TestCase,
TestResult, TestSuite and TestResources. Finally we looked deep inside
SUnit by following the execution of a test and a test suite.

* To maximize their potential, unit tests should be fast, repeatable,
independent of any direct human interaction and cover a single
unit of functionality.

* Tests for a class called MyClass belong in a class classed
MyClassTest, which should be introduced as a subclass of Test-
Case.

e Initialize your test data in a setUp method.
¢ Each test method should start with the word “test”.

¢ Use the TestCase methods assert:, deny: and others to make asser-
tions.

® Run tests using the SUnit test runner tool (in the tool bar).

199

Chapter 8

Basic Classes

Most of the magic of Smalltalk is not in the language but in the class
libraries. To program effectively with Smalltalk, one must therefore
invest in learning how the class libraries support the language and
environment. The class libraries are entirely written in Smalltalk and
can easily be extended since a package may add new functionality to
a class even if it does not define this class.

Our goal here is not to present in tedious detail the whole of the
Squeak class library, but rather to point out the key classes and meth-
ods that you will need to use or override to program effectively. In this
chapter we cover the basic classes that you will need for nearly every
application: Object, Number and its subclasses, Character, String, Symbol
and Boolean.

8.1 Object

For all intents and purposes, Object is the root of the inheritance hier-
archy. Actually, in Squeak the true root of the hierarchy is ProtoObject,
which is used to define minimal entities that masquerade as objects,
but we can ignore this point for the time being.

Object can be found in the Kernel-Objects category. Astonishingly,

200 Basic Classes

there are some 400 methods to be found here (including extensions).
In other words, every class that you define will automatically provide
these 400 methods, whether you know what they do or not. Note that
some of the methods should be removed and new versions of Squeak
may remove some of the superfluous methods.

The class comment for the Object states:

Object is the root class for almost all of the other classes in the
class hierarchy. The exceptions are ProtoObject (the superclass
of Object) and its subclasses. Class Object provides default be-
havior common to all normal objects, such as access, copying,
comparison, error handling, message sending, and reflection.
Also utility messages that all objects should respond to are de-
fined here. Object has no instance variables, nor should any
be added. This is due to several classes of objects that inherit
from Object that have special implementations (Smallinteger and
UndefinedObject for example) or the VM knows about and de-
pends on the structure and layout of certain standard classes.

If we begin to browse the method categories on the instance side
of Object we start to see some of the key behavior it provides.

Printing

Every object in Smalltalk can return a printed form of itself. You can
select any expression in a workspace and select the print it menu: this
executes the expression and asks the returned object to print itself.
In fact this sends the message printString to the returned object. The
method printString, which is a template method, at its core sends the
message printOn: to its receiver. The message printOn: is a hook that can
be specialized.

Object»printOn: is very likely one of the methods that you will most
frequently override. This method takes as its argument a Stream on
which a String representation of the object will be written. The default

implementation simply write the class name preceded by “a” or “an”.
Object»printString returns the String that is written:

Object 201

For example, the class Browser does not redefine the method printOn:
and sending the message printString to an instance executes the
methods defined in Object.

Browser new printString —— 'a Browser'

The class TTCFont shows an example of printOn: specialization. It
prints the name of the class followed by the family name, the size and
the subfamily name of the font as shown by the code below which
prints an instance of the class.

Method 8.1: printOn: redefinition.

TTCFont»printOn: aStream
aStream nextPutAll: TTCFont(';
nextPutAll: self familyName; space;
print: self pointSize; space;
nextPutAll: self subfamilyName;
nextPut: $)

TTCFont allinstances anyOne printString —— 'TTCFont(BitstreamVeraSans
6 Bold)'

Note that the message printOn: is not the same as storeOn:. The
message storeOn: puts on its argument stream an expression that can
be used to recreate the receiver. This expression is evaluated when
the stream is read using the message readFrom:. printOn: just returns
a textual version of the receiver. Of course, it may happen that this
textual representation may represent the receiver as a self-evaluating
expression.

A word about representation and self-evaluating representation.
In functional programming, expressions return values when executed.
In Smalltalk, messages (expressions) return objects (values). Some
objects have the nice properties that their value is themselves. For
example, the value of the object true is itself i.e., the object true. We call
such objects self-evaluating objects. You can see a printed version of an
object value when you print the object in a workspace. Here are some
examples of such self-evaluating expressions.

202 Basic Classes

true — true
3@4 — 3@4
$a — $a

#123) — #(123)

Note that some objects such as arrays are self-evaluating or not de-
pending on the objects they contain. For example, an array of booleans
is self-evaluating whereas an array of persons is not. In Squeak 3.9, a
mechanism was introduced (via the message isSelfEvaluating) to print
collections in their self-evaluating forms as much as possible and this
especially true for brace arrays. The following examples shows that a
dynamic array is self-evaluating only if its elements are:

{10@10 . 100@100} — {10@10 . 100@100}
{Browser new . 100@100} —— an Array(a Browser 100@100)

Remember that literal arrays can only contain literals. Hence the
following array does not contain two points but rather six literal
elements.

#(10@10 100@100) —— #(10 #@ 10 100 #@ 100)

Lots of printOn: method specializations implement self-evaluating
behavior. The implementations of Point»printOn: and Interval»printOn: are
self-evaluating.

Method 8.2: Self-evaluation of Point

Point»printOn: aStream
"The receiver prints on aStream in terms of infix notation."
x printOn: aStream.
aStream nextPut: $@.
y printOn: aStream

Method 8.3: Self-evaluation of Interval

Interval»printOn: aStream
aStream nextPut: $(;
print: start;
nextPutAll: ' to: ';

Object 203

print: stop.
step ~= 1 ifTrue: [aStream nextPutAll: ' by: '; print: step].
aStream nextPut: $)

1t0:10 —— (1to:10) ‘intervals are self-evaluating”

Identity and Equality

In Smalltalk, the message = tests object equality (i.e., whether two
objects represent the same value) whereas == tests object identity (i.e.,
whether two expressions represent the same object).

The default implementation of object equality is to test for object
identity:

Method 8.4:

Object»= anObject
"Answer whether the receiver and the argument represent the same object.
If = is redefined in any subclass, consider also redefining the message hash."
1 self == anObject

This a method that you will frequently want to override. Consider
the case of Complex numbers:

1+2i)=(1+2i) — true "same value"
(1+2i)==(1+2i) —— false ‘butdifferent objects”

This works because Complex overrides = as follows:

Method 8.5: Equality for complex numbers

Complex»= anObject
anObject isComplex
ifTrue: [T (real = anObject real) & (imaginary = anObject imaginary)]
ifFalse: [T anObject adaptToComplex: self andSend: #=]

The default implementation of Object»~= simply negates Object»=,
and should not normally need to be changed.

(1+2i)~=(1+4i) — true

204 Basic Classes

If you override =, you should consider overriding hash. If instances
of your class are ever used as keys in a Dictionary, then you should
make sure that instances that are considered to be equal have the same
hash value:

Method 8.6: Hash must be reimplemented for complex numbers

Complex»hash
"Hash is reimplemented because = is implemented."
T real hash bitXor: imaginary hash.

Although you should override = and hash together, you should
never override ==. (The semantics of object identity is the same for all
classes.) == is a primitive method of ProtoObject.

Note that Squeak has some strange behavior compared to other
Smalltalks: for example a symbol and a string can be equal if the string
associated with the symbol is equal to the string. (We consider this
behavior to be a bug, not a feature.)

#lulu' ="lult’ — true
lulu' = #luly' — true

Class membership

Several methods allow you to query the class of an object.

class. You can ask any object about its class using the message class.

1class —— Smallinteger

Conversely, you can ask if an object is an instance of a specific class:

1 isMemberOf: Smalllnteger —— true "must be precisely this class"
1 isMemberOf: Integer — false
1 isMemberOf: Number — false
1 isMemberOf: Object — false

Object 205

Since Smalltalk is written in itself, you can really navigate through
its structure using the right combination of superclass and class mes-
sages (see Chapter 12).

isKindOf: Object»isKindOf: answers whether the receiver’s class is ei-
ther the same as, or a subclass of the argument class.

isKindOf: Smallinteger —— true

1

1 isKindOf: Integer — true

1 isKindOf: Number — true
1 isKindOf: Object — true

1 isKindOf: String — false

1/3 isKindOf: Number — true
1/3 isKindOf: Integer — false

1/3 which is a Fraction is a kind of Number, since the class Number is a
superclass of the class Fraction, but 1/3 is not a Integer.

respondsTo: Object»respondsTo: answers whether the receiver under-
stands the message selector given as an argument.

1 respondsTo: #, —— false

Normally it is a bad idea to query an object for its class, or to ask
it which messages it understands. Instead of making decisions based
on the class of object, you should simply send a message to the object
and let it decide (i.e., on the basis of its class) how it should behave.

Copying

Copying objects introduces some subtle issues. Since instance vari-
ables are accessed by reference, a shallow copy of an object would share
its references to instance variables with the original object:

al:={{'harry'}}.
al — ##('harry')
a2 := al shallowCopy.

206 Basic Classes

a2 — ##('harry"))

(a1 at: 1) at: 1 put: 'sally".

al —— #(#('sally")

a2 —— #(#('sally")) '"the subarray is shared"

Object»shallowCopy is a primitive method that creates a shallow copy
of an object. Since a2 is only a shallow copy of a1, the two arrays share
a reference to the nested Array that they contain.

Object»shallowCopy is the “public interface” to Object»copy and
should be overridden if instances are unique. This is the case, for
example, with the classes Boolean, Character, Smallinteger, Symbol and
UndefinedObject.

Object»copyTwoLevel does the obvious thing when a simple shallow
copy does not suffice:

al:={{'harry'}}.

a2 := al copyTwolevel.

(at at: 1) at: 1 put: 'sally".

al — #(#('sally")

a2 —— ##(harry")) ‘"fully independent state"

Object»deepCopy makes an arbitrarily deep copy of an object.

al:={{{'harry'}}}.

a2 := al deepCopy.

(a1 at: 1) at: 1 put: 'sally'.
al — #(#('sally'))
a2 — ###(harry"))

The problem with deepCopy is that it will not terminate when ap-
plied to a mutually recursive structure:

al :={"harry'}.

a2:={al}.

al at: 1 put: a2.

al deepCopy —— ... does not terminate!

Although it is possible to override deepCopy to do the right thing,
Object»copy offers a better solution:

Object 207

Method 8.7: Copying objects as a template method

Object»copy
"Answer another instance just like the receiver. Subclasses typically override
postCopy;
they typically do not override shallowCopy."
Tself shallowCopy postCopy

You should override postCopy to copy any instance variables that
should not be shared. postCopy should always do a super postCopy.

Debugging

The most important method here is halt. In order to set a breakpoint
in a method, simply insert the message send self halt at some point in
the body of the method. When this message is sent, execution will be
interrupted and a debugger will open to this point in you program.
(See Chapter 6 for more details about the debugger.)

The next most important message is assert;, which takes a block
as its argument. If the block returns true, execution continues. Oth-
erwise an exception will be raised. If this exception is not otherwise
caught, the debugger will open to this point in the execution. assert: is
especially useful to support design by contract. The most typical usage
is to check non-trivial pre-conditions to public methods of objects.
Stack»pop could easily have been implemented as follows:

Method 8.8: Checking a pre-condition

Stack»pop
"Return the first element and remove it from the stack."”
self assert: self isEmpty not.
Tself linkedList removeFirst element

Do not confuse Object»assert: with TestCase»assert:, which occurs in
the SUnit testing framework (see Chapter 7). While the former expects
a block as its argument, the latter expects a Boolean. Although both are
useful for debugging, they each serve a very different intent.

208 Basic Classes

Error handling

This protocol contains several methods useful for signaling run-time
€eITorS.

Sending self deprecated: anExplanationString signals that the current
method should no longer be used, if deprecation has been turned on
in the debug protocol of the preference browser. The String argument
should offer an alternative.

1 dolfNotNil: [:arg | arg printString, ' is not nil']
—— Smallinteger(Object)»dolfNotNil: has been deprecated. use
ifNotNilDo:

doesNotUnderstand: is sent whenever message lookup fails. The
default implementation, i.e., Object»doesNotUnderstand: will trigger the
debugger at this point. It may be useful to override doesNotUnderstand:
to provide some other behaviour.

Object»error and Object»error: are generic methods that can be used
to raise exceptions.

Abstract methods in Smalltalk are implemented by convention
with the body self subclassResponsibility. Should an abstract class be
instantiated by accident, then calls to abstract methods will result in
Object»subclassResponsibility being evaluated.

Method 8.9: Signaling that a method is abstract

Object»subclassResponsibility
"This message sets up a framework for the behavior of the class’ subclasses.
Announce that the subclass should have implemented this message."
self error: 'My subclass should have overridden ', thisContext sender selector
printString

Magnitude, Number and Boolean are classical examples of abstract
classes that we shall see shortly in this chapter.

Number new + 1 —— Error: My subclass should have overridden #+

self shouldNotimplement is sent by convention to signal that an inher-
ited method is not appropriate for this subclass. This is generally a

Object 209

sign that something is not quite right with the design of the class hier-
archy. Due to the limitations of single inheritance, however, sometimes
it is very hard to avoid such workarounds.

A typical example is Collection»remove: which is inherited by
Dictionary but flagged as not implemented. (A Dictionary provides
removeKey: instead.)

Testing

The testing methods have nothing to do with SUnit testing! A testing
method is one that lets you ask a question about the state of the receiver
and returns a Boolean.

Numerous testing methods are provided by Object. We have
already seen isComplex. Others include isArray, isBoolean, isBlock,
isCollection and so on. Generally such methods are to be avoided since
querying an object for its class is a form of violation of encapsulation.
Instead of testing an object for its class, one should simply send a
request and let the object decide how to handle it.

Nevertheless some of these testing methods are undeniably useful.
The most useful are probably ProtoObject»isNil and Object»notNil (though
the Null Object! design pattern can obviate the need for even these
methods).

Initialize release

A final key method that occurs not in Object but in ProtoObject is initialize.

Method 8.10: initialize as an empty hook method

ProtoObject»initialize
"Subclasses should redefine this method to perform initializations on instance
creation"”

1Bobby Woolf, Null Object. In Robert Martin, Dirk Riehle and Frank Buschmann,
editors, Pattern Languages of Program Design 3. Addison Wesley, 1998.

210 Basic Classes

The reason this is important is that in Squeak as of version 3.9, the
default new method defined for every class in the system will send
initialize to newly created instances.

Method 8.11: new as a class-side template method

Behavior»new
"Answer a new initialized instance of the receiver (which is a class) with no
indexable
variables. Fail if the class is indexable."
1 self basicNew initialize

This means that simply by overriding the initialize hook method,
new instances of your class will automatically be initialized. The
initialize method should normally perform a super initialize to establish
the class invariant for any inherited instance variables.

8.2 Numbers

Remarkably, numbers in Smalltalk are not primitive data values but
true objects. Of course numbers are implemented efficiently in the
virtual machine, but the Number hierarchy is as perfectly accessible and
extensible as any other portion of the Smalltalk class hierarchy.

Numbers are found in the Kernel-Numbers category. The abstract root
of this hierarchy is Magnitude, which represents all kinds of classes sup-
porting comparision operators. Number adds various arithmetic and
other operators as mostly abstract methods. Float and Fraction repre-
sent, respectively, floating point numbers and fractional values. Integer
is also abstract, thus distinguishing between subclasses Smallinteger,
LargePositivelnteger and LargeNegativelnteger. For the most part users do
not need to be aware of the difference between the three Integer classes,
as values are automatically converted as needed.

Magnitude

Magnitude is the parent not only of the Number classes, but also of other
classes supporting comparison operations, such as Character, Duration

Numbers 211

/\

V4 N4

| Float | | Fraction | | Integer

| Smallinteger | | LargePositivelnteger

| LargeNegativelnteger

Figure 8.1: The Number Hierarchy

and Timespan. (Complex numbers are not comparable, and so do not
inherit from Number.)

Methods < and = are abstract. The remaining operators are generi-
cally defined. For example:

Method 8.12: Abstract comparison methods

Magnitude» < aMagnitude
"Answer whether the receiver is less than the argument.”
Tself subclassResponsibility

Magnitude» > aMagnitude
"Answer whether the receiver is greater than the argument.”
TaMagnitude < self

Number

Similarly, Number defines +, -, and / to be abstract, but all other arith-
metic operators are generically defined.

212 Basic Classes

All Number objects support various converting operators, such as
asFloat and asinteger. There are also numerous shortcut constructor
methods, such as i, which converts a Number to an instance of Complex
with a zero real component, and others which generate Duration s, such
as hour, day and week.

Numbers directly support common math functions such as sin, log,
raiseTo:, squared, sqrt and so on.

Number»printOn: is implemented in terms of the abstract method
Number»printOn:base:. (The default base is 10.)

Testing methods include even, odd, positive and negative. Unsurpris-
ingly Number overrides isNumber. More interesting, islnfinite is defined
to return false.

Truncation methods include floor, ceiling, integerPart, fractionPart and
SO on.

1+25 — 3.5 "Addition of two numbers"

3.4+5 — 17.0 "Multiplication of two numbers"
8/2 — 4 "Division of two numbers"
10-8.3 — 1.7 "Subtraction of two numbers"

12 =11 — false "Equality between two numbers"
12~=11 — true "Test if two numbers are different”
12>9 — true "Greater than"

12>=10 — true "Greater or equal than"

12<10 — false "Smaller than"

100@10 — 100@10 "Point creation”

The following example works surprisingly well in Smalltalk:

1000 factorial / 999 factorial —— 1000

Note that 1000 factorial is really calculated which in many other lan-
guages can be quite difficult to compute. This is an excellent example
of automatic coercion and exact handling of a number.

N Try to display the result of 1000 factorial. It takes more time to display

=<

it than to calculate it!

Numbers 213

Float

Float implements the abstract Number methods for floating point num-
bers.

More interestingly, Float class (i.e., the class-side of Float) provides
methods to return the following constants: e, infinity, nan and pi.

Float pi — 3.141592653589793
Float infinity — Infinity
Float infinity isInfinite —— true

Fraction

Fractions are represented by instance variables for the numerator and
denominator, which should be Integers. Fractions are normally created
by Integer division (rather than using the constructor method Fraction»
numerator:denominator:):

6/8 — (3/4)
(6/8) class —— Fraction

Multiplying a Fraction by an Integer or another Fraction may yield an
Integer:

6/8x4 — 3

Integer

Integer is the abstract parent of three concrete integer implementations.
In addition to providing concrete implementations of many abstract
Number methods, it also adds a few methods specific to integers, such
as factorial, atRandom, isPrime, ged: and many others.

Smallinteger is special in that its instances are represented compactly
— instead of being stored as a reference, a Smallinteger is represented
directly using the bits that would otherwise be used to hold a reference.
The first bit of an object reference indicates whether the object is a
Smallinteger or not.

214 Basic Classes

The class methods minVal and maxVal tell us the range of a
Smallinteger:

Smallinteger maxVal = ((2 raisedTo: 30) - 1) — true
Smallinteger minVal = (2 raisedTo: 30) negated —— true

When a Smallinteger goes out of this range, it is automatically con-
verted to a LargePositivelnteger or a LargeNegativelnteger, as needed:

(Smallinteger maxVal + 1) class —— LargePositivelnteger
(Smallinteger minVal - 1) class —— LargeNegativelnteger

Large integers are similarly converted back to small integers when
appropriate.

As in most programming languages, integers can be useful for
specifying iterative behavior. There is a dedicated method timesRepeat:
for evaluating a block repeatedly. We have already seen a similar
example in Chapter 3:

n:=2.
3 timesRepeat: [n :=n«n].
n — 256

8.3 Characters

Character is defined in the Collections-Strings category as a subclass of
Magnitude. Printable characters are represented in Squeak as $(char).
For example:

$a<$b — true

Non-printing characters can be generated by various class meth-
ods. Character class»value: takes the Unicode (or ASCII) integer value
as argument and returns the corresponding character. The protocol
accessing untypeable characters contains a number of convenience con-
structor methods such as backspace, cr, escape, euro, space, tab, and so
on.

Strings 215

Character space = (Character value: Character space asciiValue) — true

The printOn: method is clever enough to know which of the three
ways to generate characters offers the most appropriate representation:

Character value: 1 —— Character value: 1
Character value: 32 —— Character space
Character value: 97 — $a

Various convenient festing methods are built in: isAlphaNumeric,
isCharacter, isDigit, isLowercase, isVowel, and so on.

To convert a Character to the string containing just that character,
send asString. In this case asString and printString yield different results:

$a asString — 'a
$a — $a
$a printString — '$a’

Every ascii Character is a unique instance, stored in the class variable
CharacterTable:

(Character value: 97) ==$a — true

Characters outside the range 0 to 255 are not unique, however:

Character characterTable size — 256
(Character value: 500) == (Character value: 500) —— false

8.4 Strings

The String class is also defined in the category Collections-Strings. A String
is an indexed Collection that holds only Characters.

In fact, String is abstract and Squeak Strings are actually instances of
the concrete class ByteString.

'hello world' class —— ByteString

216 Basic Classes

Collection

| SequenceableCollection |

| ArrayedCollection |

|Array | [String| |Text]
s/ \R

Figure 8.2: The String Hierarchy

The other important subclass of String is Symbol. The key difference
is that there is only ever a single instance of Symbol with a given value.
(This is sometimes called “the unique instance property”). In contrast,
two separately constructed Strings that happen to contain the same
sequence of characters will often be different objects.

‘hel')'lo" == 'hello' —— false

('hel','lo") asSymbol == #hello — true

Another important difference is that a String is mutable, whereas a
Symbol is immutable.

'hello’ at: 2 put: $u; yourself —— 'hullo’

#helloat: 2 put: Ju —— error

It is easy to forget that since strings are collections, they understand
the same messages that other collections do:

Booleans 217

#hello indexOf: $0 — 5

Although String does not inherit from Magnitude, it does support the
usual comparing methods, <, = and so on. In addition, String»match: is
useful for some basic glob-style pattern-matching:

+or+' match: 'zorro' —— true

Should you need more advanced support for regular expressions,
there are a number of third party implementations available, such as
Vassili Bykov’s Regex package.

Strings support rather a large number of conversion methods.
Many of these are shortcut constructor methods for other classes,
such as asDate, asFileName and so on. There are also a number of useful
methods for converting a string to another string, such as capitalized
and translateToLowercase.

For more on strings and collections, see Chapter 9.

8.5 Booleans

The class Boolean offers a fascinating insight into how much of the
Smalltalk language has been pushed into the class library. Boolean is
the abstract superclass of the Singleton classes True and False.

Most of the behaviour of Booleans can be understood by considering
the method ifTrueifFalse:, which takes two Blocks as arguments.

(4 factorial > 20) ifTrue: ['bigger'] ifFalse: ['smaller'] —— 'bigger'

The method is abstract in Boolean. The implementations in its
concrete subclasses are both trivial:

Method 8.13: Implementations of ifTrue:ifFalse:

True»ifTrue: trueAlternativeBlock ifFalse: falseAlternativeBlock
TtrueAlternativeBlock value

False»ifTrue: trueAlternativeBlock ifFalse: falseAlternativeBlock

218 Basic Classes

A
Boolean
ifTrue:IfFalse:
not
&

True False
ifTrue:lfFalse: ifTrue:lfFalse:
not not
& &

Figure 8.3: The Boolean Hierarchy

TfalseAlternativeBlock value

In fact, this is the essence of OOP: when a message is sent to
an object, the object itself determines which method will be used to
respond. In this case an instance of True simply evaluates the true
alternative, while an instance of False evaluates the false alternative.
All the abstract Boolean methods are implemented in this way for True
and False. For example:

Method 8.14: Implementing negation

True»not
"Negation--answer false since the receiver is true."
Tfalse

Booleans offer several useful convenience methods, such as ifTrue:,
ifFalse:, ifFalse:ifTrue. You also have the choice between eager and lazy
conjuctions and disjunctions.

(1>2) & (3<4) — false "must evaluate both sides"

(1>2) and: [3<4] —— false "only evaluate receiver”

(1>2)and:[(1/0)>0] —— false "argument block is never evaluated, so
no exception"

Chapter Summary 219

In the first example, both Boolean subexpressions are evaluated,
since & takes a Boolean argument. In the second and third examples,
only the first is evaluated, since and: expects a Block as its argument.
The Block is evaluated only if the first argument is true.

Ld

Try to imagine how and: and or: are implemented. Check the implemen-

tations in Boolean, True and False.

8.6

Chapter Summary

If you override = then you should override hash as well.

Override postCopy to correctly implement copying for your ob-
jects.

Send self halt to set a breakpoint.
Return self subclassResponsibility to make a method abstract.

To give an object a String representation you should override
printOn:.

Override the hook method initialize to properly initialize in-
stances.

Number methods automatically convert between Floats, Fractions
and Integers.

Fractions truly represent rational numbers rather than floats.
Characters are unique instances.

Strings are mutable; Symbols are not.

Symbols are unique; Strings are not.

Strings and Symbols are Collections and therefore support the usual
Collection methods.

221

Chapter 9

Collections

9.1 Introduction

The collection classes form a loosely-defined group of general-purpose
subclasses of Collection and Stream. The group of classes that appears in
the “Blue Book”! contains 17 subclasses of Collection and 9 subclasses
of Stream, for a total of 28 classes, and had already been redesigned
several times before the Smalltalk-80 system was released. This group
of classes is often considered to be a paradigmatic example of object-
oriented design.

In Squeak, the abstract class Collection has 98 subclasses, and the
abstract class Stream has 39 subclasses, but many of these (like Bitmap,
FileStream and CompiledMethod) are special-purpose classes crafted for
use in other parts of the system or in applications, and hence not
categorized as “Collections” by the system organization. For the pur-
poses of this chapter, we use the term “Collection Hierarchy” to mean
Collection and its 37 subclasses that are also in the system categories
labelled Collections-*. We use the term “Stream Hierarchy” to mean
Stream and its 10 subclasses that are also in the Collections-Streams sys-

! Adele Goldberg and David Robson, Smalltalk 80: the Language and its Implementation.
Reading, Mass.: Addison Wesley, May 1983, ISBN 0-201-13688-0.

222 Collections

tem categories. The full list is shown in Figure 9.1. These 49 classes
respond to 794 messages and define a total of 1236 methods!

In this chapter we focus mainly on the subset of collection classes
shown in Figure 9.2. Streams will be discussed separately in Chap-
ter 10.

9.2 The Varieties of Collection

To make good use of the collection classes, the reader needs at least
a superficial knowledge of the wide variety of collections that they
implement, and their commonalities and differences.

Programming with collections rather than individual elements
is an important way to raise the level of abstraction of a program.
The Lisp function map, which applies an argument function to every
element of a list and returns a new list containing the results is an
early example of this style, but Smalltalk-80 adopted collection-based
programming as a central tenet. Modern functional programming
languages such as ML and Haskell have followed Smalltalk’s lead.

Why is this a good idea? Suppose you have a data structure con-
taining a collection of student records, and wish to perform some
action on all of the students that meet some criterion. Programmers
raised to use an imperative language will immediately reach for a loop.
But the Smalltalk programmer will write:

students select: [:each | each gpa < threshold]

which evaluates to a new collection containing precisely those ele-
ments of students for which the bracketed function returns true®. The
Smalltalk code has the simplicity and elegance of a domain-specific
query language.

The message select: is understood by all collections in Smalltalk.
There is no need to find out if the student data structure is an array or
a linked list: the select: message is understood by both. Note that this

2The expression in brackets can be thought of as a A-expression defining an anony-
mous function Az.x gpa < threshold.

The Varieties of Collection 223

Collection
Bag
IdentityBag
CharacterSet
SequenceableCollection
ArrayedCollection
Array
WeakArray
Array2D
ByteArray
ColorArray
FloatArray
IntegerArray
RunArray
String
Symbol
Text
WordArray
WordArrayForSegment
Heap
Interval
LinkedList
MappedCollection
OrderedCollection
SortedCollection
Set
Dictionary
IdentityDictionary
PluggableDictionary
WeakKeyDictionary
WeakldentityKeyDictionary
WeakValueDictionary
IdentitySet
PluggableSet
WeakSet
SkipList
IdentitySkipList
WeakRegistry

Stream
AttributedTextStream
PositionableStream
ReadStream
WriteStream
LimitedWriteStream
ReadWriteStream
RWBinaryOrTextStream
Transcripter
TextStream
TranscriptStream

Figure 9.1: The collection classes in Squeak. Indentation indicates
subclassing; ftalicized classes are abstract.

224 Collections

A\
Collection
N/ NV

[SequenceableCollection |
AWaYs

LinkedList
PluggableSet

Interval

[ArrayedCollection | [OrderedCollection |
N
[Array| [String] [Text] [SortedCollection | [IdentityDictionary |
[ByteString] [Symbol| [PluggableDictionary |

Figure 9.2: Some of the key collection classes in Squeak.

is quite different from using a loop, where one must know whether
students is an array or a linked list before the loop can be set up.

In Smalltalk, when one speaks of a collection without being more
specific about the kind of collection, one means an object that supports
well-defined protocols for testing membership and enumerating the
elements. All collections understand the testing messages includes:,
isEmpty and occurrencesOf:. All collections understand the enumeration
messages do:, select;, reject: (which is the opposite of select:), collect:
(which is like lisp’s map), detect:ifNone: inject:into: (which performs a left
fold) and many more. It is the ubiquity of this protocol, as well as its
variety, that makes it so powerful.

Figure 9.3 summarizes the standard protocols supported by most
of the classes in the collection hierarchy. These methods are defined,
redefined, optimized or occasionally even forbidden by subclasses of
Collection.

Beyond this basic uniformity, there are many different kinds of
collection either supporting different protocols, or providing different

The Varieties of Collection 225

Protocol Methods

accessing size, capacity, at: anindex, at: anindex put: anElement

testing isEmpty, includes: anElement, contains: aBlock, occurrence-
sOf: anElement

adding add: anElement, addAll: aCollection

removing remove: anElement, remove: anElement ifAbsent: aBlock,

removeAll: aCollection

enumerating | do: aBlock, collect: aBlock, select: aBlock, reject: aBlock,
detect: aBlock, detect: aBlock ifNone: aNoneBlock, inject:
aValue into: aBinaryBlock

converting asBag, asSet, asOrderedCollection, asSortedCollection, asAr-
ray, asSortedCollection: aBlock
creation with: anElement, with:with:, with:with:with:,

with:with:with:with:, with: anElement All: aCollection

Figure 9.3: Standard Collection protocols

behaviour for the same requests. Let us briefly survey some of the key
differences:

* Sequenceable: Instances of all subclasses of
SequenceableCollection start from a first element and proceed in a
well-defined order to a last element. Instances of Set, Bag and
Dictionary, on the other hand, are not sequenceable.

e Sortable: A SortedCollection maintains its elements in sort order.

* Indexable: Most sequenceable collections are also indexable,
that is, elements can be retrieved with at:. Array is the familiar
indexable data structure with a fixed size; anArray at: n retrieves
the n'" element of anArray, and anArray at: n put: v changes the n*"
element to v. LinkedLists and SkipLists are sequenceable but not
indexable, that is, they understand first and last, but not at:.

* Keyed: Instances of Dictionary and its subclasses are accessed by
keys instead of indices.

226

Collections

Mutable: Most collections are mutable, but Intervals and Symbols
are not. An Interval is an immutable collection representing a
range of Integers. For example, 5to: 16 by: 2 is an interval that
contains the elements 5,7,9, 11, 13 and 15. It is indexable with
at:, but cannot be changed with at:put:.

Growable: Instances of Interval and Array are always of a fixed
size. Other kinds of collections (sorted collections, ordered col-
lections, and linked lists) can grow after creation.

The class OrderedCollection is more general than Array; the size of
an OrderedCollection grows on demand, and it has methods for
addFirst: and addLast: as well as at: and at:put:.

Accepts duplicates: A Set will filter out duplicates, but a Bag
will not. Dictionary, Set and Bag use the = method provide by the
elements; the Identity variants of these classes use the == method,
which tests whether the arguments are the same object, and the
Pluggable variants use an arbitrary equivalence relation supplied
by the creator of the collection.

Heterogeneous: Most collections will hold any kind of element.
A String, CharacterArray or Symbol, however, only holds Characters.
An Array will hold any mix of objects, but a ByteArray only holds
Bytes, an IntegerArray only holds Integers and a FloatArray only holds
Floats. A LinkedList is constrained to hold elements that conform
to the Link > accessing protocol.

9.3 Implementations of Collections

These categorizations by functionality are not our only concern; we
must also consider how the collection classes are implemented. As
shown in Figure 9.4, five main implementation techniques are em-
ployed.

1. Arrays store their elements in the (indexable) instance variables

of the collection object itself; as a consequence, arrays must be of
a fixed size, but can be created with a single memory allocation.

Implementations of Collections

227

Arrayed
Implementation

Ordered
Implementation

Hashed
Implementation

Linked
Implementation

Interval
Implementation

Array
String
Symbol

OrderedCollection
SortedCollection
Text

Heap

Set

IdentitySet
PluggableSet

Bag

IdentityBag
Dictionary
IdentityDictionary
PluggableDictionary

LinkedList
SkipList

Interval

Figure 9.4: Some collection classes categorized by implementation

technique.

. OrderedCollections and SortedCollections store their elements in an
array that is referenced by one of the instance variables of the
collection. Consequently, the internal array can be replaced with
a larger one if the collection grows beyond its storage capacity.

. The various kinds of set and dictionary also reference a sub-
sidiary array for storage, but use the array as a hash table. Bags
use a subsidiary Dictionary, with the elements of the bag as keys
and the number of occurrences as values.

. LinkedLists use a standard singly-linked representation.

. Intervals are represented by three integers that record the two
endpoints and the step size.

In addition to these classes, there are also “weak” variants of Array, Set
and of the various kinds of dictionary. These collections hold onto
their elements weakly, i.e., in a way that does not prevent the elements
from being garbage collected. The Squeak virtual machine is aware of

these classes and handles them specially.

Readers interested in learning more about the Smalltalk collections
are referred to LaLonde and Pugh’s excellent book®.

3Wilf LaLonde and John Pugh, Inside Smalltalk: Volume 1. Prentice Hall, 1990, ISBN

0-13—468414-1.

228 Collections

9.4 Examples of Key Classes

We present now the most common or important collection classes
using simple code examples. The main protocols of collections are:
at:, at:put: — to access an element, add:, remove: — to add or remove
an element, size, isEmpty, include: — to get some information about the
collection, do:, collect:, select: — to iterate over the collection. Each
collection may implement or not such protocols and when they do in-
terpret them to fit with their semantics. We suggest you to browse the
classes themselves to identify specific and more advanced protocols.

We will focus on the most common collection classes:
OrderedCollection, Set, SortedCollection, Dictionary, Interval, and Array.

Common creation protocol. There are several ways to create in-
stances of collections. The most generic ones use the methods new: and
with:. new: aninteger creates a collection of size aninteger whose elements
will all be nil. with: anObject creates a collection and adds anObject to
the created collection. Different collections will relize this behavior
differently.

You can create collections with initial elements using the methods
with:, with:with: etc. for up to six elements.

Array with: 1 — #(1)

Array with: 1 with:2 — #(1 2)

Array with: 1 with: 2with: 3 — #(123)

Array with: 1 with: 2 with: 3 with:4 — #(1234)

Array with: 1 with: 2 with: 3 with: 4 with:5 — #(12345)

Array with: 1 with: 2 with: 3 with: 4 with: 5with:6 —— #(123456)

You can also use addAll: to add all elements of one kind of collection
to another kind:

(1 to: 5) asOrderedCollection addAll: '678'; yourself —— an
OrderedCollection(1 2 3 4 5 $6 $7 $8)

Take care that addAll: also returns its argument, and not the receiver!

You can also create many collections with withAll: or newFrom:

Examples of Key Classes 229

Array withAll: #(7 3 1 3) — #7313)
OrderedCollection withAll: #(7 313) —— an OrderedCollection(7 3 1 3)
SortedCollection withAll: #(7 3 1 3) — a SortedCollection(1 33 7)

Set withAll: #(7 3 1 3) — aSet(713)

Bag withAll: #(7 3 1 3) — aBag(7133)

Dictionary withAll: #(7 3 1 3) —— aDictionary(1->7 2->3 3->1 4-
>3)

Array newFrom: #(7 3 1 3) — #(7313)

OrderedCollection newFrom: #(7 3 1 3) — an
OrderedCollection(7 3 1 3)

SortedCollection newFrom: #(7 3 1 3) — a SortedCollection
(1337)

Set newFrom: #(7 3 1 3) — aSet(713)

Bag newFrom: #(7 31 3) — aBag(7133)

Dictionary newFrom: {1 ->7.2->3.3->1.4->3} —— a Dictionary(1->7
2->3 3->14->3)

Note that these two methods are not identical. In particular, Dictionary
class»withAll: interprets its argument as a collection of values, whereas
Dictionary class»newFrom: expects a collection of associations.

Array

An Array is a fixed-sized collection of elements accessed by integer
indices. Contrary to the C convention, the first element of a Smalltalk
array is at position 1 and not 0. The main protocol to access array
elements is the method at: and at:put:. at: aninteger returns the element at
index anlnteger. at: aninteger put: anObject puts anObject at index aninteger.
Arrays are fixed-size collections therefore we cannot add or remove
elements at the end of an array. The following code creates an array of
size 5, puts values in the first 3 locations and returns the first element.

anArray := Array new: 5.
anArray at: 1 put: 4.
anArray at: 2 put: 3/2.
anArray at: 3 put: 'ssss'.
anArray at: 1 — 4

230 Collections

There are several ways to create instances of the class Array. We can
use new:, with:, and the constructs #() and { }.

Creation with new: new: aninteger creates an array of size aninteger.
Array new: 5 creates an array of size 5.

Creation with with: with: methods allows one to specify the value of
the elements. The following code creates an array of three elements
consisting of the number 4, the fraction 3/2 and the string 'lulu'.

Array with: 4 with: 3/2 with: 'lulu’" — {4 .(3/2) . 'lulu’}

Literal creation with #(). #() creates literal arrays with static (or “lit-
eral”) elements that have to be known when the expression is com-
piled, and not when it is executed. The following code creates an
array of size 2 where the first element is the (literal) number 1 and the
second the (literal) string 'here'.

#(1 'here') size — 2

Now, if you evaluate #(1+2), you do not get an array with a sin-
gle element 3 but instead you get the array #(1 #+ 2) i.e., with three
elements: 1, the symbol #+ and the number 2.

#(142) —— #(1#+2)

This occurs because the construct #() causes the compiler to interpret
literally the expressions contained in the array. The expression is
scanned and the resulting elements are fed to a new array. Literal
arrays contain numbers, nil, true, false, symbols and strings.

Dynamic creation with {}. Finally, you can create a dynamic array
using the construct {}. { a. b} is equivalent to the expression Array with:
a with: b. This means in particular that the expressions enclosed by {
and } are executed.

Examples of Key Classes 231

{1+2} — #(@Q)
{(1/2) asFloat}at:1 — 0.5
{10 atRandom . 1/3}at:2 — (1/3)

Element Access. Elements of all sequenceable collections can be
accessed with at: and at:put:.

anArray = #(1 2 3 4 5 6) copy.
anArray at: 3 — 3
anArray at: 3 put: 33.

anArray at:3 — 33

Be careful with code that modifies literal arrays! The compiler tries to
allocate space just once for literal arrays. Unless you copy the array,
the second time you evaluate the code your “literal” array may not
have the value you expect. (Without cloning, the second time around,
the literal #(1 2 3 4 5 6) will actually be #(1 2 33 4 5 6)!) Dynamic arrays
do not have this problem.

OrderedCollection

OrderedCollection is one of the collections that can grow, and to which
elements can be added sequentially. It offers a variety of methods such
as add:, addFirst:, addLast:, and addAll:.

ordCol := OrderedCollection new.
ordCol add: 'Seaside'; add: 'SqueakSource'; addFirst: 'Monticello'.
ordCol —— an OrderedCollection('Monticello’ 'Seaside' 'SqueakSource')

Removing Elements. The method remove: anObject removes the first
occurrence of an object from the collection. If the collection does not
include such an object, it raises an error.

ordCol add: 'Monticello'.
ordCol remove: 'Monticello'.
ordCol —— an OrderedCollection('Seaside' 'SqueakSource' 'Monticello')

232 Collections

There is a variant of remove: named remove:ifAbsent: that allows one
to specify as second argument a block that is executed in case the
element to be removed is not in the collection.

res := ordCol remove: 'zork' ifAbsent: [33].
res — 33

Conversion. Itis possible to get an OrderedCollection from an Array (or
any other collection) by sending the message asOrderedCollection:

#(1 2 3) asOrderedCollection —— an OrderedCollection(1 2 3)
'hello’ asOrderedCollection —— an OrderedCollection($h $e $I $I $o)

Interval

The class Interval represents ranges of numbers. For example, the
interval of numbers from 1 to 100 is defined as follows:

Interval from: 1 to: 100 — (1 to: 100)

The printString of this interval reveals that the class Number provides us
with a convenience method called to: to generate intervals:

(Interval from: 1 to: 100) = (1 to: 100) —— true

We can use Interval class»from:to:by: or Number»to:by: to specify the
step between two numbers as follow:

(Interval from: 1 to: 100 by: 0.5) size — 199
(1to: 100 by: 0.5) at: 198 — 99.5
(1/2 to: 54/7 by: 1/3) last — (15/2)

Dictionary

Dictionaries are important collections whose elements are accessed
using keys. Among the most commonly used messages of dictionary
you will find at;, at:put:, at:ifAbsent:, keys and values.

Examples of Key Classes 233

colors := Dictionary new.

colors at: #yellow put: Color yellow.

colors at: #blue put: Color blue.

colors at: #red put: Color red.

colors at: #yellow —— Color yellow

colors keys — a Set(#blue #yellow #red)

colors values —— {Color blue . Color yellow . Color red}

Dictionaries compare keys by equality. Two keys are considered to
be the same if they return true when compared using =. A common
and difficult to spot bug is to use as key an object whose = method has
been redefined but not its hash method. Both methods are used in the
implementation of dictionary and when comparing objects.

The class Dictionary clearly illustrates that the collection hierarchy is
based on subclassing and not subtyping. Even though Dictionary is a
subclass of Set, we would normally not want to use a Dictionary where
a Set is expected. In its implementation, however, a Dictionary can
clearly be seen as consisting of a set of associations (key value) created
using the message ->. We can create a Dictionary from a collection of
associations, or we may convert a dictionary to an array of associations.

colors := Dictionary newFrom: { #blue->Color blue. #red->Color red. #yellow->
Color yellow }.

colors removeKey: #blue.

colors associations —— {#yellow->Color yellow . #red->Color red}

IdentityDictionary. While a dictionary uses the result of the mes-
sages = and hash to determine if two keys are the same, the class
IdentityDictionary uses the identity (message ==) of the key instead of its
values, i.e., it considers two keys to be equal only if they are the same
object.

Often Symbols are used as keys, in which case it is natural to use
an |dentityDictionary, since a Symbol is guaranteed to be globally unique.
If, on the other hand, your keys are Strings, it is better to use a plain
Dictionary, or you may get into trouble:

234 Collections

a := 'foobar'.
b := a copy.
trouble := IdentityDictionary new.
trouble at: a put: 'a’; at: b put: 'b'.
trouble at: a — 'a
trouble at: b — b

trouble at: 'foobar’ — ‘'a

Since a and b are different objects, they are treated as different objects.
Interestingly, the literal 'foobar' is allocated just once, so is really the
same object as a. You don’t want your code to depend on behaviour
like this! A plain Dictionary would give the same value for any key
equal to 'foobar'.

Use only Symbols as keys for a IdentityDictionary, and Strings (or other
objects) as keys for a plain Dictionary.

Note that the global Smalltalk is an instance of SystemDictionary, a
subclass of IdentityDictionary, hence all its keys are Symbols (actually,
ByteSymbols, which only contain 8-bit characters).

Smalltalk keys collect: [:each | each class] —— a Set(ByteSymbol)

Sending keys or values to a Dictionary results in a Set, which we look at
next.

Set

The class Set is a collection which behaves as a mathematical set, i.e.,
as a collection with no duplicate elements and without any order. In
a Set elements are added using the message add: and they cannot be
accessed using the message at:. Objects put in a set should implement
the methods hash and =.

s = Set new.
s add: 4/2; add: 4; add:2.
ssize — 2

You can also create sets using Set class»newFrom: or the conversion
message Collection»asSet:

Examples of Key Classes 235

(SetnewFrom: #(12314))=#(1234321)asSet —— true

asSet offers us a convenient way to eliminate duplicates from a
collection:

{ Color black. Color white. (Color red + Color blue + Color green) } asSet size
RN 2

Note that red + blue + green = white.

A Bag is much like a Set except that it does allow duplicates:

{ Color black. Color white. (Color red + Color blue + Color green) } asBag size
RN 3

The set operations union, intersection and membership testing are
implemented by the Collection messages union:, intersection: and includes:.
The receiver is first converted to a Set, so these operations work for all
kinds of collections!

(1to:6) union: (4to:10) — aSet(12345678910)
'hello’ intersection: 'there' —— 'he'
#Smalltalk includes: $k — true

As we explain below set elements are accessed using iterators (see
Section 9.5).

SortedCollection

In contrast to an OrderedCollection, a SortedCollection maintains its ele-
ments in sort order. By default, a sorted collection uses the message
<= to establish sort order, i.e., it can sort instances of subclasses of
the abstract class Magnitude, which defines the protocol of comparable
objects (<, =, >, >=, between:and:...). (See Chapter 8.)

You can create a SortedCollection by creating a new instance and
adding elements to it:

SortedCollection new add: 5; add: 2; add: 50; add: -10; yourself. — a
SortedCollection(-10 2 5 50)

236 Collections

More usually, though, one will send the conversion message
asSortedCollection to an existing collection:

#(5 2 50 -10) asSortedCollecton —— a SortedCollection(-10 2 5 50)

This example answers the following FAQ:

FAQ: How do you sort a collection?
ANSWER: Send the message asSortedCollection to it.

'hello' asSortedCollection —— a SortedCollection($e $h $I $I $o)

How do you get a String back from this result? asString unfortu-
nately returns the printString representation, which is not what we
want:

'hello’ asSortedCollection asString —— 'a SortedCollection($e $h $I $I $o)'

The correct answer is to either use String class»newFrom:, String class»
withAll: or Object»as::

'hello’ asSortedCollection as: String — 'ehllo’
String newFrom: (‘hello’ asSortedCollection) —— ‘ehllo’
String withAll: ('hello’ asSortedCollection) — 'ehllo’

It is possible to have different kinds of elements in a SortedCollection
as long as they are all comparable. For example we can mix different
kinds of numbers such as integers, floats and fractions:

{5.2/-3.5.21 } asSortedCollection —— a SortedCollection((-2/3) 5 5.21)

Imagine you want to sort objects that do not define the method <=
or that you would like to have a different sorting criterion. You can do
that by specifying a two argument block. For example, the class Color
is not a Magnitude and it does not implement the method <=, but we
can specify a block stating that the colors should be sorted according
to their luminance (a measure of brightness).

Examples of Key Classes 237

col := SortedCollection sortBlock: [:c1 :c2 | ¢1 luminance <= c2 luminance].
col addAll: { Color red. Color yellow. Color white. Color black }.
col —— a SortedCollection(Color black Color red Color yellow Color white)

String

A Smalltalk String represents a collection of Characters. It is sequence-
able, indexable, mutable and homogeneous, containing only Character
instances. Like Arrays, Strings have a dedicated syntax, and are nor-
mally created by directly specifying a String literal within single quotes,
but the usual collection creation methods will work as well.

'Hello' — 'Hello'
String with: $A — A
String with: $h with: $i with: $! — 'hil'

String newFrom: #($h $e $I $1 o) —— 'hello’

In actual fact, String is abstract. When we instantiate a String we
actually get either an 8-bit ByteString or a 32-bit WideString. To keep
things simple, we usually ignore the difference and just talk about
instances of String.

Two instances of String can be concatenated with a comma.

:="'no',"’, 'worries'.

s
s —— 'noworries'

Since a string is a mutable collection we can also change it using
the method at:put:.

s at: 4 put: $h; at: 5 put: $u.
s —— 'no hurries'

Note that the comma method is defined by Collection, so it will work
for any kind of collection!

(110:3),'45 — #(123$4 $5)

238 Collections

We can also modify an existing string using replaceAll:with: or
replaceFrom:to:with: as shown below. Note that the number of characters
and the interval should have the same size.

s replaceAll: $n with: $N.

s — 'No hurries'

s replaceFrom: 4 to: 5 with: 'wo'.
s — 'No worries'

Instead, with copyReplaceAll: a new string is created. (Curiously,
here the arguments are substrings rather than individual characters,
and the sizes do not have to match.)

s copyReplaceAll: 'rries’ with: 'mbats’ —— 'No wombats'

A quick look at the implementation of these methods reveals
that they are defined not only for Strings, but for any kind of
SequenceableCollection, hence the following also works:

(1 to: 6) copyReplaceAll: (3 to: 5) with: { 'three'. 'etc.'} —— #(1 2 'three' 'etc.’
6)

String matching It is possible to ask whether a string matches a
pattern by sending the match: message. The pattern can specify « to
match an arbitrary series of characters and # to match a single character.
Note that match: is sent to the pattern and not the string to be matched.

'Linux +" match: 'Linux mag' — true
'GNU/Linux #ag' match: '"GNU/Linux tag' —— true

Another useful method is findString:.

'GNU/Linux mag' findString: 'Linux' — 5
'GNU/Linux mag' findString: 'linux' startingAt: 1 caseSensitive: false ~— 5

More advanced pattern matching facilities offering the capabilities
of Perl are also available, but they are not included in the standard
image*.

4We strongly recommend Vassili Bykov's regular expression package, available at
www.squeaksource.com/Regex.html.

www.squeaksource.com/Regex.html

Examples of Key Classes 239

Some tests on strings. The following examples illustrate the use of
isEmpty, includes: and anySatisfy: which are further messages defined not
only on Strings but more generally on collections.

'Hello" isEmpty.

'Hello' includes: $a —— false

'JOE' anySatisfy: [:c | c isLowercase] —— false
'Joe' anySatisfy: [:c | c isLowercase] —— true

String templating. There are three messages that are useful to man-
age string templating: format:, expandMacros and expandMacrosWith:.

{1} is {2} format: {'Squeak' . 'cool} —— 'Squeak is cool'

The messages of the expandMacros family offer variable substitu-
tion, using <n> for carriage return, <t> for tabulation, <1s>, <2s>, <3s>
for arguments (<1p>, <2p>, surrounds the string with single quotes),
and <1?valuel:value2> for conditional.

'look-<t>-here' expandMacros — 'look- -here'

'<1s> is <2s>' expandMacrosWith: 'Squeak’ with: 'cool' = —— 'Squeak is
cool'

'<2s> is <1s>' expandMacrosWith: 'Squeak' with: 'cool’ — 'cool is
Squeak’

'<1p> or <1s>' expandMacrosWith: 'Squeak’ with: ‘cool' —— ™Squeak" or
Squeak’

'<1?Quentin:Thibaut> plays' expandMacrosWith: true — 'Quentin plays'

'<1?Quentin:Thibaut> plays' expandMacrosWith: false —— 'Thibaut plays'

Some other utility methods. The class String offers numerous other
utilities including the messages asLowercase, asUppercase and capitalized

'XYZ' asLowercase — 'xyZ'

'xyz' asUppercase — 'XYZ

‘hilaire’ capitalized — 'Hilaire'

'1.54' asNumber — 154

'this sentence is without a doubt far too long' contractTo: 20 —— 'this sent...
too long'

240 Collections

Note that there is generally a difference between asking an object its
string representation by sending the message printString and converting
it to a string by sending the message asString. Here is an example of
the difference.

#ASymbol printString —— '#ASymbol'
#ASymbol asString — 'ASymbol’'

A symbol is similar to a string but is guaranteed to be globally
unique. For this reason symbols are preferred to strings as keys for
dictionaries, in particular for instances of IdentityDictionary. See also
Chapter 8 for more about String and Symbol.

9.5 Collection Iterators

In Smalltalk loops and conditionals are simply messages sent to col-
lections or other objects such as integers or block (see also Chapter 3).
In addition to low-level messages such as to:do: which evaluates a
block with an argument ranging from an initial to a final number,
the Smalltalk collection hierarchy offers various high-level iterators.
Using such iterators will make your code more robust and compact.

Iterating (do:)

The method do: is the basic collection iterator. It applies its argument
(a block taking a single argument) to each element of the receiver. The
following example prints all the strings contained in the receiver to
the transcript.

#('bob' 'joe' 'toto') do: [:each | Transcript show: each; cr].

Variants. There are a lot of variants of do:;, such as do:without:
, doWithindex: and reverseDo:: For the indexed collections (Array,
OrderedCollection, SortedCollection) the method doWithindex: gives also ac-
cess to the current index. This method is related to to:do: which is
defined on Number.

Collection Iterators 241

#('bob’ 'joe' 'toto') doWithIndex: [:each :i | (each = 'joe') ifTrue: [Ti]] — 2

For ordered collections, reverseDo: walks the collection in the re-
verse order.

The following code shows an interesting message: do:separatedBy:
which executes the second block only in between two elements.

res =",
#('bob' 'joe' 'toto') do: [:e | res :=res, e] separatedBy: [res :=res, "."].
res —— 'bob.joe.toto'

Note that this code is not especially efficient since it creates intermedi-
ate strings and it would be better to use a write stream to buffer the
result (see Chapter 10):

String streamContents: [:stream | #('bob' 'joe' 'toto') asStringOn: stream delimiter:
'] —— 'bob.joe.toto’

Dictionaries. When the method do: is sent to a dictionary, the el-
ements taken into account are associations (i.e., key -> value). For
dictionaries the equivalent methods are keysDo: and valuesDo:, which
iterate respectively on keys or values.

colors := Dictionary newFrom: { #yellow -> Color yellow. #blue —> Color blue.
#red —> Color red }.

colors keysDo: [:key | Transcript show: key; cr]. "displays the keys"

colors valuesDo: [:value | Transcript show: value;cr]. "displays the values”

Collecting results (collect:)

If you want to process the elements of a collection and produce a new
collection as a result, rather than using do:, you are probably better off
using collect;, or one of the other iterator methods. Most of these can
be found in the enumerating protocol of Collection and its subclasses.

Imagine that we want a collection containing the doubles of the
elements in another collection. Using the method do: we must write
the following:

242 Collections

double := OrderedCollection new.
#(1 23 4 56) do: [:e | double add: 2 = e].
double —— an OrderedCollection(2 468 10 12)

The method collect: executes its argument block for each element and
returns a new collection containing the results. Using collect: instead,
the code is much simpler:

#(123456)collect:[[e|2+e] — #24681012)

The advantages of collect: over do: are even more dramatic in the
following example, where we take a collection of integers and generate
as a result a collection of absolute values of these integers:

aCol = #(2-34-354-11).

result := aCol species new: aCol size.

1 to: aCol size do: [:each | result at: each put: (aCol at: each) abs].
resut — #(23435411)

Contrast the above with the much simpler following expression:

#(2-34-354-11) collect: [:each | eachabs] — #(23435411)

A further advantage of the second solution is that it will also work for
sets and bags.

Generally you should avoid using do:, unless you want to send
messages to each of the elements of a collection.

Note that sending the message collect: returns the same kind of
collection as the receiver. For this reason the following code fails. (A
String cannot hold integer values.)

'abc’ collect: [:ea | ea asciiValue] "error!"

Instead we must first convert the string to an Array or an
OrderedCollection:

'abc' asArray collect: [:ea | ea asciiValue] —— #(97 98 99)

Collection Iterators 243

Actually collect: is not guaranteed to return a collection of exactly
the same class as the receiver, but only the same “species”. In the case
of an Interval, the species is actually an Array!

(1to:5)collect:[:ea|eax2] — #(246810)

Selecting and Rejecting Elements

select: returns the elements of the receiver that satisfy a particular
condition:

(2 to: 20) select: [:each | each isPrime] —— #(235711131719)

reject: does the opposite:

(2 to: 20) reject: [:each | each isPrime] — #(46891012141516 18 20)

Identifying an element with detect:

The method detect: returns the first element of the receiver that matches
block argument.

'through' detect: [:each | each isVowel] — $o

The method detectiifNone: is a variant of the method detect:. Its
second block is evaluated when there is no element matching the
block.

Smalltalk allClasses detect: [:each | 'sjava+' match: each asString] ifNone: [nil]
— il

Accumulating results with inject:into:

Functional programming languages often provide a higher-order func-
tion called fold or reduce to accumulate a result by applying some
binary operator iteratively over all elements of a collection. In Squeak
this is done by Collection»inject:into:.

244 Collections

The first argument is an initial value, and the second argument is a
two-argument block which is applied to the result this far, and each
element in turn.

A trivial application of inject:into: is to produce the sum of a col-
lection of numbers. Following Gauss, in Squeak we could write this
expression to sum the first 100 integers:

(1 to: 100) inject: O into: [:sum :each | sum + each] —— 5050

Another example is the following one-argument block which com-
putes factorials:

factorial := [:n | (1 to: n) inject: 1 into: [:product :each | product « each]].
factorial value: 10 —— 3628800

Other messages

count: The message count: returns the number of elements matching
a block.

Smalltalk allClasses count: [:each | '»Collection+' match: each asString] —
14

includes: The message includes: checks whether the argument is con-
tained in the collection.

colors := {Color white . Color yellow. Color red . Color blue . Color orange}.
colors includes: Color blue. — true

anySatisfy: The message anySatisfy: returns whether at least one ele-
ment satisfies a condition.

colors anySatisfy: [:c|cred >0.5] — true

Some Hints for using Collections 245

9.6 Some Hints for using Collections

A common mistake with add: The following error is one of the most
frequent Smalltalk mistakes.

collection := OrderedCollection new add: 1; add: 2.
collecton — 2

Here the variable collection does not hold the newly created collection
but rather the last number added. Indeed the method add: returns the
element added and not the receiver.

The following code yields the expected result:

collection := OrderedCollection new.
collection add: 1; add: 2.
collection —— an OrderedCollection(1 2)

You can also use the message yourself to return the receiver of a
cascade of messages:

collection := OrderedCollection new add: 1; add: 2; yourself —— an
OrderedCollection(1 2)

Removing an element of the collection you are iterating on. An-
other mistake you may make is to remove an element from a collection
you are currently iterating over. remove:

range := (2 to: 20) asOrderedCollection.
range do: [:aNumber | aNumber isPrime ifFalse: [range remove: aNumber]].
range —— an OrderedCollection(2357 911131517 19)

This result is clearly incorrect since 9 and 15 should have been filtered
out!

The solution is to copy the collection before going over it.

range := (2 to: 20) asOrderedCollection.

range copy do: [:aNumber | aNumber isPrime ifFalse: [range remove: aNumber]
1

range —— an OrderedCollection(2357 11 1317 19)

246 Collections

Redefining both = and hash. A difficult error to spot is when you
redefine = but not hash. The symptoms are that you will lose elements
that you put in sets or other strange behavior. One solution proposed
by Kent Beck is to using xor: to redefine hash. Suppose that we want
two books to be considered equal if their titles and authors are the
same. Then we would redefine not only = but also hash as follows:

Method 9.1: Redefining = and hash.

Book»= aBook
self class = aBook class ifFalse: [] false].
T title = aBook title and: [authors = aBook authors]

Book»hash
1 title hash xor: authors hash

9.7 Chapter Summary

The Smalltalk collection hierarchy provides a common vocabulary for
uniformly manipulating a variety of different kinds of collections.

* A key distinction is between SequenceableCollections, which main-
tain their elements in a given order, Dictionary its subclasses,
which maintain key-to-value associations, and Sets and Bags,
which are unordered.

* You can convert most collections to another kind of collection by
sending them the messages asArray, asOrderedCollection etc..

¢ To sort a collection, send it the message asSortedCollection.

* Literal Arrays are created with the special syntax #(...). Dynamic
Arrays are created with the syntax{ ... }.

* A Dictionary compares keys by equality. It is most useful when
keys are instances of String. An IdentityDictionary instead uses ob-
ject identity to compare keys. It is more suitable when Symbols
are used as keys, or when mapping object references to values.

Chapter Summary 247

e Strings also understand the usual collection messages. In addi-
tion, a String supports a simple form of pattern-matching. For
more advanced application, look instead at the RegEx package.

¢ The basic iteration message is do:. It is useful for imperative code,
such as modifying each element of a collection, or sending each
element a message.

¢ Instead of using do;, it is more common to use collect;, select;, reject:
, includes:, inject:into: and other higher-level messages to process
collections in a uniform way:.

¢ Never remove an element from a collection you are iterating
over. If you must modify it, iterate over a copy instead.

¢ If you override =, remember to override hash as well!

249

Chapter 10

Streams

Stream Streams are used to iterate over sequences of elements such as
sequenced collections, files, and network streams. Streams may be
either readable, or writeable, or both. Reading or writing is always
relative to the current position in the stream. Streams can easily be
converted to collections, and vice versa.

10.1 Two Sequences of Elements

A good metaphor to understand a stream is the following: A stream
can be represented as two sequences of elements: a past element
sequence and a future element sequence. The stream is positioned
between the two sequences. Understanding this model is important
since all stream operations in Smalltalk rely on it. For this reason, most
of the Stream classes are subclasses of PositionableStream. Figure 10.1
presents a stream which contains five characters. This stream is in its
original position, i.e., there is no element in the past. You can go back
to this position using the message reset.

Reading an element conceptually means removing the first element
of the future element sequence and putting it after the last element in
the past element sequence. After having read one element using the

250 Streams

Ce) JJeJle]

past element * future element
sequence sequence

Figure 10.1: A stream positioned at its beginning.

message next, the state of your stream is that shown in Figure 10.2.

L) Je e Jle]

past element future element
sequence sequence

Figure 10.2: The same stream after the execution of the method next:
the character a is “in the past” whereas b, ¢, d and e are “in the future”.

Writing an element means replacing the first element of the future
sequence by the new one and moving it to the past. Figure 10.3 shows
the state of the same stream after having written an x using the message
nextPut: anElement.

L) Je JLe]

past element future element
sequence sequence

Figure 10.3: The same stream after having written an x.

10.2 Streams vs. Collections

The collection protocol supports the storage, removal and enumeration
of the elements of a collection, but does not allow these operations to
be intermingled. For example, if the elements of an OrderedCollection

Streams vs. Collections 251

are processed by a do: method, it is not possible to add or remove
elements from inside the do: block. Nor does the collection protocol
offer ways to iterate over two collections at the same time, choosing
which collection goes forward and which does not. Procedures like
these require that a traversal index or position reference is maintained
outside of the collection itself: this is exactly the role of ReadStream,
WriteStream and ReadWriteStream.

These three classes are defined to stream over some collection. For
example, the following snippet creates a stream on an interval, then it
reads two elements.

r := ReadStream on: (1 to: 1000).
r next. — 1

r next. — 2

ratend. — false

WriteStreams can write data to the collection:

w = WriteStream on: (String new: 5).
w nextPut: $a.

w nextPut: $b.

wcontents. — ‘ab’

It is also possible to create ReadWriteStreams that support both the
reading and writing protocols.

The main problem with WriteStream and ReadWriteStream is that they
only support arrays and strings in Squeak. This is currently being
changed by the development of a new library named Nile, but for now
if you try to stream over another kind of collection, you will get an
error:

w := WriteStream on: (OrderedCollection new: 20).
w nextPut: 12. —— raises an error

Streams are not only meant for collections, they can be used for
files or sockets too. The following example creates a file named test.txt,
writes two strings to it, separated by a carriage return, and closes the
file.

252 Streams

StandardFileStream
fileNamed: 'test.txt'
do: [:str | str
nextPutAll: '123';
cr;
nextPutAll: 'abcd'].

The following sections present the protocols in more depth.

10.3 Streaming over Collections

Streams are really useful when dealing with collections of elements.
They can be used for reading and writing elements in collections. We
will now explore the stream features for the collections.

Reading Collections

This section presents features used for reading collections. Using a
stream to read a collection essentially provides you a pointer into the
collection. That pointer will move forward on reading and you can
place it wherever you want. The class ReadStream should be used to
read elements from collections.

Methods next and next: are used to retrieve one or more elements
from the collection.

stream := ReadStream on: #(1 (a b c) false).
stream next. — 1

streamnext. —— #(#a#b#c)

stream next. — false

stream := ReadStream on: 'abcdef'.
stream next: 0. — "

stream next: 1. — 'a
stream next: 3. — 'bed’
streamnext: 2. — ‘ef'

Streaming over Collections 253

The message peek is used when you want to know what is the next
element in the stream without going forward.

stream := ReadStream on: '-143'.

negative := (stream peek = $-). "look at the first element without reading it"
negative. —— true

negative ifTrue: [stream next]. "ignores the minus character”

number := stream upToEnd.

number. — '143

This code sets the boolean variable negative according to the sign of the
number in the stream and number to its absolute value. The method
upToEnd returns everything from the current position to the end of the
stream and sets the stream to its end. This code can be simplified
using peekFor:, which moves forward if the following element equals
the parameter and doesn’t move otherwise.

stream :='-143' readStream.
(stream peekFor: $-) — true
stream upToEnd — '143

peekFor: also returns a boolean indicating if the parameter equals the
element.

You might have noticed a new way of constructing a stream in
the above example: one can simply send readStream to a sequenceable
collection to get a reading stream on that particular collection.

Positioning. There are methods to position the stream pointer. If
you have the index, you can go directly to it using position:. You can
request the current position using position. Please remember that a
stream is not positioned on an element, but between two elements.
The index corresponding to the beginning of the stream is 0.

You can obtain the state of the stream depicted in Figure 10.4 with
the following code:

stream := 'abcde’ readStream.
stream position: 2.
stream peek — $c

254 Streams

e Jle e Je Je]

past element future element
sequence sequence

Figure 10.4: A stream at position 2

If you want to go to the beginning or at the end is what you want,
you can use reset or setToEnd. skip: and skipTo: are used to go forward
to a location relative to the current position: skip: accepts a number as
argument and skips that number of elements whereas skipTo: skips all
elements in the stream until it finds an element equals to its parameter.
Note that it positions the stream after the matched element.

stream := 'abcdef' readStream.

stream next. — $a ‘"stream is now positioned just after the a"
stream skip: 3. "stream is now after the d"

stream position. — 4

stream skip: -2. "stream is after the b"

stream position. — 2

stream reset.

stream position. — 0

stream skipTo: $e. "stream is just after the e now"
stream next. — $f

stream contents. —— 'abcdef’

As you can see, the letter e has been skipped.

The method contents always returns a copy of the entire stream.

Testing. Some methods allow you to test the state of the current
stream: atEnd returns true if and only if no more elements can be read
whereas isEmpty returns true if and only if there is no element at all in
the collection.

Here is a possible implementation of an algorithm using atEnd
that takes two sorted collections as parameters and merges those
collections into another sorted collection:

Streaming over Collections 255

stream1 = #(1 4 9 11 12 13) readStream.
stream2 :=#(1 234510 13 14 15) readStream.

"The variable result will contain the sorted collection.”
result := OrderedCollection new.
[stream1 atEnd not & stream2 atEnd not]
whileTrue: [stream1 peek < stream2 peek
"Remove the smallest element from either stream and add it to the result."”
ifTrue: [result add: stream1 next]
ifFalse: [result add: stream?2 next]].

"One of the two streams might not be at its end. Copy whatever remains."
result

addAll: stream1 upToEnd;

addAll: stream2 upToEnd.

result. — an OrderedCollection(1123445910111213 1314 15)

Writing to Collections

We have already seen how to read a collection by iterating over its
elements using a ReadStream. We'll now learn how to create collections
using WriteStreams.

WriteStreams are useful for appending a lot of data to a collection
at various locations. They are often used to construct strings that are
based on static and dynamic parts as in this example:

stream := String new writeStream.
stream
nextPutAll: 'This Smalltalk image contains: ';
print: Smalltalk allClasses size;
nextPutAll: ' classes.';
cr;
nextPutAll: 'This is really a lot.".

stream contents. —— 'This Smalltalk image contains: 2322 classes.
This is really a lot.'

256 Streams

This technique is used in the different implementations of the
method printOn: for example. There is a simpler and more efficient
way of creating streams if you are only interested in the content of the
stream:

string := String streamContents:
[:stream |
stream
print: #(1 2 3);
space;
nextPutAll: 'size’;
space;
nextPut: $=;
space;
print: 3.].
string. — '#(1 2 3) size =3

The method streamContents: creates a collection and a stream on
that collection for you. It then executes the block you gave passing the
stream as a parameter. When the block ends, streamContents: returns
the content of the collection.

The following WriteStream methods are especially useful in this
context:

nextPut: adds the parameter to the stream;

nextPutAll: adds each element of the collection, passed as a parameter,
to the stream;

print: adds the textual representation of the parameter to the stream.

There are also methods useful for printing different kinds of char-
acters to the stream like space, tab and cr (carriage return). Another
useful method is ensureASpace which ensures that the last character in
the stream is a space; if the last character isn’t a space it adds one.

About Concatenation. Using nextPut: and nextPutAll: on a WriteStream
is often the best way to concatenate characters. Using the comma
concatenation operator (,) is far less efficient:

Streaming over Collections 257

[l temp |
temp := String new.
(1 to: 100000)
do: [:i | temp := temp, i asString, '] timeToRun —— 115176 "(ms)"

[l temp |
temp := WriteStream on: String new.
(1 to: 100000)
do: [:i | temp nextPutAll: i asString; space].
temp contents] timeToRun —— 1262 "(milliseconds)”

The reason that using a stream is much more efficient is that comma
creates a new string containing the concatenation of the receiver and
the argument, so it must copy both of them. When you repeatedly
concatenate onto the same receiver, it gets longer and longer each
time, so that the number of characters that must be copied goes up
exponentially. This also creates a lot of garbage, which must be col-
lected. Using a stream instead of string concatenation is a well-known
optimization. In fact, you can use streamContents: (mentioned on page
256) to help you do this:

String streamContents: [:tempStream |
(1 to: 100000)
do: [:i | tempStream nextPutAll: i asString; space]]

Reading and writing at the same time

It's possible to use a stream to access a collection for reading and
writing at the same time. Imagine you want to create an History class
which will manage backward and forward buttons in a web browser.
A history would react as in figures from 10.5 to 10.11.

This behavior can be implemented using a ReadWriteStream.

Object subclass: #History
instanceVariableNames: 'stream’
classVariableNames: "
poolDictionaries: "
category: 'SBE-Streams'

258 Streams

*

Figure 10.5: A new history is empty. Nothing is displayed in the web
browser.

Figure 10.6: The user opens to page 1.

Figure 10.7: The user clicks on a link to page 2.

(peger) (peee2) (pooes)

Figure 10.8: The user clicks on a link to page 3.

History>>initialize
super initialize.
stream := ReadWriteStream on: Array new.

Nothing really difficult here, we define a new class which contains

Streaming over Collections 259

(pecer) (peee2) (7o)

Figure 10.9: The user clicks on the back button. He is now viewing
page 2 again.

(peger) (peee2) (pooeo)

Figure 10.10: The user clicks again the back button. Page 1 is now
displayed.

o) (2=

Figure 10.11: From page 1, the user clicks on a link to page 4. The
history forgets pages 2 and 3.

a stream. The stream is created during the initialize method.

We need methods to go backward and forward:

History>>goBackward
self canGoBackward ifFalse: [self error: 'Already on the first element’].
T stream back

History>>goForward
self canGoForward ifFalse: [self error: 'Already on the last element’].
T stream next

Until then, the code was pretty straightforward. Now, we have to

260 Streams

deal with the goTo: method which should be activated when the user
clicks on a link. A possible solution is:

History>>goTo: aPage
stream nextPut: aPage.

This version is incomplete however. This is because when the
user clicks on the link, there should be no more future pages to go to,
i.e., the forward button must be deactivated. To do this, the simplest
solution is to write nil just after to indicate the history end:

History>>goTo: anObject
stream nextPut: anObject.
stream nextPut: nil.
stream back.

Now, only methods canGoBackward and canGoForward have to be
implemented.

A stream is always positioned between two elements. To go back-
ward, there must be two pages before the current position: one page
is the current page, and the other one is the page we want to go to.

History>>canGoBackward
1 stream position > 1

History>>canGoForward
1 stream atEnd not and: [stream peek notNil]

Let us add a method to peek at the contents of the stream:

History>>contents
T stream contents

And the history works as advertised:

History new
goTo: #pagel;
goTo: #page2;
goTo: #pages3;
goBackward;
goBackward;

Using Streams for File Access 261

goTo: #page4;
contents —— #(#pagel #page4 nil nil)

10.4 Using Streams for File Access

You have already seen how to stream over collections of elements. It’s
also possible to stream over files on your hard disk. Once created,
a stream on a file is really like a stream on a collection: you will be
able to use the same protocol to read, write or position the stream.
The main difference appears in the creation of the stream. There are
several different ways to create file streams, as we shall now see.

Creating File Streams

To create file streams, you will have to use one of the following instance
creation methods offered by the class FileStream:

fileNamed: Open a file with the given name for reading and writing.
If the file already exists, its prior contents may be modified or
replaced, but the file will not be truncated on close. If the name
has no directory part, then the file will be created in the default
directory.

newFileNamed: Create a new file with the given name, and answer a
stream opened for writing on that file. If the file already exists,
ask the user what to do.

forceNewFileNamed: Create a new file with the given name, and answer
a stream opened for writing on that file. If the file already exists,
delete it without asking before creating the new file.

oldFileNamed: Open an existing file with the given name for reading
and writing. If the file already exists, its prior contents may be
modified or replaced, but the file will not be truncated on close.
If the name has no directory part, then the file will be created in
the default directory.

262 Streams

readOnlyFileNamed: Open an existing file with the given name for read-
ing.

You have to remember that each time you open a stream on a file,
you have to close it too. This is done through the close method.

stream := FileStream forceNewFileNamed: 'test.txt'.
stream
nextPutAll: 'This text is written in a file named ';
print: stream localName.
stream close.

stream := FileStream readOnlyFileNamed: 'test.txt'.
stream contents. —— 'This text is written in a file named "test.txt™
stream close.

The method localName answers the last component of the name
of the file. You can also access the full path name using the method
fullName.

You will soon notice that manually closing the file stream is
painful and error-prone. That’s why FileStream offers a message called
forceNewFileNamed:do: to automatically close a new stream after evalu-
ating a block that sets its contents.

FileStream
forceNewFileNamed: 'test.txt'
do: [:stream |
stream
nextPutAll: 'This text is written in a file named ';
print: stream localName].
string := FileStream
readOnlyFileNamed: 'test.txt'
do: [:stream | stream contents].
string —— 'This text is written in a file named "test.ixt

The stream-creation methods that take a block as an argument first
create a stream on a file, then execute the block with the stream as an
argument, and finally close the stream. These methods return what is
returned by the block, which is to say, the value of the last expression

Using Streams for File Access 263

in the block. This is used in the previous example to get the content of
the file and put it in the variable string.

Binary Streams

By default, created streams are text-based which means you will read
and write characters. If your stream must be binary, you have to send
the message binary to your stream.

When your stream is in binary mode, you can only write numbers
from 0 to 255 (1 Byte). If you want to use nextPutAll: to write more than
one number at a time, you have to pass a ByteArray as argument.

FileStream
forceNewFileNamed: 'test.bin’
do: [:stream |
stream
binary;
nextPutAll: #(145 250 139 98) asByteArray].
FileStream
readOnlyFileNamed: 'test.bin’
do: [:stream |
stream binary.
stream size. — 4
stream next. — 145

stream upToEnd. —— a ByteArray(250 139 98)

Here is another example which creates a picture in a file named
“test.pgm”. You can open this file with your favorite drawing program.

FileStream
forceNewFileNamed: 'test.pgm’
do: [:stream |
stream

nextPutAll: 'P5'; cr;
nextPutAll: '4 4%; cr;
nextPutAll: '255'; cr;
binary;
nextPutAll: #(255 0 255 0) asByteArray;

264 Streams

nextPutAll: #(0 255 0 255) asByteArray;

nextPutAll: #(255 0 255 0) asByteArray;

nextPutAll: #(0 255 0 255) asByteArray
]

This creates a 4x4 checkerboard as shown in Figure 10.12.

Figure 10.12: A 4x4 checkerboard you can draw using binary streams.

10.5 Chapter Summary

Streams offer a better way than collections to incrementally read and
write a sequence of elements. There are easy ways to convert back and
forth between streams and collections.

® Streams may be either readable, writeable or both readable and
writeable.

e To convert a collection to a stream, define a stream “on” a
collection, e.g., ReadStream on: (1 to: 1000), or send the messages
readStream, etc. to the collection.

¢ To convert a stream to a collection, send the message contents.

¢ To concatenate large collections, instead of using the comma
operator, it is more efficient to create a stream, append the col-
lections to the stream with nextPutAll;, and extract the result by
sending contents.

Chapter Summary 265

e File streams are by default character-based. Send binary to explic-
itly make them binary.

267

Chapter 11
Morphic

Morphic is the basic component of the graphical interface in Squeak. It
is written in Smalltalk so it is fully portable between operating systems.
The main particularity of Morphic is that the user can assemble and
disassemble graphical interface elements on the fly.!

11.1 The History of Morphic

Morphic was developed in the 80’s for the Self language, which was
largely inspired from Smalltalk; Morphic was then ported to Squeak.
The basic idea in Morphic is that each object should be directly repre-
sented and manipulated as a graphical shape: the morph. For instance,
if you bring up the world menu, you can then detach a menu item to
keep it as a button: blue-click once on the world menu to bring up
its morphic halo, then blue-click again on the menu item you want to
detach to bring up its halo, and move elsewhere it by grabbing it by
the black handle.

N Let’s take another example; to transform an object into a morph, execute

1We thank Hilaire Fernandes for permission to translate this chapter from his original
article in French.

268 Morphic

ﬁpﬁﬂrance ram

&

_ anObjects (o)

o unew morph... ':ring tools...
ield options...

flaps...

Figure 11.1: Detaching a morph, here the new morph menu item, to
make it an independent button.

the following code in a workspace:

'Morph' asMorph openinWorld

You can also try this:

'Morph' asMorph openViewerForArgument

You should obtain a graphical element that you can manipulate.
Of course it is possible to define morphs that are better graphical
representations. The method asMorph has a default implementation
in the Object class that just creates a string-like morph. For instance,
Color tan asMorph returns a string-like morph labeled with the result of
Color tan printString; it would be more interesting if we got a colored
rectangle morph instead. This is easy:

g Open the Color class and add the following method to it:

Method 11.1: Getting a morph for an instance of Color

Color»asMorph
T Morph new color: self

Now execute Color orange asMorph openinWorld in a workspace. Instead
of the string-like morph, you get a nice orange rectangle!

Manipulating morphs 269

11.2 Manipulating morphs

Morphs are objects, so we can manipulate them like any other object
in Smalltalk: changing their properties, creating new morph classes,
etc.

As a graphical object, a morph has a position and a size — those of
its bounding box actually. The position method returns the coordinates
of the morph’s upper left corner, as a point. The origin of the coordi-
nates is the screen’s upper left corner. The extent method also returns a
point, but this one specifies the width and height of the morph rather
than a location.

N Type and execute the following code:

joe := Morph new color: Color blue.
joe openinWorld.
bill := Morph new color: Color red .
bill openinWorld.

Then type joe position and print it. To move joe, execute joe position: (joe
position + (10@3)) repeatedly.

It is possible to do the same with the size: joe extent returns the
morph’s size, and to have it grow, execute joe extent: (joe extent « 1.1).
To change the color of a morph, send it the color: message with the
desired color as argument. For instance, joe color: Color orange or, to add
transparency, joe color: (Color orange alpha: 0.5).

To make bill follow joe, you can repeatedly execute this code:

bill position: (joe position + (100@0))

You can move joe using the mouse then execute this code; bill will
move to 100 pixels to the right of joe.

270 Morphic

11.3 Composing Morphs

To create new morphs, there are two main techniques that you can
combine:

1. by composing morphs one into another,

2. by subclassing Morph and overriding drawOn: to draw original
morph shapes.

Morphs can contain other morphs. You can add a morph to another
one by sending the addMorph: to the container morph.

"J Try adding a morph to another one:

=

star := StarMorph new color: Color yellow.
joe addMorph: star.
star position: joe position.

The last line positions the star at the same coordinates as joe. The
coordinates of the contained morph are still absolute: they are relative
to the screen, not to the containing morph (this is a limitation of
Morphic). To position a morph, there are plenty of methods available;
browse the geometry protocol of the Morph class to see for yourself. To
place the star in the middle of joe, execute star center: joe center.

Figure 11.2: The star is contained inside joe, the transparent blue
morph.

Creating and Drawing Your Own Morphs 271

Now if you grab the star with the mouse, you actually grab joe,
and the two morphs move simultaneously: the star is anchored inside
joe. It is indeed possible to add more morphs to joe; to remove a
sub-morph, do joe removeMorph: star or star delete.

114 Creating and Drawing Your Own
Morphs

While it is possible to obtain interesting representations by composing
morphs, sometimes you will really need something completely differ-
ent. To do this you need to define a subclass of Morph and to override
the drawOn: method. The parameter to this method is an instance of
Canvas on which the morph will draw itself. Let’s draw a cross-shaped
morph.

N From the class browser, define a new class CrossMorph inheriting from
Morph:

Class 11.2: Defining CrossMorph

Morph subclass: #CrossMorph
instanceVariableNames: "
classVariableNames: "
poolDictionaries: "
category: 'sqByExample-Morphs'

We will the define the drawOn: method like this:

Method 11.3: How to draw CrossMorphs

drawOn: aCanvas
| aBounds crossHeight crossWidth |
crossHeight := (self height / 3) asFloat.
crossWidth := (self width / 3) asFloat.
aBounds := self bounds top: self top + crossHeight.
aBounds := aBounds bottom: self bottom - crossHeight.
aCanvas fillRectangle: aBounds color: self color.
aBounds := self bounds left: self left + crossWidth.
aBounds := aBounds right: self right — crossWidth.

272 Morphic

aCanvas fillRectangle: aBounds color: self color

The bound method returns the bounding box of a morph. This is
an instance of Rectangle defined by two points: the upper left and the
lower right corner of the morph.

N To test our new morph, execute CrossMorph new openinWorld.

The result should look something like Figure 11.3.

©O000®
© ®)

= @

Crozs
Figure 11.3: The cross-shaped morph; you can resize it as you wish.

Note however that the sensitive zone—where you can click to
grab the morph —is still the bounding box.

N To limit the sensitive zone of the morph to the cross shape, you need to
redefine the containsPoint: method:

Method 11.4: Shaping the sensitive zone of the CrossMorph

containsPoint: aPoint
| aBounds1 aBounds2 crossHeight crossWidth |
crossHeight := (self height / 3) asFloat.
crossWidth := (self width / 3) asFloat.
aBounds1 := self bounds top: self top + crossHeight.
aBounds1 := aBounds1 bottom: self bottom - crossHeight.
aBounds2 := self bounds left: self left + crossWidth.
aBounds2 := aBounds2 right: self right - crossWidth.

Mouse and Keyboard Interaction 273

T (aBounds1 containsPoint: aPoint)
| (aBounds2 containsPoint: aPoint)

This leverages the containsPoint: method from class Rectangle. There
is duplicated code in the drawOn: and containsPoint: methods. This code
should be factored out into a third method; we leave this as an exercise
for the reader.

11.5 Mouse and Keyboard Interaction

Mouse Events Besides the graphical aspect of morphs, we also need
to interact with them through mouse or the keyboard. To handle
mouse events, a morph must answer true to the handlesMouseDown:
event: when a mouse button is pressed, Morphic queries each morph
under the mouse pointer using this message. If a morph answers
true, then Morphic immediately sends it the mouseDown: message, and
the mouseUp: message once the user releases the mouse button. If all
morphs answer false, then Morphic initiates a drag-and-drop opera-
tion, which is the default behavior to grab morphs. As we will show
below, the mouseDown: and mouseUp methods each take an instance of
MorphicEvent as argument.

We will now extend CrossMorph to handle mouse events.

¢ First, CrossMorph should accept mouse events, so add this method to

==

the class:

Method 11.5: Declaring that CrossMorph will react to mouse clicks

CrossMorph»handlesMouseDown: anEvent
Ttrue

Now when the left mouse button — red in the Smalltalk terminol-
ogy —is clicked, we want to change the color of the cross to red; when
the middle button — yellow in Smalltalk —is clicked we will change
the color to yellow:

Method 11.6: Reacting to mouse clicks by changing the morph’s color

274 Morphic

CrossMorph»mouseDown: anEvent
anEvent redButtonPressed
ifTrue: [self color: Color red].
anEvent yellowButtonPressed
ifTrue: [self color: Color yellow].
self changed

Once the morph handles mouse events, it you cannot grab it with
the mouse and move it anymore. Instead you have to use the halos:
right click on the morph to make the halos appear and grab either the
brown or the black handle at the top of the morph.

The anEvent argument of mouseDown: is an instance of MouseEvent,
which is a subclass of MorphicEvent. MouseEvent defines the
redButtonPressed and yellowButtonPressed methods. Browse this class
to see what methods it provides to handle mouse events.

Keyboard Events To catch keyboard events, there are several steps:

1. give the keyboard focus to a specific morph: for instance we can
give focus to our morph when the mouse is over it;

2. handle the keyboard event itself with the handleKeystroke: method:
this message is sent to our morph when the user presses a key
and if our morph currently has the focus;

3. release the keyboard focus when the mouse is not over our
morph anymore.

N We will extend CrossMorph so that it reacts to keystrokes. For a morph
to be notified when the mouse pointer is over it, it should answer true to the
handlesMouseOver: message:

Method 11.7: Declaring that CrossMorph will react when it is under the
mouse pointer

CrossMorph»handlesMouseOver: anEvent
Ttrue

Mouse and Keyboard Interaction 275

This message is the equivalent of handlesMouseDown: for the mouse
position. When the mouse pointer enters or leaves the morph area, the
mouseEnter: and mouselLeave: messages are sent to the morph, respec-
tively.

N4 Define two corresponding methods so that CrossMorph catches and
releases the keyboard focus, as well as the method to actually handle the
keystrokes:

Method 11.8: Getting the keyboard focus when the mouse pointer enters the
morph’s area

CrossMorph»mouseEnter: anEvent
anEvent hand newKeyboardFocus: self

Method 11.9: Handing back the focus when the pointer goes away

CrossMorph»mouselLeave: anEvent
anEvent hand newKeyboardFocus: nil

Method 11.10: Receiving and handling keyboard events

CrossMorph»handleKeystroke: anEvent

| keyValue |
keyValue := anEvent keyValue.
keyValue =30 "up arrow”

ifTrue: [self position: self position - (0 @ 1)].
keyValue = 31 "down arrow"

ifTrue: [self position: self position + (0 @ 1)].
keyValue =29 "right arrow"

ifTrue: [self position: self position + (1 @ 0)].
keyValue =28 "left arrow"

ifTrue: [self position: self position - (1 @ 0)]

We have written the method so that we can move the morph
using the arrow keys. Note that when the mouse is not over the
morph anymore, the handleKeystroke: message is not sent anymore,
so the morph stops responding to keyboard commands. To know
the key values, you can open a Transcript window and add Transcript

show: anEvent keyValue. in the method above. The anEvent argument

276 Morphic

of handleKeystroke: is an instance of KeyboardEvent, another subclass of
MorphicEvent. Browse this class to learn more about keyboard event
handling methods.

Morph Animations Morphic provides a simple animation system
made of two methods: step is called at regular intervals of time, and
stepTime specifies the periodicity in milliseconds at which step is to be
called.

5 To make CrossMorph blink, we can define these methods as follows:

Method 11.11: Defining the animation time interval

CrossMorph»stepTime
1100

Method 11.12: Making a step in the animation

CrossMorph»step
(self color diff: Color black) < 0.1
ifTrue: [self color: Color red]
ifFalse: [self color: self color darker]

NB: You may need to pick up and move the CrossMorph to trigger the
animation.

11.6 Interactors

To prompt the user for input, the FilllnTheBlank class provides a few
ready-to-use dialog boxes. For instance the request:initialAnswer: method
returns the string entered by the user (Figure 11.4).

To display a pop-up menu, use the PopupMenu class:

menu = PopUpMenu
labelArray: #('circle’ 'oval' 'square’ 'rectangle’ 'triangle’)
lines: #(2 4).

menu startUpWithCaption: 'Choose a shape'

Drag-and-drop 277

What's your name?

Choosze a shape

no name A :
circle
oval
r square
Acceptis) Cancel(l) rectangle
iriatisle

Figure 11.4: Dialog displayed
by FillinTheBlank request: 'What's ~ Figure 11.5: PopUp displayed by
your name?' initialAnswer: 'no name'. PopUpMenu»startUpWithCaption:.

11.7 Drag-and-drop

Morphic also supports drag-and-drop. Let’s examine a simple exam-
ple with two morphs, a receiver morph and a dropped morph. The
former will accept a morph only if the dropped morph matches a
given condition: here the morph should be blue. If it is rejected, the
dropped morph decides what it should do.

e

) Let’s first define the receiver morph:

Class 11.13: Defining a morph on which we can drop other morphs

Morph subclass: #ReceiverMorph
instanceVariableNames: "
classVariableNames: "
poolDictionaries: "
category: 'sqByExample-Morphs'

Now define the initialization method as usual:

Method 11.14: Initializing ReceiverMorph

ReceiverMorph»initialize
super initialize.
color := Color red.
bounds := 0 @ 0 extent: 200 @ 200

278 Morphic

The following methods decide if the receiver morph accepts the
dropped morph or not; repelsMorph:event: defines the basic, first-hand
policy, and in most cases will ensure agreement of both the receiver
and the dropped morph, via wantsDroppedMorph:event: and its counter-
part wantsToBeDroppedinto:.

Method 11.15: Changing the rejection policy for dropped morphs

ReceiverMorph»repelsMorph: aMorph event: ev
T (self wantsDroppedMorph: aMorph event: ev) not

Method 11.16: Accepting dropped morphs based on their color

ReceiverMorph»wantsDroppedMorph: aMorph event: anEvent
T aMorph color = Color blue

That’s all we need as far as the receiver is concerned.

g Create instances of ReceiverMorph and RectangleMorph in a workspace:

=<

ReceiverMorph new openinWorld.
RectangleMorph new openinWorld.

Try to drag-and-drop the blue RectangleMorph onto the receiver. It will
be rejected and sent back to its initial position.

Nd To change this behavior, we create a specific subclass of Morph, named
DroppedMorph:

Class 11.17: Defining a morph we can drag-and-drop onto ReceiverMorph

Morph subclass: #DroppedMorph
instanceVariableNames: "
classVariableNames: "
poolDictionaries: "
category: 'sqByExample-Morphs'

Method 11.18: Initializing DroppedMorph

DroppedMorph»initialize
super initialize.
color := Color blue.
self position: 250@100

A Complete Example 279

Now we can specify what the dropped morph should do when
it is rejected by the receiver; here it will stay attached to the mouse
pointer:

Method 11.19: Reacting when the morph was dropped but rejected

DroppedMorph»rejectDropMorphEvent: anEvent
Ihi
h := anEvent hand.
WorldState
addDeferredUIMessage: [h grabMorph: self].
anEvent wasHandled: true

The hand method of events returns an instance of HandMorph which
represents the mouse pointer and whatever it holds. We tell the World
that the mouse pointer should grab self, the rejected morph.

) Create two instances of DroppedMorph, and then drag-and-drop them

e

onto the receiver.

ReceiverMorph new openinWorld.
(DroppedMorph new color: Color blue) openinWorld.
(DroppedMorph new color: Color green) openinWorld.

The green morph is rejected and therefore stays attached to the mouse
pointer.

11.8 A Complete Example

We will design a morph to roll a die. Clicking on it will display the
values of all sides of the die in a quick loop, and another click will stop
the animation.

N We define the die as a subclass of BorderedMorph instead of Morph,
because we will use some border attributes of the former:

Class 11.20: Defining the die morph
BorderedMorph subclass: #DieMorph

280 Morphic

Die

Figure 11.6: The die in Morphic.

instanceVariableNames: 'faces dieValue isStopped'
classVariableNames: "

poolDictionaries: "

category: 'sqByExample-Morphs'

The instance variables faces, dieValue, and isStopped define respec-
tively the number of faces the currently displayed face, and whether
the die animation is running. To create a die instance, we define the
faces: method on the class side of DieMorph:

Method 11.21: Creating a new die with the number of faces we like

DieMorph class»faces: aNumber
1 self new faces: aNumber

The initialize method, which new calls, is defined on the instance
side:

Method 11.22: Initializing instances of DieMorph

DieMorph»initialize
super initialize.
self extent: 50 @ 50.
self useGradientFill; borderWidth: 2; useRoundedCorners.
self setBorderStyle: #complexRaised.
self fillStyle direction: self extent.
self color: Color green.

A Complete Example 281

dieValue := 1.
faces := 6.
isStopped := false

We use a few methods of BorderedMorph to give a nice appearance
to the die: a thick border with a raised effect, rounded corners, and a
color gradient on the visible face. We define the faces: instance method
as follows:

Method 11.23: Setting the number of faces of the die

DieMorph~»faces: aNumber
"Set the number of faces"
(aNumber isInteger

and: [aNumber > 0]
and: [aNumber <= 9])
ifTrue: [faces := aNumber]

Our die can have up to nine faces! Be sure to understand the order
in which the methods are called when a die is created, for instance
with DieMorph faces: 9:

1. the class method DieMorph class»faces: calls DieMorph class»new;

2. new calls the DieMorph»initialize instance method, which sets faces
to an initial value of six;

3. DieMorph class»new returns in the class method DieMorph class
»faces:;, which calls the instance method of the same name,
DieMorph»faces:, setting the faces instance variable to nine.

Before defining drawOn:, we need a few methods to place the dots
on the displayed face:

Methods 11.24: Methods for placing points on each face

DieMorph»face1
1{0.5@0.5}
DieMorph»face2
1{0.25@0.25 . 0.75@0.75}
DieMorph»face3

282 Morphic

1{0.25@0.25 . 0.75@0.75 . 0.5@0.5}
DieMorph»face4
1{0.25@0.25 . 0.75@0.25 . 0.75@0.75 . 0.25@0.75}
DieMorph»face5
1{0.25@0.25 . 0.75@0.25 . 0.75@0.75 . 0.25@0.75 . 0.5@0.5}
DieMorph»face6
1{0.25@0.25 . 0.75@0.25 . 0.75@0.75 . 0.25@0.75 . 0.25@0.5 . 0.75@0.5}
DieMorph»face7
1{0.25@0.25 . 0.75@0.25 . 0.75@0.75 . 0.25@0.75 . 0.25@0.5 . 0.75@0.5 .
0.5@0.5}
DieMorph »face8
1{0.25@0.25 . 0.75@0.25 . 0.75@0.75 . 0.25@0.75 . 0.25@0.5 . 0.75@0.5 .
0.5@0.5 . 0.5@0.25}
DieMorph »face9
1{0.25@0.25 . 0.75@0.25 . 0.75@0.75 . 0.25@0.75 . 0.25@0.5 . 0.75@0.5 .
0.5@0.5 . 0.5@0.25 . 0.5@0.75}

These methods define collections of the coordinates of dots for
each face. The coordinates are in a square of size 1 x 1; we will simply
need to scale them to place the actual dots.

The drawOn: method does two things: it draws the die background
with the call to super, then it draws the dots:

Method 11.25: Drawing the die morph

DieMorph»drawOn: aCanvas
super drawOn: aCanvas.
(self perform: (‘'face', dieValue asString) asSymbol)
do: [:aPoint | self drawDotOn: aCanvas at: aPoint]

The second part of this method uses the reflective capacities of
Smalltalk. Drawing the dots of a face is a simple matter of iterating
over the collection given by the faceX method for that face, sending
the drawDotOn:at: message for each coordinate. To call the correct faceX
method, we use the perform: method which sends a message built from
a string, here ('face', dieValue asString) asSymbol. You will encounter this
use of perform: quite regularly.

Method 11.26: Drawing a single dot within a face

DieMorph»drawDotOn: aCanvas at: aPoint

A Complete Example 283

aCanvas
fillOval: (Rectangle
center: self position + (self extent = aPoint)
extent: self extent / 6)
color: Color black

Since the coordinates are normalized to the [0:1] interval, we scale
them to the dimensions of our die: self extent = aPoint.

g We can already create a die instance from a workspace:

(DieMorph faces: 6) openIinWorld.

To change the displayed face, we create an accessor that we can
use as myDie dieValue: 4:

Method 11.27: Setting the current value of the die

DieMorph»dieValue: aNumber
(aNumber isInteger
and: [aNumber > 0]
and: [aNumber <= faces])
ifTrue:
[dieValue := aNumber.
self changed]

Now we will use the animation system to show quickly all the
faces:

Methods 11.28: Animating the die

DieMorph»stepTime
1100

DieMorph»step
isStopped ifFalse: [self dieValue: (1 to: faces) atRandom]

Now the die is rolling!

To start or stop the animation by clicking, we will reuse what we
saw previously about mouse events; first, activate the reception of
mouse events:

284 Morphic

Methods 11.29: Handling mouse clicks to start and stop the animation

DieMorph»handlesMouseDown: anEvent
T true

DieMorph»mouseDown: anEvent
anEvent redButtonPressed
ifTrue: [isStopped := isStopped not]

Now the die will roll or stop rolling when we click on it!

11.9 More About the Canvas

The drawOn: method has an instance of Canvas as its sole argument;
the canvas is the area on which the morph draws itself. By using the
graphics methods of the canvas you are free to give the appearance
you want to the morph. While browsing the hierarchy of the Canvas
class, you will see that it has several variants. The default variant of
Canvas is FormCanvas; you will find the key graphics methods in these
two classes. These methods can draw points, lines, polygons, rectan-
gles, ellipses, text, and images with rotation and scaling. It is possible
to use other canvases, to get transparent morphs, more graphics meth-
ods, antialiasing, etc. For this you should use AlphaBlendingCanvas or
BalloonCanvas, but how to use them since drawOn: receives an instance
of FormCanvas? In fact you can transform one canvas type into another.

.=

drawOn: like this:

Ny To use a canvas with a 0.5 alpha-transparency in DieMorph, redefine

Method 11.30: Drawing a transparent die

DieMorph»drawOn: aCanvas
| theCanvas |
theCanvas := aCanvas asAlphaBlendingCanvas: 0.5.
super drawOn: theCanvas.
(self perform: ('face' , dieValue asString) asSymbol)
do: [:aPoint | self drawDotOn: theCanvas at: aPoint]

That’s all you need to do!

Chapter Summary 285

If you're curious, have a look at the asAlphaBlendingCanvas: method.
You can also get antialiasing by using BalloonCanvas and transforming
the die drawing methods as shown in methods 11.31.

i
® o
“ v

Figure 11.7: The die displayed with alpha-transparency.

Methods 11.31: Drawing antialiased die

DieMorph»drawOn: aCanvas
| theCanvas |
theCanvas := aCanvas asBalloonCanvas aalevel: 3.
super drawOn: aCanvas.
(self perform: (‘face' , dieValue asString) asSymbol)
do: [:aPoint | self drawDotOn: theCanvas at: aPoint]

DieMorph»drawDotOn: aCanvas at: aPoint
aCanvas

drawOval: (Rectangle
center: self position + (self extent « aPoint)
extent: self extent / 6)

color: Color black

borderWidth: 0

borderColor: Color transparent

11.10 Chapter Summary

Morphic is a graphical framework in which graphical interface ele-
ments can be dynamically composed.

286

Morphic

You can convert an object into a morph by sending the messages
asMorph openInWorld to it.

You can manipulate a morph by right-clicking on it and using the
handles that appear. (Handles have tooltip popups that explain
what they are for.)

You can compose morphs by dragging and dropping one onto
another. Alternatively you can subclass an existing morph class
and redefining key methods, like drawOn:.

You can control how a morph reacts to mouse and keyboard
events by redefining the methods handlesMouseOver:, etc.

You can animate a morph by defining the methods step (what to
do) and stepTime (the number of milliseconds between steps).

Various pre-defined morphs, like PopUpMenu and FillinTheBlank,
are available to interact with users.

287

Part I11

Advanced Squeak

289

Chapter 12

Classes and Metaclasses

In Smalltalk, as we saw in Chapter 5, everything is an object, and
every object is an instance of a class. Classes are no exception: classes
are objects, and class objects are instances of other classes. This object
model captures the essence of object-oriented programming: it is
lean, simple, elegant and uniform. However, the implications of this
uniformity may confuse newcomers. The goal of this chapter is to
show that there is nothing complex, “magic” or special here: just
simple rules applied uniformly. By following these rules you can
always understand why the situation is the way that it is.

12.1 Rules for Classes and Metaclasses

The Smalltalk object model is based on a limited number of concepts
applied uniformly. Smalltalk’s designers applied Occam’s razor: any
consideration leading to a model more complex than necessary was
discarded.

To refresh your memory, here are the rules of the object model that
we explored in Chapter 5.

Rule 1. Everything is an object.

290 Classes and Metaclasses

Rule 2. Every object is an instance of a class.

Rule 3. Every class has a superclass.

Rule 4. Everything happens by message sends.

Rule 5. Method lookup follows the inheritance chain.

As we mentioned in the introduction to this chapter, a consequence
of Rule 1 is that classes are objects too, so Rule 2 tells us that classes must
also be instances of classes. The class of a class is called a metaclass.
A metaclass is created automatically for you whenever you create
a class. Most of the time you do not need to care or think about
metaclasses. However, every time that you use the system browser
to browse the “class side” of a class, it is helpful to recall that you are
actually browsing a different class. A class and its metaclass are two
separate classes, even though the former is an instance of the latter.

To properly explain classes and metaclasses, we need to extend the
rules from Chapter 5 with the following additional rules.

Rule 6. Every class is an instance of a metaclass.

Rule 7. The metaclass hierarchy parallels the class hierarchy.
Rule 8. Every metaclass inherits from Class and Behavior.
Rule 9. Every metaclass is an instance of Metaclass.

Rule 10. The metaclass of Metaclass is an instance of Metaclass.

Together, these 10 rules complete Smalltalk’s object model.

We will first briefly revisit the 5 rules from Chapter 5 with a small
example. Then we will take a closer look at the new rules, using the
same example.

12.2 Revisiting the Smalltalk Object Model

Since everything is an object, the color blue in Smalltalk is also an
object.

Revisiting the Smalltalk Object Model 291

Colorblue —— Color blue

Every object is an instance of a class. The class of the color blue is the
class Color:

Color blue class —— Color

Interestingly, if we set the alpha value of a color, we get an instance of
a different class, namely TranslucentColor:

(Color blue alpha: 0.4) class —— TranslucentColor

We can create a morph and set its color to this translucent color:

EllipseMorph new color: (Color blue alpha: 0.4); openinWorld

You can see the effect in Figure 12.1.

ol | L]
~x B Workspace O
EllipzeMorph fiew color: (Color tlue alpha: 0.4 opeflnhWorld

Figure 12.1: A translucent ellipse

By Rule 3, every class has a superclass. The superclass of
TranslucentColor is Color, and the superclass of Color is Object:

TranslucentColor superclass —— Color
Color superclass — Object

292 Classes and Metaclasses

Everything happens by message sends (Rule 4), so we can deduce
that blue is a message to Color, class and alpha: are messages to the color
blue, openinWorld is a message to an ellipse morph, and superclass is a
message to TranslucentColor and Color. The receiver in each case is an
object, since everything is an object, but some of these objects are also
classes.

Method lookup follows the inheritance chain (Rule 5), so when we
send the message class to the result of Color blue alpha: 0.4, the message
is handled when the corresponding method is found in the class Object,
as shown in Figure 12.2.

Until you

Object find the
A e method.

Color]_ _
TranslucentColor S [Then look in™==
S Ar _: the superclass.

[TranslucentCoIor]

Ke
First look in the™= instance-of yﬂ»
class of the object. message send ———>
ranslucentBIue reply 7T >
class lookup >

Figure 12.2: Sending a message to a translucent color

The figure captures the essence of the is-a relationship. Our translu-
cent blue object is a TranslucentColor instance, but we can also say that
it is a Color and that it is an Object, since it responds to the messages
defined in all of these classes. In fact, there is a message, isKindOf:, that
you can send to any object to find out if it is in an is a relationship with
a given class:

translucentBlue := Color blue alpha: 0.4.

translucentBlue isKindOf: TranslucentColor —— true
translucentBlue isKindOf: Color — true
translucentBlue isKindOf: Object — true

Every Class is an Instance of a Metaclass 293

12.3 Every Class is an Instance of a Metaclass

As we mentioned in Section 12.1, classes whose instances are them-
selves classes are called metaclasses.

Metaclasses are implicit. Metaclasses are automatically created
when you define a class. We say that they are implicit since as a
programmer you never have to worry about them. An implicit meta-
class is created for each class you create, so each metaclass has only a
single instance.

Whereas ordinary classes are named by global variables, meta-
classes are anonymous. However, we can always refer to them through
the class that is their instance. The class of Color, for instance, is Color
class, and the class of Object is Object class:

Color class —— Color class
Object class —— Object class

Figure 12.3 shows how each class is an instance of its (anonymous)
metaclass.

Object class

Color class

TranslucentColor class |
TranslucentColor
translucentBlue

Key —
instance-of —pP

Figure 12.3: The metaclasses of Translucent its superclasses

The fact that classes are also objects makes it easy for us to query
them by sending messages. Let’s have a look:

294 Classes and Metaclasses

Color subclasses — {TranslucentColor}

TranslucentColor subclasses — #()

TranslucentColor allSuperclasses —— an OrderedCollection(Color Object
ProtoObject)

TranslucentColor instVarNames — #('alpha’)

TranslucentColor allinstVarNames —— #('rgb' 'cachedDepth''
cachedBitPattern' 'alpha’)

TranslucentColor selectors — an ldentitySet(#alpha:
#asNontranslucentColor #privateAlpha #pixelValueForDepth: #isOpaque
#isTranslucentColor #storeOn: #pixelWordForDepth: #scaledPixelValue32
#alpha #bitPatternForDepth: #hash #convertToCurrentVersion:refStream:
#isTransparent #isTranslucent #setRgb:alpha: #balancedPatternForDepth:
#storeArrayValuesOn:)

12.4 The Metaclass Hierarchy Parallels the
Class Hierarchy

Rule 7 says that the superclass of a metaclass cannot be an arbitrary
class: it is constrained to be the metaclass of the superclass of the
metaclass’s unique instance.

TranslucentColor class superclass —— Color class
TranslucentColor superclass class —— Color class

This is what we mean by the metaclass hierarchy being parallel
to the class hierarchy; Figure 12.4 shows how this works in the
TranslucentColor hierarchy.

TranslucentColor class —— TranslucentColor class
TranslucentColor class superclass —— Color class
TranslucentColor class superclass superclass —— Object class

The Metaclass Hierarchy Parallels the Class Hierarchy 295

Object class
A

Color class

T TranslucentColor class |
TranslucentColor
translucentBlue

Key —

instance-of —ppP»

Figure 12.4: The metaclass hierarchy parallels the class hierarchy.

Uniformity between Classes and Objects. It is interesting to step
back a moment and realize that there is no difference between sending
a message to an object and to a class. In both cases the search for the
corresponding method starts in the class of the receiver, and proceeds
up the inheritance chain.

Thus, messages sent to classes must follow the metaclass inher-
itance chain. Consider, for example, the method blue, which is im-
plemented on the class side of Color. If we send the message blue to
TranslucentColor, then it will be looked-up the same way as any other
message. The lookup starts in TranslucentColor class, and proceeds up
the metaclass hierarchy until it is found in Color class (see Figure 12.5).

TranslucentColor blue —— Color blue

Note that we get as a result an ordinary Color blue, and not a translucent
one — there is no magic!

Thus we see that there is one uniform kind of method lookup in
Smalltalk. Classes are just objects, and behave like any other objects.
Classes have the power to create new instances only because classes
happen to respond to the message new, and because the method for
new knows how to create new instances. Normally, non-class objects
do not understand this message, but if you have a good reason to

296 Classes and Metaclasses

A\

Object class
Object A
[Color class |<

Then look in the
T -7 superclass, and so on,until
you find the method.
/l A N
Color blue Zr :
; [TranslucentColor class | :
R TranslucentColor i L
’) Key

/ ... [First look in the== instance-of

v class of the object. message send ———>>
reply T oC >

blue lookup

Figure 12.5: Message lookup for classes is the same as for ordinary
objects.

do so, there is nothing stopping you from adding a new method to a
non-metaclass.

Since classes are objects, we can also inspect them.

¢ Inspect Color blue and Color.

=

Notice that in one case you are inspecting an instance of Color and
in the other case the Color class itself. This can be a bit confusing,
because the title bar of the inspector names the class of the object being
inspected.

The inspector on Color allows you to see the superclass, instance
variables, method dictionary, and so on, of the Color class, as shown in
Figure 12.6.

12.5 Every Metaclass Inherits from Class and
Behavior

Every metaclass is-a class, hence inherits from Class. Class in turn
inherits from its superclasses, ClassDescription and Behavior. Since ev-

Every Metaclass Inherits from Class and Behavior 297

. w
»x B Color class o4
self ¥ [otjeat o
all inst vars &) =
superclass
; methodlict
?élbmst wars format
cachedDepth lo?;taar?izea‘:iaogables
cachedBitPattern subclasses
name 1
<lagzsFool
sharedPoolz
environment
category
traitComposition
locallelectors
¥ v
-
A
W iy
X

Figure 12.6: Classes are objects too.

Behavior
JAY

[ClassDescription |
JAY

Class
JAY
Object class
JAY
Color class

TranslucentColor class |
[TranslucentColor

Ky =
translucentBlue instance-of — P

Figure 12.7: Metaclasses inherit from Class and Behavior

erything in Smalltalk is-an object, these classes all inherit eventually
from Object. We can see the complete picture in Figure 12.7.

298 Classes and Metaclasses

--1Behavior <. ..

A
aTranslucentColor e
K ClassDescription|< -
J A .

] .
v ,,[Objectcassle
lee s

A A .
Color class|<........

[TranslucentColor class}
A

Key
instance-of
message send ———>

) reply >
new lookup >

TranslucentColor

Figure 12.8: new is an ordinary message looked up in the metaclass
chain.

Where is new defined? To understand the importance of the fact that
metaclasses inherit from Class and Behavior, it helps to ask where new
is defined and how it is found. When the message new is sent to a class
it is looked up in its metaclass chain and ultimately in its superclasses
Class, ClassDescription and Behavior as shown in Figure 12.8.

The question “Where new is defined?” is crucial. new is first defined
in the class Behavior, and it can be redefined in its subclasses, including
any of the metaclass of the classes we define, when this is necessary.
Now when a message new is sent to a class it is looked up, as usual, in
the metaclass of this class, continuing up the superclass chain right up
to the class Behavior, if it has not been redefined along the way.

Note that the result of sending TranslucentColor new is an instance of
TranslucentColor and not of Behavior, even though the method is looked-
up in the class Behavior! new always returns an instance of self, the class
that receives the message, even if it is implemented in another class.

TranslucentColor new class —— TranslucentColor "not Behavior"

Every Metaclass Inherits from Class and Behavior 299

A common mistake is to look for new in the superclass of the re-
ceiving class. The same holds for new:, the standard message to create
an object of a given size. For example, Array new: 4 creates an array of 4
elements. You will not find this method defined in Array or any of its su-
perclasses. Instead you should look in Array class and its superclasses,
since that is where the lookup will start.

Responsibilities of Behavior, ClassDescription and Class. Behavior
provides the minimum state necessary for objects that have instances:
this includes a superclass link, a method dictionary, and a description
of the instances (i.e., representation and number). Behavior inherits
from Object, so it, and all of its subclasses, can behave like objects.

Behavior is also the basic interface to the compiler. It provides meth-
ods for creating a method dictionary, compiling methods, creating
instances (i.e., new, basicNew, new:, and basicNew:), manipulating the
class hierarchy (i.e., superclass:, addSubclass:), accessing methods (i.e.,
selectors, allSelectors, compiledMethodAt:), accessing instances and vari-
ables (i.e., allinstances, instVarNames ...), accessing the class hierarchy
(i.e., superclass, subclasses) and querying (i.e., hasMethods, includesSelector
, canUnderstand:, inheritsFrom:, isVariable).

ClassDescription is an abstract class that provides facilities needed
by its two direct subclasses, Class and Metaclass. ClassDescription adds a
number of facilities to the basis provided by Behavior: named instance
variables, the categorization of methods into protocols, the notion of
a name (abstract), the maintenance of change sets and the logging of
changes, and most of the mechanisms needed for filing-out changes.

Class represents the common behavior of all classes. It provides
a class name, compilation methods, method storage, and instance
variables. It provides a concrete representation for class variable names
and shared pool variables (addClassVarName:, addSharedPool:, initialize).
Class knows how to create instances, so all metaclasses should inherit
ultimately from Class.

300 Classes and Metaclasses

Behavior

A\

ClassDescription

A AV,
A

% Object class
A
JAN

7 i

[TranslucentColor class]

TranslucentColor

X —
translucentBlue

Figure 12.9: Every metaclass is a Metaclass.

12.6 Every metaclass is an instance of Meta-
class

Metaclasses are objects too; they are instances of the class Metaclass

as shown in Figure 12.9. The instances of class Metaclass are the
anonymous metaclasses, each of which has exactly one instance, which
is a class.

Metaclass represents common metaclass behavior. It provides meth-
ods for instance creation (subclassOf:) creating initialized instances of
the metaclass’s sole instance, initialization of class variables, metaclass
instance, method compilation, and class information (inheritance links,
instance variables, etc.).

The Metaclass of Metaclass is an Instance of Metaclass 301

Behavior class

A

Behavior ——
A [ClassDescription class <
JA
ClassDescription
AN
<
N, Metaclass class

Color class Metaclass

[TranslucentColor class |

TranslucentColor

e —
translucentBlue

Figure 12.10: All metaclasses are instances of the class Metaclass, even
the metaclass of Metaclass.

12.7 The Metaclass of Metaclass is an Instance
of Metaclass

The final question to be answered is: what is the class of Metaclass class?

The answer is simple: it is a metaclass, so it must be an instance
of Metaclass, just like all the other metaclasses in the system (see Fig-
ure 12.10).

The figure shows how all metaclasses are instances of Metaclass,
including the metaclass of Metaclass itself. If you compare Figures 12.9
and 12.10 you will see how the metaclass hierarchy perfectly mirrors
the class hierarchy, all the way up to Object class.

The following examples show us how we can query the class hier-
archy to demonstrate that Figure 12.10 is correct. (Actually, you will
see that we told a white lie — Object class superclass —— ProtoObject

302 Classes and Metaclasses

class, not Class. In Squeak, we must go one superclass higher to reach
Class.)

Example 12.1: The class hierarchy

TranslucentColor superclass —— Color
Color superclass — Object

Example 12.2: The parallel metaclass hierarchy

TranslucentColor class superclass — Color class

Color class superclass — Object class

Object class superclass superclass —— Class "NB: skip ProtoObject
class”

Class superclass —— ClassDescription

ClassDescription superclass —— Behavior

Behavior superclass — Object

Example 12.3: Instances of Metaclass

TranslucentColor class class —— Metaclass

Color class class — Metaclass
Object class class — Metaclass
Behavior class class — Metaclass

Example 12.4: Metaclass class is a Metaclass

Metaclass class class —— Metaclass
Metaclass superclass —— ClassDescription

12.8 Chapter Summary

Now you should understand better how classes are organized and
the impact of a uniform object model. If you get lost or confused, you
should always remember that message passing is the key: you look
for the method in the class of the receiver. This works on any receiver.
If the method is not found in the class of the receiver, it is looked up
in its superclasses.

Chapter Summary 303

¢ Every class is an instance of a metaclass. Metaclasses are implicit.
A Metaclass is created automatically when you create the class
that is its sole instance.

¢ The metaclass hierarchy parallels the class hierarchy. Method
lookup for classes parallels method lookup for ordinary objects,
and follows the metaclass’s superclass chain.

¢ Every metaclass inherits from Class and Behavior. Every class is
a Class. Since metaclasses are classes too, they must also inherit
from Class. Behavior provides behavior common to all entities
that have instances.

¢ Every metaclass is an instance of Metaclass. ClassDescription pro-
vides everything that is common to Class and Metaclass.

¢ The metaclass of Metaclass is an instance of Metaclass. The instance-
of relation forms a closed loop, so Metaclass class class —
Metaclass.

305

Part IV

Appendices

307

Appendix A

Frequently Asked
Questions

A.1 Getting started

FAQ 1 Where do I get the latest Squeak?

Answer ftp.squeak.org/current_development

FAQ 2 Where is the Squeak “Development Image”?

Answer www.squeaksource.com/ImageForDevelopers This is a specially-
prepared image including lots of useful packages pre-installed for
developers.

A.2 Collections

FAQ 3 How do I sort an OrderedCollection?

ftp.squeak.org/current_development
www.squeaksource.com/ImageForDevelopers

308 Frequently Asked Questions

Answer Send it the message asSortedCollection.

#(7 2 6 1) asSortedCollection —— a SortedCollection(1 2 6 7)

FAQ 4 How do I convert a collection of characters to a String?

Answer

String streamContents: [:str | str nextPutAll: 'hello' asSet] —— 'hleo’

A.3 Browsing the system

FAQ 5 How to I search for a class?

Answer CMD-b (browse) on the class name, or CMD—f in the cate-
gory pane of the class browser.

FAQ 6 How do I find/browse all sends to super?

Answer The second solution is much faster:

SystemNavigation default browseMethodsWithSourceString: 'super'.
SystemNavigation default browseAllSelect: [:method | method sendsToSuper].

FAQ 7 How do I browse all super sends within a hierarchy?

Answer

browseSuperSends := [:aClass | SystemNavigation default
browseMessagelList: (aClass withAllSubclasses gather: [:each |
(each methodDict associations
select: [:assoc | assoc value sendsToSuper])
collect: [:assoc | MethodReference class: each selector: assoc key]])
name: 'Supersends of ', aClass name , ' and its subclasses'].
browseSuperSends value: OrderedCollection.

Browsing the system 309

FAQ 8 How do I find out which are the new methods implemented in a
class?

Answer Here we ask which new methods are introduced by True:

newMethods := [:aClass| aClass methodDict keys select:
[:aMethod | (aClass superclass canUnderstand: aMethod) not]].
newMethods value: True —— an IdentitySet(#asBit)

FAQ 9 How do I tell which methods of a class are abstract?

Answer

abstractMethods =
[:aClass | aClass methodDict keys select:
[:aMethod | (aClass>>aMethod) isAbstract]].
abstractMethods value: Collection —— an IdentitySet(#remove:ifAbsent:
#add: #do:)

FAQ 10 How do I generate a view of the AST of an expression?

Answer Load AST from squeaksource.com. Then evaluate:

(RBParser parseExpression: '3+4') explore

(Alternatively explore it.)

FAQ 11 How do I find all the Traits in the system?

Answer

Smalltalk allTraits

FAQ 12 How do I find which classes use traits?

310 Frequently Asked Questions

Answer

Smalltalk allClasses select: [:each | each hasTraitComposition]

A.4 Using Monticello and SqueakSource

FAQ 13 How do I load a Squeaksource project?

Answer

1. Find the project you want in squeaksource.com
Copy the registration code snippet
Select open >Monticello browser

Select +Repository >HTTP

SN

Paste and accept the Registration code snippet; enter your pass-
word

o

Select the new repository and Open it

7. Select and load the latest version

FAQ 14 How do I create a SqueakSource project?

Answer

1. Go to squeaksource.com

N

Register yourself as a new member
Register a project (name = category)

Copy the Registration code snippet

ARl

open >Monticello browser

squeaksource.com
squeaksource.com

Tools 311

6. +Package to add the category
7. Select the package
8. +Repository >HTTP

9. Paste and accept the Registration code snippet; enter your pass-
word

10. Save to save the first version

FAQ 15 How do I extend Number with Number»chf but have Monticello
recognize it as being part of my Money project?

Answer Put it in a method-category named +Money. Monticello
gathers all methods that are in other categories named like *package
and includes them in your package.

A.5 Tools

FAQ 16 How do I programmatically open the SUnit TestRunner?

Answer Evaluate TestRunner open.

FAQ 17 Where can I find the Refactoring Browser?

Answer Load AST then Refactoring Engine from squeaksource.com:
www.squeaksource.com/AST www.squeaksource.com/RefactoringEngine

FAQ 18 How do I register the browser that I want to be the default?

Answer Click the menu icon in the top left of the Browser window.

www.squeaksource.com/AST
www.squeaksource.com/RefactoringEngine

312 Frequently Asked Questions

A.6 Regular Expressions and Parsing

FAQ 19 How can I work with regular expressions?

Answer Load Vassili Bykov’s RegEx package from:
www.squeaksource.com/Regex.html

FAQ 20 Where is the documentation for the RegEx package?

Answer Look at the DOCUMENTATION protocol of RxParser class in
the VB-Regex category.

FAQ 21 Are there tools for writing parsers?

Answer Use SmaCC — the Smalltalk Compiler Compiler. You
should install at least SmaCC-Ir.13. Load it from www.squeaksource.com/
SmaccDevelopment.html. There is a nice tutorial online: www.refactory.com/
Software/SmaCC/Tutorial.html

FAQ 22 Which packages should I load from SqueakSource SmaccDevelop-
ment to write parsers?

Answer Load the latest version of SmaCCDev — the runtime is
already there. (SmaCC-Development is for Squeak 3.8)

www.squeaksource.com/Regex.html
www.squeaksource.com/SmaccDevelopment.html
www.squeaksource.com/SmaccDevelopment.html
www.refactory.com/Software/SmaCC/Tutorial.html
www.refactory.com/Software/SmaCC/Tutorial.html

313

Bibliography

Sherman R. Alpert, Kyle Brown and Bobby Woolf: The Design Pat-
terns Smalltalk Companion. Addison Wesley, 1998, ISBN 0-201-
18462-1

Kent Beck: Smalltalk Best Practice Patterns. Prentice-Hall, 1997

Kent Beck: Test Driven Development: By Example. Addison-Wesley,
2003, ISBN 0-321-14653-0

Erich Gamma etal.: Design Patterns: Elements of Reusable Object-
Oriented Software. Reading, Mass.: Addison Wesley, 1995, ISBN
0-201-63361-2—(3)

Adele Goldberg and David Robson: Smalltalk 80: the Language and
its Implementation. Reading, Mass.: Addison Wesley, May 1983,
ISBN 0-201-13688-0

Wilf LaLonde and John Pugh: Inside Smalltalk: Volume 1. Prentice
Hall, 1990, ISBN 0-13-468414-1

Alec Sharp: Smalltalk by Example. McGraw-Hill, 1997 (URL: http:
//stephane.ducasse.free.fr/FreeBooks/ByExample/)

Bobby Woolf: Null Object. In Robert Martin, Dirk Riehle and Frank
Buschmann, editors: Pattern Languages of Program Design 3.
Addison Wesley, 1998, 5-18

http://stephane.ducasse.free.fr/FreeBooks/ByExample/
http://stephane.ducasse.free.fr/FreeBooks/ByExample/

314

Index

*, see package, dirty

=, see assignment

;, see cascade

«, see assignment

[1, see block

#(), see Array, literal
#, see literal symbol

_, see assignment

., See statement separator
==, see Object, identity
=, see Object, equality
>>, see Behavior, >>

{1, see Array, dynamic
T, see return

abstract class, see class, abstract

abstract method, see method, ab-

stract

accept it, see keyboard shortcut,

accept
accessing (protocol), 47, 95, 225

accessing untypeable characters (pro-

tocol), 214
accessor, 47,93
ActiveHand (global), 116
adding (protocol), 225

Agile software development, 177

all (protocol), 35, 43, 126, 139
AlphaBlendingCanvas
(class), 284
Array
(class), 225, 226, 228-230
at;, 229, 231
at:put:, 229, 231
copy, 231
dynamic, 60, 202
literal, 59, 202, 230
Array class
new:, 230
with:, 230
as yet unclassified (protocol), 43
assignment, 60, 107
association, see Object, ->
AST, 309
at:, see Collection, at:
at:put:, see Collection, at:put:
attribute, see instance variable

Bag

(class), 225-227, 235
BalloonCanvas

(class), 284, 285
Beck, Kent, 110, 177
Behavior

315

>>, 27,44 BlockContext
(class), 105, 290, 296, 299 (class), 61, 65
addSubclass:, 299 Blue Book, 221
allinstances, 299 blue button, 6, 7, 267
allinstVarNames, 294 Boolean
allSelectors, 299 &, 219
allSuperclasses, 294 (class), 20, 21, 57, 61, 206-209,
basicNew, 299 217
basicNew:, 299 and:, 219
canUnderstand:, 299 ifFalse:, 66, 218
compiledMethodAt:, 299 ifFalse:ifTrue, 218
hasMethods, 299 ifTrue:, 66, 218
includesSelector, 299 ifTrue:ifFalse:, 66, 217
inheritsFrom:, 299 BorderedMorph
instVarNames, 294, 299 (class), 40, 279
isVariable, 299 fullPrintOn:, 112
new, 68, 210, 298, 299 Browser
new:, 68, 299 (class), 201
selectors, 294, 299 browser, see system browser
subclasses, 299 browsing programmatically, 141,
superclass, 292, 299 308
superclass:, 299 Bykov, Vassili, 217, 238, 312
Behavior Driven Development, ByteArray
see Test Driven Develop- (class), 263
ment ByteString
binary message, see message, bi- (class), 155, 215, 237
nary
Bitmap C++,71,76,93,97,99
(class), 221 camelCase, 58, 143
block, 58, 60, 65, 85, 186, 207 Canvas
BlockClosure (class), 271, 284
fixTemps, 66 asAlphaBlendingCanvas:, 285
value, 65 caret, see return
value:, 65 cascade, 61, 63, 86, 245
value:value:, 65 category, 19
valueWithArguments:, 65 creating, 32, 127
whileFalse:, 66 filing in, see file, filing in

whileTrue:, 66 filing out, see file, filing out

316

change set, see file, filing out
change set browser, 167
changes, 4, 10, 173
Character

(class), 24, 59, 103, 206, 210,

214, 237

asString, 215

asUppercase, 24

isAlphaNumeric, 215

isCharacter, 215

isDigit, 215

isLowercase, 215

isVowel, 215

printOn:, 215

printString, 215
Character class

backspace, 214

cr, 120, 214

escape, 214

euro, 214

space, 59, 214

tab, 59, 214

value:, 214
CharacterArray

(class), 226
CharacterTable (class variable), 215
Class

(class), 290, 296, 299

addClassVarName:, 299

addSharedPool:, 299

initialize, 299

subclasses, 294
class

abstract, 102, 208, 217

comment, 21, 35

creation, 34, 128

filing in, see file, filing in

filing out, see file, filing out

Index

finding, 20, 139
initialization, 119
instance variable, 95, 97
invariant, 210
method, 95, 97, 100
recent, 139
variable, 59, 115, 117
class browser, see system browser
class category, see system category
ClassDescription
(class), 296, 299
closure, see block
Closure Compiler, 66
Collection
(class), 221
add:, 228
addAll:, 228
asOrderedCollection, 232
asSet, 234, 235
asSortedCollection, 236, 308
at:, 228
at:put:, 228
collect:, 67, 224, 228, 242
comma operator, 29, 237, 256
common errors, 245
count:, 244
detect:, 67
detect:ifNone:, 224, 243
do:, 67,192,224, 228, 240, 242
do:separatedBy:, 241
do:without:, 240
include:, 228
includes:, 224, 235, 244
inject:into:, 67, 224, 243
intersection:, 235
isEmpty, 224, 228
iteration, 240
occurrencesOf:, 224

reject:, 67,224,243
remove:, 209, 228, 245
select:, 67,224,228, 243
size, 228
sorting, see Collection,
asSortedCollection
union:, 235
weak, 227
Collection class
new:, 228
newFrom:, 228
with:, 228
with:with:, 228
withAll:, 228
Collections-Streams (category), 221
Collections-Strings (category), 214,
215
Color
(class), 96, 117, 268, 291, 293
alpha:, 292
name, 119
Color class
(class), 293
blue, 97, 292, 295
colorNames, 119
initialize, 119
initializeNames, 119
showColorCube, 97
ColorNames (class variable), 118
comma, see Collection, comma op-
erator
comment, 60
comparing (protocol), 217
CompiledMethod
(class), 221
Complex
=,203
(class), 211, 212

317

hash, 204
constant methods, 45
control constructs, see iteration
converting (protocol), 225
copy, see Object, copy
CR (global), 120
creation (protocol), 102, 225
CrossMorph
(class), 271
CVS, 52

debug (protocol), 208
debugger, 28, 48, 125, 154, 207
declaration, see variable declara-
tion
deep copy, see Object, deepCopy
dependents (protocol), 126
deprecation, 208
design by contract, 207
Dictionary
(class), 204, 209, 225, 226, 228,
233
at:, 232
at:ifAbsent:, 232
at:put:, 232
do:, 241
keys, 232
keysDo:, 241
overriding = and hash, 233,
246
removeKey:, 209
values, 232
valuesDo:, 241
Dictionary class
newFrom:, 229
withAll:, 229
DieMorph
(class), 280

318

dirty package, see package, dirty
do:, see Collection, do:
download, 3, 4, 307
Duration
(class), 152, 210, 212

EllipseMorph

defaultColor, 108
encapsulation boundary, 93
enumerating (protocol), 225, 241
enumeration, see iteration
equality, see Object, equality
EventSensor

(class), 116
execution context, 48
explorer, 16, 153
exponent, 59
extension, see method, extension
extension package, see package,

extension

eXtreme Programming, 178, 180

False
(class), 61, 217
ifTrue:, 218
false (pseudo variable), 57, 61
Feathers, Michael, 196
field, see instance variable
file
browsing, see file list browser
change set, 167
filing in, 51, 139
filing out, 51, 124, 139, 144,
168
file list browser, 170
FileStream
(class), 221, 261
binary, 263

Index

close, 262
localName, 262
FileStream class
fileNamed:, 261
fileNamed:do:, 252
forceNewFileNamed:, 261
forceNewFileNamed:do:, 262
newFileNamed:, 261
oldFileNamed:, 261
readOnlyFileNamed:, 262
FillinTheBlank
(class), 276
request:initialAnswer:, 276
fixture, see SUnit, fixture
Float
(class), 210, 213
Float class
e, 213
infinity, 213
nan, 213
pi, 213
FloatArray
(class), 226
floating point number, 59
fold, see Collection»inject:into
FormCanvas
(class), 284
Fraction
(class), 205, 210
numerator:denominator:, 213
Fractions
(class), 213
full stop, see statement separator

geometry (protocol), 270

getter method, see accessor

global variable, see variable,
global

HandMorph
(class), 116
Haskell, 222
hierarchy browser, 21, 136
hook method, 210

identity, see Object, identity
IdentityDictionary

(class), 233
image, 4, 5,9
inheritance, 101, 107

canceling, 209
inheritance browser, 135
initialization, 36, 37,99, 111
initialization (protocol), 43, 44, 95
inspector, 15, 38, 94, 151, 296
instance variable, 38, 93, 107
instance variable definition, 41
Integer

(class), 210, 213

atRandom, 213

bitAnd:, 68

bitOr:, 68

bitShift:, 68

factorial, 212, 213

gcd:, 213

isPrime, 213

timesRepeat:, 67, 214
IntegerArray

(class), 226
Interval

(class), 67, 226-228, 232

at:, 226

printOn:, 202
Interval class

from:to:, 232

from:to:by:, 232

printString, 232

319

is-a, 292, 296
iteration, 66, see also Collection, it-
eration

Java, 76, 93,97, 99, 109, 177

Kernel-Classes (category), 102
Kernel-Numbers (category), 210
Kernel-Objects (category), 19, 20,
199
keyboard events, 274
keyboard shortcut, 20, 130
accept, 25, 35
browse it, 20, 22, 130, 308
cancel, 43, 158
doit, 14
explore it, 16, 154, 158
find ..., 22, 308
inspect it, 151, 158
printit, 15
keyboard shortcuts, 14, 25, 30
KeyboardEvent
(class), 276
keys, see Dictionary, keys
keyword message, see message,
keyword
Knight, Alan, xiv

lambda expression, 222
LargeNegativelnteger

(class), 210, 214
LargePositivelnteger

(class), 210, 214
launching Squeak, 5
lexical closure, see block
LF (global), 120
LinkedList

(class), 225227

320

Lisp, 222
literal, 59
array, 59
character, 59
number, 59
string, 59
symbol, 59
literal arrays, 230
literal objects, 57
loops, see iteration

Mac OS X Finder, 127
Magnitude

<, 103,211, 235

<=, 235

=, 211,235

>, 211,235

>=,103, 235

(class), 103, 208, 210, 214, 217,

235

between:and:, 235
Matrix

(class), 42, 45

free will, see Oracle
Matrix class

new:tabulate:, 42

rows:columns:, 42
message

binary, 60, 62, 71

evaluation order, 77

keyword, 60, 62, 71

not understood, 113

receiver, 72

selector, 72

send, 72, 106

unary, 60, 62,71
message name finder, 124
message names browser, 166

Index

message selector, 60
message send, 292
meta-programming, 93
Metaclass
(class), 290, 299, 300
metaclass, 93, 95, 290, 293, 296
anonymous, 293
hierarchy, 290, 294, 301
implicit, 293
Metaclass class
(class), 301
method
abstract, 102
byte code, 138
categorize, 44, 47
creation, 35, 129
decompile, 138
dictionary, 296
extension, 110
filing in, see file, filing in
filing out, see file, filing out
finding, 22, 139
lookup, 107, 295
overriding, 110, 135
pretty-print, 43, 138
public, 95
returning self, 50
selector, 93
value, 50
version, 133
method finder, 22, 124
method lookup, 111
MethodContext
(class), 61
ML, 222
Model
myDependents, 126

Monticello, 31, 52, 124, 140, 142,
144, 169, 310
Morph
(class), 40
addMorph:, 270
bound, 272
center:, 270
color:, 269
composing, 270
defaultColor, 135
delete, 271
drawOn:, 270, 271
extent, 269
handleKeystroke:, 274, 275
handlesMouseDown:, 273, 275
handlesMouseOver:, 274
initString, 112
mouseDown:, 273
mouseEnter:, 275
mouseleave:, 275
mouseUp:, 273
openinWorld, 109, 268, 272, 292
position, 269
removeMorph:, 271
repelsMorph:event:, 278
subclassing, 270, 271
wantsDroppedMorph:event:, 278
wantsToBeDroppedinto:, 278
Morphic, 9, 34, 116, 267
animation, 276, 283
halo, 6,7, 11, 38, 50, 267
step, 276
stepTime, 276
morphic halo, see Morphic
MorphicEvent
(class), 273, 276
hand, 279
mouse events, 274

321

MouseEvent
(class), 274
redButtonPressed, 274
yellowButtonPressed, 274
MyTestCase class
buildSuiteFromSelectors, 195

.Net, 177
new, see Behavior»new
NeXTstep, 125
nil (pseudo variable), 57, 61
notifier, 48
Null Object (pattern), 209
Number
«, 211
+, 211
-, 211
/,211
(class), 205, 208, 210, 211
asFloat, 212
asinteger, 212
ceiling, 212
day, 212
even, 212
floor, 212
fractionPart, 212
hour, 212
i, 212
integerPart, 212
isInfinite, 212
log, 212
negative, 212
odd, 212
positive, 212
printOn:, 212
raiseTo:, 212
sin, 212
sqrt, 212

322

squared, 212
to:, 232
to:by:, 232
to:do:, 67
week, 212

Object

->, 233,241

=, 203

(class), 16, 19, 33, 101, 113,
199, 291

~=,203

asMorph, 268

assert:, 207

asString, 240

at:;, 68

at:put:, 68

class, 204, 292

copy, 206

copyTwolLevel, 206

deepCopy, 206

deprecated:, 208

doesNotUnderstand:, 114, 208

equality, 203

error, 208

error:, 208

halt, 207

hash, 204

identity, 203

initialization, see initializa-
tion

isArray, 209

isBlock, 209

isBoolean, 209

isCollection, 209

isComplex, 209

iskKindOf:, 205, 292

isMemberOf:, 204

Index

isSelfEvaluating, 202
notNil, 209
perform:, 282
postCopy, 207
printOn:, 200
printString, 20, 200, 240
respondsTo:, 205
shallow copy, 205
shallowCopy, 206
shouldNotImplement, 209
storeOn:, 201
subclassResponsibility, 102, 103,
208
yourself, 245
Object class
(class), 293
OmniBrowser, 135, 140
on the fly variable definition, 41
Oracle, 177
OrderedCollection
(class), 226, 228, 231, 250, 307
add:, 231, 245
addAll;, 231
addFirst:, 226, 231
addLast:, 226, 231
anySatisfy:, 244
at:, 226
at:put:, 226
detect:, 243
do:, 251
remove:, 231
remove:ifAbsent:, 232
removeAt:, 139
reverseDo:, 240, 241
OrderedCollections
(class), 227
overriding, see method, overrid-

ing

package, 16, 31, 52, 140, 142

cache, 145, 148

dirty, 53

extension, 142
package browser, see Monticello
package cache, 52
package pane browser, 140
parentheses, 72, 77, 80
PasteUpMorph

(class), 116
Pelrine, Joseph, 106, 177
period, see statement separator
Perl, 177
Pluggable collections, 226
PluggableListMorph

(class), 154
Point

(class), 37

dist:, 94

printOn:, 202
pool dictionary, see variable, pool
PopupMenu

(class), 276
PositionableStream

(class), 249

atEnd, 254

contents, 254

isSEmpty, 254

peek, 253

peekFor:, 253

position, 253

position:, 253

reset, 249, 254

setToEnd, 254

skip:, 254

skipTo:, 254
PositionableStream class

on:, 252

323

pre-debugger, 164
PreDebugWindow
(class), 48, 155
preference browser, 8, 208
pretty-print, see method
primitive, 68, 107
primitive., 60
printing (protocol), 20
private (protocol), 95
process
browser, 164
interrupting, 125, 163
process browser, 125
protocol, 19, 43
ProtoObject
==, 233
(class), 102, 113, 199, 204
initialize, 209
isNil, 209
ProtoObject class
(class), 301
pseudo-variable,
pseudo
Python, 177

see variable,

Quinto, 31

radix notation, 59
RBParser
(class), 309
ReadStream
(class), 251, 252
next, 252
next:, 252
upToEnd, 253
ReadWriteStream
(class), 251, 257
ReceiverMorph

324

(class), 278
Rectangle
(class), 37, 272
containsPoint:, 273
RectangleMorph
(class), 136, 278
defaultColor, 134
red button, 6-8, 30, 154
refactoring, 35, 143
Refactoring Browser, 311
reflection, 282
regular expression package, 217,
238,312
removing (protocol), 225
required (protocol), 140
resource, see test, resource
restore display, 97
return, 50, 61, 64, 107, 109
implicit, 64

saving code, see categories
SBECell
(class), 33
initialize, 37
mouseAction:, 46
mouseUp:, 47
SBEGame
(class), 39
cellsPerSide, 45
initialize, 40, 49
newCellAt:at:, 45, 50
toggleNeighboursOfCellAt:at:, 46
ScaleMorph
(class), 136
checkExtent:, 131
defaultColor, 134
Self, 267
self

Index

send, 111
self (pseudo variable), 37, 42, 57,
59, 61, 64, 108
self-evaluating objects, 201
Sensor
(class), 116
SequenceableCollection
(class), 225
doWithIndex:, 240
first, 225
last, 225
readStream, 253
SequenceableCollection class
streamContents:, 256, 257
Set
(class), 225, 226, 228, 233, 234
add:, 234
intersection, see Collection,
intersection:
membership, see Collection,
includes:
union, see Collection, union:
Set class
newFrom:, 234
setter method, see accessor
shallow copy, see
shallowCopy
Sharp, Alex, xiv
shortcut constructor methods,
212,217
SimpleSwitchMorph
(class), 33
Singleton (pattern), 217
Singleton pattern, 100
SkipList
(class), 225
slot, see instance variable
SmaCC, 312

Object,

SmaCCDev, 312
Smalllnteger
+, 68
(class), 15, 206, 210, 213
maxVal, 214
minVal, 214
Smalltalk (global), 115, 117, 173, 234
Sokoban, 17
SortedCollection
(class), 225, 228, 235
SortedCollection class
sortBlock:, 237
SortedCollections
(class), 227
SourceForge, 53
sources, 4
SqueakMap, 16
SqueakSource, 53, 149
Squeaksource, 310
Stack
pop, 207
stack trace, 155
StandardFileStream
fullName, 262
statement, 63
separator, 61, 63, 86
Stream
(class), 200, 221, 249
nextPut:, 250
print:, 256
String
(class), 24, 25, 28, 64, 200, 215,
226,237,240, 308
anySatisfy:, 239
asDate, 217
asFileName, 217
asLowercase, 239
asUppercase, 24, 239

325

at:put:, 237
capitalized, 217, 239
comma, see Collection,

comma operator
concatenation, see Collection,
comma operator
copyReplaceAll:, 238
expandMacros, 239
expandMacrosWith:, 239
format:, 239
includes:, 239
isEmpty, 239
lineCount, 64
match:, 217, 238
pattern matching, 238
replaceAll:with:, 238
replaceFrom:to:with:, 238
templating, 239
translateToLowercase, 217
StringTest
(class), 25, 164
testShout, 27
Subversion, 52
SUnit, 25, 27, 125,161, 177, 311
fixture, 182
set up method, 181
super
initialize, 111
send, 111, 132, 308
super (pseudo variable), 57, 61, 108
superclass, 101, 107
supersend (protocol), 140
Symbol
(class), 129, 206, 216, 226, 233,
240
symbol, 34
syntax, 57

326

system browser, 18, 20, 32, 95, 124,
125
browse button, 130
button bar, 129
class side, 95, 97, 99, 100, 119,
290, 295
class vars button, 137
defining a class, 34, 128
defining a method, 35, 129
finding classes, see class, find-
ing
finding methods, see method,
finding
hierarchy button, 132, 136
implementors button, 131
inheritance button, 135
inst vars button, 137
instance side, 95, 96, 99
refactor button, 138
senders button, 131, 133
source button, 138
versions button, 134
system category, see category
SystemDictionary
(class), 115,234
SystemNavigation
(class), 308
SystemNavigation (global), 141
SystemOrganization (global), 116
SystemOrganizer
(class), 116

template method, 200
Test Driven Development, 24, 177
Test Runner, 125, 183
TestCase
(class), 181, 188
assert:, 185, 207

Index

assert:description:, 186, 191
deny:, 183
deny:description:, 186, 191
failureLog, 191
isLogging, 191
run, 192
run:, 192, 193
runCase, 193
setUp, 181, 188, 194
should:description:, 191
should:raise:, 186
shouldnt:description:, 191
shouldnt:raise:, 186
tearDown, 188, 194
testing, 25, see SUnit
testing (protocol), 209, 224, 225
TestResource
(class), 188, 190, 195
setUp, 195
TestResource class
current, 195
isAvailable, 195
TestResult
(class), 188, 189, 192
runCase:, 193
TestResult class
error, 186
TestRunner, 27, 311
TestSuite
(class), 187-189
run, 195
run:, 195
Text
(class), 120
thisContext (pseudo variable), 57,
61
three button mouse, 6
Timespan

(class), 211
TimeStamp

(class), 151
Tools flap, 12, 18, 22, 27, 30, 124,

125, 166, 168, 170, 187

Trait

(class), 104
trait, 102, 104
Transcript (global), 63, 115, 125, 275
transcript, 12
TranscriptStream

(class), 115
TranslucentColor

(class), 118, 291, 294, 298
True

(class), 61, 217

ifTrue:, 218

not, 218
true (pseudo variable), 57, 61, 219
TTCFont

printOn:, 201

unary message,
unary
Undeclared (global), 116
UndefinedObject
(class), 61, 156, 206

see 1message,

value, see BlockClosure
values, see Dictionary, values
variable

class, see class, variable

class instance, see class, in-

stance variable
declaration, 60, 65, 106
global, 59, 115
instance, see instance variable
pool, 59, 115, 120

327

pseudo, 59, 61, 109
shared, 115
versions browser, 133, 134
virtual machine, 3, 11, 60, 68, 107,
113

weak collections, 227
WebServer

(class), 100
WideString

(class), 237
workspace, 12, 125
World (global), 116
world menu, 6, 8
WriteStream

(class), 251, 255

cr, 256

ensureASpace, 256

nextPut:, 256

nextPutAll:, 256

space, 256

tab, 256

xUnit, 177

yellow button, 6, 7, 35, 43,127,132,
134, 137, 138, 148, 150,
151, 153, 165, 168, 171,
174

	Preface
	I Getting Started
	A Quick Tour of Squeak
	Getting Started
	The World Menu
	Saving, Quitting and Restarting a Squeak Session
	Workspaces and Transcripts
	Keyboard shortcuts
	SqueakMap
	The System Browser
	Finding Classes
	Finding Methods
	Defining a new Method
	Chapter Summary

	A First Application
	The Quinto Game
	Creating a new class Category
	Defining the Class SBECell
	Adding Methods to a Class
	Inspecting an Object
	Defining the Class SBEGame
	Organizing Methods into Protocols
	Let's Try Our Code
	Saving and Sharing Smalltalk Code
	Chapter Summary

	Syntax in a Nutshell
	Syntactic Elements
	Pseudo-variables
	Message Sends
	Method Syntax
	Block Syntax
	Conditionals and Loops in a Nutshell
	Primitives and Pragmas
	Chapter Summary

	Understanding Message Syntax
	Identifying Messages
	Three Kinds of Messages
	Unary Messages
	Binary Messages
	Keyword messages

	Message Composition
	Parentheses First
	From Left to Right
	Arithmetic Inconsistencies

	Hints for Identifying Keyword Messages
	Parentheses or not?
	When to use [] or ()

	Expression Sequences
	Cascaded Messages
	Chapter Summary

	II Developing in Squeak
	The Smalltalk Object Model
	The Rules of the Model
	Everything is an Object
	Every object is an instance of a class
	Instance variables
	Methods
	The Instance Side and the Class Side
	Class Methods
	Class Instance Variables

	Every class has a superclass
	Abstract Methods and Abstract Classes
	Traits

	Everything Happens by Message Sending
	Method lookup follows the inheritance chain
	Method lookup
	Returning self
	Overriding and Extension
	Self sends and super sends
	Message not Understood

	Shared Variables
	Global Variables.
	Class Variables
	Pool Variables

	Chapter Summary

	The Squeak Programming Environment
	Overview
	The System Browser
	The Button Bar
	The Browser Menus
	Other Class Browsers
	Browsing Programatically
	Summary

	Monticello
	Packages: Declarative Categorization of Squeak Code
	Basic Monticello

	The Inspector and Explorer
	The Inspector
	The Object Explorer

	The Debugger
	The Process Browser
	Finding Methods
	Change Sets and the Change Sorter
	The File List Browser
	In Smalltalk, You Can't Lose Code
	How to get your code back

	Chapter Summary

	SUnit
	Introduction
	Why Testing is Important
	What makes a Good Test?
	SUnit by Example
	Step 1: Create the test class
	Step 2: Initialize the test context
	Step 3: Write some test methods
	Step 4: Run the tests
	Step 5: Interpret the Results

	The SUnit Cook Book
	Other assertions
	Running a Single Test
	Running all the Tests in a Test Class
	Must I Subclass TestCase?

	The SUnit Framework
	TestCase
	TestSuite
	TestResult
	TestResource

	Advanced Features of SUnit
	Assertion Description Strings
	Logging Support
	Continuing after a Failure

	The Implementation of SUnit
	Running One Test
	Running a TestSuite

	Some Advice on Testing
	Chapter Summary

	Basic Classes
	Object
	Printing
	Identity and Equality
	Class membership
	Copying
	Debugging
	Error handling
	Testing
	Initialize release

	Numbers
	Magnitude
	Number
	Float
	Fraction
	Integer

	Characters
	Strings
	Booleans
	Chapter Summary

	Collections
	Introduction
	The Varieties of Collection
	Implementations of Collections
	Examples of Key Classes
	Array
	OrderedCollection
	Interval
	Dictionary
	Set
	SortedCollection
	String

	Collection Iterators
	Iterating (do:)
	Collecting results (collect:)
	Selecting and Rejecting Elements
	Identifying an element with detect:
	Accumulating results with inject:into:
	Other messages

	Some Hints for using Collections
	Chapter Summary

	Streams
	Two Sequences of Elements
	Streams vs. Collections
	Streaming over Collections
	Reading Collections
	Writing to Collections
	Reading and writing at the same time

	Using Streams for File Access
	Creating File Streams
	Binary Streams

	Chapter Summary

	Morphic
	The History of Morphic
	Manipulating morphs
	Composing Morphs
	Creating and Drawing Your Own Morphs
	Mouse and Keyboard Interaction
	Interactors
	Drag-and-drop
	A Complete Example
	More About the Canvas
	Chapter Summary

	III Advanced Squeak
	Classes and Metaclasses
	Rules for Classes and Metaclasses
	Revisiting the Smalltalk Object Model
	Every Class is an Instance of a Metaclass
	The Metaclass Hierarchy Parallels the Class Hierarchy
	Every Metaclass Inherits from Class and Behavior
	Every metaclass is an instance of Metaclass
	The Metaclass of Metaclass is an Instance of Metaclass
	Chapter Summary

	IV Appendices
	Frequently Asked Questions
	Getting started
	Collections
	Browsing the system
	Using Monticello and SqueakSource
	Tools
	Regular Expressions and Parsing

	Bibliography
	Index

