
CS 420/520 — Fall 2009

Introduction to
Design Patterns

1

Elements of Reusable
Object-Oriented Software

by

Erich Gamma, Richard Helm,
Ralph Johnson, John Vlissides

Addison-Wesley, 1995.

Design Patterns

2

Elements of Reusable
Object-Oriented Software

by

Erich Gamma, Richard Helm,
Ralph Johnson, John Vlissides

Addison-Wesley, 1995.

Design Patterns

2

The Gang
of Four

Elements of Reusable
Object-Oriented Software

by

Erich Gamma, Richard Helm,
Ralph Johnson, John Vlissides

Addison-Wesley, 1995.

Design Patterns

often called
the “Gang of Four”

or GoF book

2

The Gang
of Four

Elements of Reusable
Object-Oriented Software

by

Erich Gamma, Richard Helm,
Ralph Johnson, John Vlissides

Addison-Wesley, 1995.

Design Patterns

original,
well-known

book introducing
design patterns

often called
the “Gang of Four”

or GoF book

2

The Gang
of Four

Elements of Reusable
Object-Oriented Software

by

Erich Gamma, Richard Helm,
Ralph Johnson, John Vlissides

Addison-Wesley, 1995.

Design Patterns

original,
well-known

book introducing
design patterns

often called
the “Gang of Four”

or GoF book

2

The Gang
of Four

Examples

presented in

C++ (and

Smalltalk)

A Catalog of Reusable
Design Patterns Illustrated with UML

by
Mark Grand

Wiley, 1998.

Patterns in Java
Volume 1

same

design patterns

as the GoF

but with a littl
e

bit of refactoring

3

Not
highly

recommended

by
Sherman R. Alpert, Kyle Brown, Bobby Woolf

Foreword by Kent Beck

Addison-Wesley, 1998.

The Design Patterns
Smalltalk Companion

another resource…

follows GoF

book format

4

by
Sherman R. Alpert, Kyle Brown, Bobby Woolf

Foreword by Kent Beck

Addison-Wesley, 1998.

The Design Patterns
Smalltalk Companion

another resource…

follows GoF

book format

4

A great book!

5

Design Patterns in Java
by

Steven John Metsker
and William C. Wake

http://www.amazon.com/Steven-John-Metsker/e/B001IOBGH8/ref=ntt_athr_dp_pel_1
http://www.amazon.com/Steven-John-Metsker/e/B001IOBGH8/ref=ntt_athr_dp_pel_1
http://www.amazon.com/William-C.-Wake/e/B001HMPTCE/ref=ntt_athr_dp_pel_2
http://www.amazon.com/William-C.-Wake/e/B001HMPTCE/ref=ntt_athr_dp_pel_2

Why do patterns help in the Test–
Code–Refactoring Cycle?

• When you are faced with a problem for
which you don’t have an obvious solution:
• Design patterns may give you a design solution

– that you can use “off the shelf”, or
– that you can adapt

• Design patterns give you an implementation of that
solution in your current language

• Design patterns save you from having to think!

• Don’t use a design pattern if you don’t
have a problem!

6

Revisit Problem from Monday…

• On Monday I told you to refactor the class
hierarchy:

Copyright © 2009 Andrew Black
7

Person

Intruder

openDoor

height
openDoor

Person height

openDoor

Resident

Person ›› openDoor
 	
 self isIntruder ifTrue: […].
	
 self isResident ifTrue: […].
	
 …

How many occurrences of

8

Person ›› openDoor
 	
 self isIntruder ifTrue: […].
	
 self isResident ifTrue: […].
	
 …

How many occurrences of

are needed to prompt this refactoring?
0 ?
1 ?
2 ?
3 ?

8

Person ›› openDoor
 	
 self isIntruder ifTrue: […].
	
 self isResident ifTrue: […].
	
 …

Use patterns pro-actively?
• Hot Spots and Cold Spots

• Rebecca Wirfs-Brock and others recommend that
you identify which of your Classes are hot spot
cards and which are cold spot cards

! hot = responsibilities very likely to change
! cold = responsibilities not very likely to change

• Hot spots are candidates for patterns!

9

Common Causes of Redesign
• Creating an object by specifying a class

explicitly
• CourseOffering new

• Depending on specific operations of
someone else’s object
• student address line2 zipcode

• Dependence on object representations or
implementations

In general: information in more than one place

10

Advice from the Gang of Four
• Program to an interface, not an

implementation
• depend on the behavior of another object, not on

its class

• Favor object composition (delegation)
over class inheritance

• Encapsulate the concept that varies
• once you know that it varies

11

Misuse of Inheritance
Rectangle
area
length
length:
width
width:

Window
Close
Display

12

Window

area

Rectangle

area
width
width:
length:
length

bounds

^ bounds area ^ width * height

Example of delegation

Now we have two objects:
a Window object and a Rectangle object

13

Window

area

Rectangle

area
width
width:
length:
length

bounds

^ bounds area ^ width * height

13

Window

area

Rectangle

area
width
width:
length:
length

bounds

^ bounds area ^ width * height

Let a window HAVE a rectangle (as a bounding box)
rather than BE a rectangle (through inheritance)

If bounding “box” becomes a polygon...then
Window would just HAVE a polygon

13

14

Design Patterns provide ...

• abstractions for reasoning about designs

• a common design vocabulary

• a documentation and learning aid

• the experience of experts,

• e.g., to identify helper objects

• easier transition from design to implementation

A pattern has four essential elements:
• pattern name — to describe a design problem,
! it’s solution, and consequences
• problem — to describe when to apply the

pattern.
it may include a list of conditions that must

be true to apply the pattern
• solution — to describe the elements that make

up the! design, their relationships,
responsibilities, and collaborations

• consequences — the results and trade-offs of
applying the pattern

15

Design Patterns Categorized
Creational Structural Behavioral

class
factory method adapter interpreter

template method

object

abstract factory
builder

prototype
singleton

adapter
bridge

composite
decorator

façade
flyweight

proxy

chain of responsibility
command
iterator
mediator
memento
observer

state
strategy
visitor

Purpose

Sc
op

e

16

The Singleton Pattern

17

The Singleton Pattern
Intent:	
 – Ensure that a class has a small fixed number
	
 of instances (typically, a single instance).
	
 – Provide a global point of access to the instances

Motivation:	
 – Make sure that no other instances are created.
	
 – Make the class responsible for keeping track of
	
 its instance(s)

Applicability:	
 – When the instance must be globally accessible
	
 – Clients know that there is a single instance (or
	
 a few special instances).

18

Structure of the Singleton Pattern

19

Structure of the Singleton Pattern

Singleton

initialize
singletonMethod:
singletonData

singletonData

19

Singleton class

default
new

uniqueInstance

Structure of the Singleton Pattern

Singleton

initialize
singletonMethod:
singletonData

singletonData

19

Singleton class

default
new

uniqueInstance

Structure of the Singleton Pattern

Singleton

initialize
singletonMethod:
singletonData

singletonData

self error: '...'

19

Singleton class

default
new

uniqueInstance

Structure of the Singleton Pattern

Singleton

initialize
singletonMethod:
singletonData

singletonData

self error: '...'

uniqueinstance ifNil:
 [uniqueInstance := super new].
 ^ uniqueInstance

19

Singleton class

default
new

uniqueInstance

Structure of the Singleton Pattern

Singleton

initialize
singletonMethod:
singletonData

singletonData

client >> method
 Singleton default singletonMethod: …

self error: '...'

uniqueinstance ifNil:
 [uniqueInstance := super new].
 ^ uniqueInstance

19

The Singleton Pattern

Participants:	
 Singleton class
	
 	
 defines a default method
	
 	
 	
 is responsible for creating its own
	
 	
 	
 unique instance and maintaining
	
 	
 	
 a reference to it
	
 	
 overrides “new”

	
 Singleton
	
 	
 the unique instance
	
 	
 overrides “initialize”
	
 	
 defines application-specific behavior

Collaborations:	
 Clients access singleton sole through Singleton
	
 	
 class’s default method
	
 	
 may also be called “current”, “instance”,
 “uniqueInstance” …

20

The Singleton Pattern

Consequences:	
 Controlled access to instance(s)

	
 Reduced name space (no need for global variable)

	
 Singleton class could have subclasses
	
 	
 	
 similar but distinct singletons

	
 pattern be adapted to limit to a specific number of
	
 	
 instances

21

Smalltalk Implementation

In Smalltalk, the method that returns the unique instance is
implemented as a class method on the Singleton class. The new
method is overridden.

uniqueInstance is a class instance variable, so that if this class is ever
subclassed, each subclass will have its own uniqueInstance.

Object subclass: #Singleton
 instanceVariableNames: ''
 classVariableNames: ''
 poolDictionaries: ''

 Singleton class
 instanceVariableNames: 'uniqueInstance'

22

The Singleton Pattern: Implementation

Singleton class>>new
 "Override the inherited #new to ensure that there
! is never more than one instance of me."
	
 self error: 'Class ', self name,
	
 ' is a singleton; use "', self name,
	
 ' default" to get its unique instance'

Singleton class>>default
 "Return the unique instance of this class; if it hasn’t
! yet been created, do so now."

 ^ uniqueInstance ifNil: [uniqueInstance := super new]

Singleton>>initialize
 "initialize me"
 ...

23

Proxy

24

The Proxy Pattern

25

Intent: provide a surrogate or placeholder
for another object (the RealSubject), to
provide or control access to the object

Motivation:! The RealSubject might be on disk, or on
a remote computer. It might be expensive or
undesirable to reify it in the Smalltalk image.
! The RealSubject might understand some
messages that the client is not authorized to
send.

The Proxy Pattern
Solution! The Proxy object forwards some or all of

the messages that it receives to the
RealSubject. It might encapsulate a network
protocol, a disk access protocol, or a
protection policy.

The Proxy and the RealSubject understand
the same protocol, i.e., they have the same
conceptual type. They have different
implementations (different Classes).

26

Proxy Structure

27

Proxy Structure

27

Subject is
a protocol, aka interface

(note: italics)

Two approaches
1. Implement all of Subject’s methods in Proxy. A

few of them will actually have code in Proxy, but
most will just forward the message to RealSubject

aMessage: parameter
! ^ realSubject aMessage: parameter

2. Use dynamic binding. Don’t write code for all of
the messages that will be forwarded; instead,
override the method for doesNotUnderstand:.
For this to work, the Proxy should not inherit
methods from its superclass.

28

Implementation

ProtoObject
In Pharo, ProtoObject is the superclass of
Object. It implements the methods that all
objects really, really, really need to
support.

Object methodDict size ==> 340.
ProtoObject methodDict size ==> 38.

If you use approach 2 to implement a Proxy,
then it should subclass ProtoObject

29

Avoiding Forwarding
• Forwarding each message adds overhead.

Interpreting messages in a doesNotUnderstand:
method adds more overhead.

• Instead, the first message trapped by
doesNotUnderstand: can replace the proxy by
the realSubject.

! doesNotUnderstand: aMessage
! ! realSubjectProtocol includes: aMessage ifFalse: […].
! ! self become: realSubject.
! ! ^aMessage sendTo: self

30

Example use: RemoteString
• In Visualworks Smalltalk, the

RemoteString objects are proxies for text
stored on the disk, such as a class
comment or other piece of text in a file
(such as the sources file).

• The actual String is created by the proxy
on demand by reading the file.

• This is done by the doesNotUnderstand:
method in the Proxy.

31

Iterator
• Iterator defines an interface for

sequencing through the objects in a
collection.
• This interface is independent of the details of the

kind of collection and its implementation.

• This pattern is applicable to any language

32

External Iterators
• In languages without closures, we are

forced to use external iterators, e.g., in
Java:
• aCollection.iterator() answers an iterator.

• the programmer must explicitly manipulate the
iterator with a loop using hasNext() and next()

33

Java test
• Given a collection of integers, answer a

similar collection containing their
squares:

your answer here ...

34

Internal Iterators
• Languages with closures provide a better

way of writing iterators

• Internal Iterators encapsulate the loop
itself, and the next and hasNext
operations in a single method

• Examples: do:, collect:, inject:into:
• look at the enumerating protocol in Collection

35

doing: Iterators for effect
For every (or most) elements in the
collection, do some action
! do:! do:separatedBy: ! do:without:

• for keyedCollections
! ! associationsDo: ! keysDo: ! valuesDo:

• for SequenceableCollections
! ! withIndexDo: ! reverseDo: !allButFirstDo:

36

mapping: create a new collection
• Create a new collection of the same kind as the

old one, with elements in one-to-one
correspondence

• For every element in the collection, create a
new element for the result.

! ! collect:! collect:thenDo: collect:thenSelect:

• for SequenceableCollections
! ! ! collect:from:to: ! withIndexcollect: !

37

selecting: filtering a collection

• Create a new collection of the same kind as the
old one, with a subset of its elements

• For every element in the collection, apply a filter.

• Examples:

! select:! ! ! ! reject:
! select:thenDo: !reject:thenDo:

38

partial do
• It’s OK to return from the block that is

the argument of a do:
coll do: [:each | each matches: pattern ifTrue: [^ each]].
^ default

• but consider using one of the “electing”
iterators first!
coll detect: [:each | each matches: pattern]
 ifNone: [default]

39

electing: picking an element
Choose a particular element that matches
some criterion

• Criterion might be fixed:
• max:!min:

• or programmable:
• detect:! detect:ifNone:

40

Summarizing:
answering a single value

• Answer a single value that tells the client
something about the collection
• allSatisfy:! anySatisfy:

detectMin:! detectMax:! detectSum:

• sum! inject: into:

41

42

Context
• You have partitioned your program into separate

objects

Problem
• A set of objects — the Observers — need to know

when the state of another object — the Observed
Object a.k.a. the Subject — changes.

• The Subject should be unaware of who its
observers are, and, indeed, whether it is being
observed at all.

Solution
• Define a one-to-many relation between

the subject and a set of dependent
objects (the observers).

• The dependents register themselves
with the subject.

• When the subject changes state, it
notifies all of its dependents of the
change.

43

44

OBSERVER 305

Object Behavioral

Intent

Define a one-to-many dependency between objects so that when one object
changes state, all its dependents are notified and updated automatically.

Structure

Subject Observer

addDependent: anobserver

removeDependent: anobse~er

changed: aSymbol

Concretesubject

I
subjectstate 0 - - -. - , I observerstate

dependents do: [:observer l

The interaction diagram on the following page illustrates the collaborations
between a subject and two observers:

Figure from Alpert, page 305

44

OBSERVER 305

Object Behavioral

Intent

Define a one-to-many dependency between objects so that when one object
changes state, all its dependents are notified and updated automatically.

Structure

Subject Observer

addDependent: anobserver

removeDependent: anobse~er

changed: aSymbol

Concretesubject

I
subjectstate 0 - - -. - , I observerstate

dependents do: [:observer l

The interaction diagram on the following page illustrates the collaborations
between a subject and two observers:

Figure from Alpert, page 305

protocols

44

OBSERVER 305

Object Behavioral

Intent

Define a one-to-many dependency between objects so that when one object
changes state, all its dependents are notified and updated automatically.

Structure

Subject Observer

addDependent: anobserver

removeDependent: anobse~er

changed: aSymbol

Concretesubject

I
subjectstate 0 - - -. - , I observerstate

dependents do: [:observer l

The interaction diagram on the following page illustrates the collaborations
between a subject and two observers:

Figure from Alpert, page 305

protocols

implements

44

OBSERVER 305

Object Behavioral

Intent

Define a one-to-many dependency between objects so that when one object
changes state, all its dependents are notified and updated automatically.

Structure

Subject Observer

addDependent: anobserver

removeDependent: anobse~er

changed: aSymbol

Concretesubject

I
subjectstate 0 - - -. - , I observerstate

dependents do: [:observer l

The interaction diagram on the following page illustrates the collaborations
between a subject and two observers:

Figure from Alpert, page 305

protocols

implements
implements

44

OBSERVER 305

Object Behavioral

Intent

Define a one-to-many dependency between objects so that when one object
changes state, all its dependents are notified and updated automatically.

Structure

Subject Observer

addDependent: anobserver

removeDependent: anobse~er

changed: aSymbol

Concretesubject

I
subjectstate 0 - - -. - , I observerstate

dependents do: [:observer l

The interaction diagram on the following page illustrates the collaborations
between a subject and two observers:

Figure from Alpert, page 305

protocols

implements

44

OBSERVER 305

Object Behavioral

Intent

Define a one-to-many dependency between objects so that when one object
changes state, all its dependents are notified and updated automatically.

Structure

Subject Observer

addDependent: anobserver

removeDependent: anobse~er

changed: aSymbol

Concretesubject

I
subjectstate 0 - - -. - , I observerstate

dependents do: [:observer l

The interaction diagram on the following page illustrates the collaborations
between a subject and two observers:

Figure from Alpert, page 305

protocols

45

• O-O solutions break the problem into
small pieces — objects
+ Each object is easy to implement and maintain
+ Objects can be re-combined in many ways to

solve a variety of problems
– Many simple behaviors will require the

collaboration of multiple objects
– Unless the collaboration is “at arms length”, the

benefits of the separation will be lost.

• The observer patterns implements this
“arms length” collaboration
• it’s key to the successful use of objects

• The subject protocol
• Used by the subject when its state changes

• The observer protocol
• Used to tell the observer about a change in the

subject

• Both implemented in class Object
• So every Smalltalk object can be a subject, or an

observer, or both.

46

Two Protocols

Pharo Implementation

47

Subject
messages

self changed

Subject
messages

self changed: anAspectSymbolSubject
messages self changed: anAspectSymbol !

! with: aParameter

Dependent
messages

aDependent update: mySubject

Dependent
messages

aDependent update: anAspectSymbolDependent
messages aDependent update: anAspectSymbol

! with: aParameter

Managing dependencies

48

Subject
messages

aSubject
! addDependent: aDependentSubject

messages aSubject
! removeDependent: aDependent

• Dependents are stored in a collection, accessed
through the message myDependents

• In class Object, the collection is stored in a
global dictionary, keyed by the identity of the
subject:
myDependents: aCollectionOrNil
! aCollectionOrNil
! ! ifNil: [DependentsFields removeKey: self ifAbsent: []]
! ! ifNotNil: [DependentsFields at: self put: aCollectionOrNil]

• In class Model, the collection is an instance
variable:
myDependents: aCollectionOrNil
! dependents := aCollectionOrNil

49

50

Context:
• The subject’s state requires significant calculation

— too costly to perform unless it is of interest to
some observer

Problem:
• How can the subject know whether to calculate its

new state?

• Have the observers declare an Explicit
Interest in the subject

• observers must retract their interest when
appropriate

51

Solution

Explicit Interest vs. Observer
Intent:

• Explicit interest is an optimization hint; can always be
ignored

• Observer is necessary for correctness; the subject has the
responsibility to notify its observers

Architecture
• Explicit interest does not change the application architecture
• Observer does

Who and What
• Explicit interest says what is interesting, but not who cares

about it
• Observer says who cares, but not what they care about.

52

Further Reading
• The Explicit Interest pattern is described

by Vainsencher and Black in the paper
“A Pattern Language for Extensible
Program Representation”, Transactions
on Pattern Languages of Programming,
Springer LNCS 5770

53

http://web.cecs.pdx.edu/~black/publications/ModelExtensions.pdf
http://web.cecs.pdx.edu/~black/publications/ModelExtensions.pdf
http://web.cecs.pdx.edu/~black/publications/ModelExtensions.pdf
http://web.cecs.pdx.edu/~black/publications/ModelExtensions.pdf

The State Pattern

54

The State Pattern

Intent:	
 Allow an object to alter its behavior when its
	
 	
 internal state changes.
	
 Object appears to change class.

Context:	
 An object’s behavior depends on its state, and it
	
 must change its state-dependent behavior
	
 	
 at run-time

Problem:	
 Operations have large, multi-part conditions
	
 	
 that depend on the object’s state

55

TCPConnection
open
close
acknowledge

myState

“send the open
message to
myState with the
same arguments”

When the TCPConnection changes state, it simply replaces
the myState object with an object of another state

TCPState
open
close
acknowledge

TCPEstablished
open
close
acknowledge

TCPListen
open
close
acknowledge

TCPClosed
open
close
acknowledge

56

Example: Class that manages the state of a TCP/IP connection

TCPConnection
open
close
acknowledge

myState

“send the open
message to
myState with the
same arguments”

When the TCPConnection changes state, it simply replaces
the myState object with an object of another state

TCPState
open
close
acknowledge

TCPEstablished
open
close
acknowledge

TCPListen
open
close
acknowledge

TCPClosed
open
close
acknowledge

56

Example: Class that manages the state of a TCP/IP connection

Notice that we
have an abstract
class here!

TCPConnection
open
close
acknowledge

myState

“send the open
message to
myState with the
same arguments”

When the TCPConnection changes state, it simply replaces
the myState object with an object of another state

TCPState
open
close
acknowledge

TCPEstablished
open
close
acknowledge

TCPListen
open
close
acknowledge

TCPClosed
open
close
acknowledge

56

Example: Class that manages the state of a TCP/IP connection

TCPConnection
open
close
acknowledge

myState

“send the open
message to
myState with the
same arguments”

When the TCPConnection changes state, it simply replaces
the myState object with an object of another state

TCPState
open
close
acknowledge

TCPEstablished
open
close
acknowledge

TCPListen
open
close
acknowledge

TCPClosed
open
close
acknowledge

57

Example: Class that manages the state of a TCP/IP connection

TCPConnection
open
close
acknowledge

myState

“send the open
message to
myState with the
same arguments”

When the TCPConnection changes state, it simply replaces
the myState object with an object of another state

TCPState
open
close
acknowledge

TCPEstablished
open
close
acknowledge

TCPListen
open
close
acknowledge

TCPClosed
open
close
acknowledge

57

Example: Class that manages the state of a TCP/IP connection

Methods could
be abstract, or
could provide
default behavior

TCPConnection
open
close
acknowledge

myState

“send the open
message to
myState with the
same arguments”

When the TCPConnection changes state, it simply replaces
the myState object with an object of another state

TCPState
open
close
acknowledge

TCPEstablished
open
close
acknowledge

TCPListen
open
close
acknowledge

TCPClosed
open
close
acknowledge

57

Example: Class that manages the state of a TCP/IP connection

TCPConnection

 object

myState

TCPState
open
close
acknowledge

TCPEstablished

object

TCPListen

object

TCPClosed

object

objects in the
rest of the
program

create and interact with
a TCPConnection object

...

at each moment, the
TCPConnection object
references exactly one
of the (concrete) state
objects

58

Sequence Diagram
client object in
the program

TCP
Connection

TCP
Established

State

TCP
Listen
State

TCP
Closed
State

...

open
open

drop the reference to
TCPClosed State and
pick up a reference to
TCPEstablished State

send
send

send
send

59

Context
handle my_state

myState handle

State
handle

ConcreteState1
handle

ConcreteState2
handle . . .

Generic Class Diagram
for the State Pattern

60

The State Pattern

Consequences:	
 Localizes state-specific behavior & partitions
	
 	
 behavior for different states. New states &
	
 	
 transitions can be added easily.

	
 Makes state transitions explicit. The context
	
 	
 must “have” a different state.

	
 State objects can be shared if they
	
 	
 provide only behavior and have no
	
 	
 instance variables of their own. All context
	
 	
 objects in the same state can then share the
	
 	
 same (singleton) state object.

61

Smalltalk Example of TCP Connection
The Design Patterns Smalltalk Companion by Alpert et al.

Object subclass: #TCPConnection
! instanceVariableNames: ‘state’
! classVariableNames: ‘’
! poolDictionaries: ‘’

Object subclass: #TCPState
! instanceVariableNames: ‘’
! classVariableNames: ‘’
! poolDictionaries: ‘’

TCPConnection>>activeOpen
! “delegate the open message to the current state.”
! self state activeOpen: self

62

TCP Connection (cont.)

Object subclass: #TCPConnection
! instanceVariableNames: ‘state’
! classVariableNames: ‘’
! poolDictionaries: ‘’

Object subclass: #TCPState
! instanceVariableNames: ‘’
! classVariableNames: ‘’
! poolDictionaries: ‘’

TCPConnection>>activeOpen
! “delegate the open message to the current state.”
! self state activeOpen: self

send it the activeOpen
message (with self as
an argument)

63

TCPState>>activeOpen: aTCPConnection
 !“Don’t implement an open method….expect the concrete subclasses to”
! self subclassResponsibility

and do the same thing for all other messages for TCPState
(that is, TCPState is an abstract class)
!
TCPState subclass: #TCPEstablished
! instanceVariableNames: ‘’
! classVariableNames: ‘’
! poolDictionaries: ‘’

and do the same thing for all other concrete states that you need
(TCPListen state, TCPClosed state, etc.)

64

TCP Connection (cont.)

TCPEstablishedState>>activeOpen: aTCPConnection
 !“Do nothing….the connection is already open”
! ^self

TCPClosedState >>activeOpen: aTCPConnection
! “do the open….invoke the “establishConnection method of TCPConnection”
! ^aTCPConnection establishConnection

TCPConnection>>establishConnection
! “Do the work to establish a connection. Then change state.”
! self state: TCPEstablishedState new

65

TCP Connection (cont.)

TCPEstablishedState>>activeOpen: aTCPConnection
 !“Do nothing….the connection is already open”
! ^self

TCPClosedState >>activeOpen: aTCPConnection
! “do the open….invoke the “establishConnection method of TCPConnection”
! ^aTCPConnection establishConnection

TCPConnection>>establishConnection
! “Do the work to establish a connection. Then change state.”
! self state: TCPEstablishedState new

65

TCP Connection (cont.)

create a new TCPEstablished-
State object

TCPEstablishedState>>activeOpen: aTCPConnection
 !“Do nothing….the connection is already open”
! ^self

TCPClosedState >>activeOpen: aTCPConnection
! “do the open….invoke the “establishConnection method of TCPConnection”
! ^aTCPConnection establishConnection

TCPConnection>>establishConnection
! “Do the work to establish a connection. Then change state.”
! self state: TCPEstablishedState new

65

TCP Connection (cont.)

create a new TCPEstablished-
State object

send the state: message to
self to change my state

Design Decisions for the TCP example

• how/when are the state objects created? how are they
addressed?

• are the state objects shared?
• who is responsible for making the state transitions? methods in

the concrete states? or methods in the TCPConnection objects?

• is “TCPState” an interface? an abstract class? or a concrete
class?

• where will the actual methods (where the work is actually
accomplished) be performed? in the concrete states? in the
TCPConnection?

66

• how/when are the state objects created? every time we make a
state transition! How are they addressed? returned by new
operator

• are the state objects shared? no
• who is responsible for making the state transitions? methods in

the concrete states? or methods in the TCPConnection objects?
state transistions are made in TCPConnection (within the
methods that actually perform the valid operations)

• is “TCPState” an interface? an abstract class? or a concrete
class?
TCPState is an abstract class (Smalltalk doesn’t support
interfaces)

• where will the actual methods (where the work is actually
accomplished) be performed? in the concrete states? in the
TCPConnection? in methods of the TCPConnection

67

Design Decisions for the TCP example

Design Decisions for the Reflex Tester
• Where are the instance variables? In the context object, or in the state

objects?

• Are the state objects shared?

• How and when are the state objects created?
How are they addressed?

• Who is responsible for making the state transitions?
Methods in the context object?
Or methods in the state objects?

• Do the state objects implement an interface? Or inherit from an abstract
class? Or a concrete class?

• Where will the the work actually be accomplished? In the concrete
states? Or in the Context object?

68

Design Decisions for the Reflex Tester
• Where are the instance variables? In the context object, or in the state

objects?

• Are the state objects shared?

• How and when are the state objects created?
How are they addressed?

• Who is responsible for making the state transitions?
Methods in the context object?
Or methods in the state objects?

• Do the state objects implement an interface? Or inherit from an abstract
class? Or a concrete class?

• Where will the the work actually be accomplished? In the concrete
states? Or in the Context object?

68

Let’s leave them in the context object.

Design Decisions for the Reflex Tester
• Where are the instance variables? In the context object, or in the state

objects?

• Are the state objects shared?

• How and when are the state objects created?
How are they addressed?

• Who is responsible for making the state transitions?
Methods in the context object?
Or methods in the state objects?

• Do the state objects implement an interface? Or inherit from an abstract
class? Or a concrete class?

• Where will the the work actually be accomplished? In the concrete
states? Or in the Context object?

68

Let’s leave them in the context object.

No

Design Decisions for the Reflex Tester
• Where are the instance variables? In the context object, or in the state

objects?

• Are the state objects shared?

• How and when are the state objects created?
How are they addressed?

• Who is responsible for making the state transitions?
Methods in the context object?
Or methods in the state objects?

• Do the state objects implement an interface? Or inherit from an abstract
class? Or a concrete class?

• Where will the the work actually be accomplished? In the concrete
states? Or in the Context object?

68

Let’s leave them in the context object.

No
They are created anew in each context

Design Decisions for the Reflex Tester
• Where are the instance variables? In the context object, or in the state

objects?

• Are the state objects shared?

• How and when are the state objects created?
How are they addressed?

• Who is responsible for making the state transitions?
Methods in the context object?
Or methods in the state objects?

• Do the state objects implement an interface? Or inherit from an abstract
class? Or a concrete class?

• Where will the the work actually be accomplished? In the concrete
states? Or in the Context object?

68

Let’s leave them in the context object.

No
They are created anew in each context

Through instance variables of the context

Design Decisions for the Reflex Tester
• Where are the instance variables? In the context object, or in the state

objects?

• Are the state objects shared?

• How and when are the state objects created?
How are they addressed?

• Who is responsible for making the state transitions?
Methods in the context object?
Or methods in the state objects?

• Do the state objects implement an interface? Or inherit from an abstract
class? Or a concrete class?

• Where will the the work actually be accomplished? In the concrete
states? Or in the Context object?

68

Let’s leave them in the context object.

No
They are created anew in each context

Through instance variables of the context

The state objects

Design Decisions for the Reflex Tester
• Where are the instance variables? In the context object, or in the state

objects?

• Are the state objects shared?

• How and when are the state objects created?
How are they addressed?

• Who is responsible for making the state transitions?
Methods in the context object?
Or methods in the state objects?

• Do the state objects implement an interface? Or inherit from an abstract
class? Or a concrete class?

• Where will the the work actually be accomplished? In the concrete
states? Or in the Context object?

68

Let’s leave them in the context object.

No
They are created anew in each context

Through instance variables of the context

The state objects

They inherit from an abstract class

Design Decisions for the Reflex Tester
• Where are the instance variables? In the context object, or in the state

objects?

• Are the state objects shared?

• How and when are the state objects created?
How are they addressed?

• Who is responsible for making the state transitions?
Methods in the context object?
Or methods in the state objects?

• Do the state objects implement an interface? Or inherit from an abstract
class? Or a concrete class?

• Where will the the work actually be accomplished? In the concrete
states? Or in the Context object?

68

Let’s leave them in the context object.

No
They are created anew in each context

Through instance variables of the context

The state objects

They inherit from an abstract class

In the concrete states

Design Decisions for the Reflex Tester
• Where are the instance variables? In the context object, or in the state

objects?

• Are the state objects shared?

• How and when are the state objects created?
How are they addressed?

• Who is responsible for making the state transitions?
Methods in the context object?
Or methods in the state objects?

• Do the state objects implement an interface? Or inherit from an abstract
class? Or a concrete class?

• Where will the the work actually be accomplished? In the concrete
states? Or in the Context object?

69

Design Decisions for the Reflex Tester
• Where are the instance variables? In the context object, or in the state

objects?

• Are the state objects shared?

• How and when are the state objects created?
How are they addressed?

• Who is responsible for making the state transitions?
Methods in the context object?
Or methods in the state objects?

• Do the state objects implement an interface? Or inherit from an abstract
class? Or a concrete class?

• Where will the the work actually be accomplished? In the concrete
states? Or in the Context object?

69

Let’s leave them in the context object.

Design Decisions for the Reflex Tester
• Where are the instance variables? In the context object, or in the state

objects?

• Are the state objects shared?

• How and when are the state objects created?
How are they addressed?

• Who is responsible for making the state transitions?
Methods in the context object?
Or methods in the state objects?

• Do the state objects implement an interface? Or inherit from an abstract
class? Or a concrete class?

• Where will the the work actually be accomplished? In the concrete
states? Or in the Context object?

69

Let’s leave them in the context object.

Let’s make them singletons

Design Decisions for the Reflex Tester
• Where are the instance variables? In the context object, or in the state

objects?

• Are the state objects shared?

• How and when are the state objects created?
How are they addressed?

• Who is responsible for making the state transitions?
Methods in the context object?
Or methods in the state objects?

• Do the state objects implement an interface? Or inherit from an abstract
class? Or a concrete class?

• Where will the the work actually be accomplished? In the concrete
states? Or in the Context object?

69

Let’s leave them in the context object.

Let’s make them singletons
They are created once on initialization

Design Decisions for the Reflex Tester
• Where are the instance variables? In the context object, or in the state

objects?

• Are the state objects shared?

• How and when are the state objects created?
How are they addressed?

• Who is responsible for making the state transitions?
Methods in the context object?
Or methods in the state objects?

• Do the state objects implement an interface? Or inherit from an abstract
class? Or a concrete class?

• Where will the the work actually be accomplished? In the concrete
states? Or in the Context object?

69

Let’s leave them in the context object.

Let’s make them singletons
They are created once on initialization

Through methods of the singleton class

Design Decisions for the Reflex Tester
• Where are the instance variables? In the context object, or in the state

objects?

• Are the state objects shared?

• How and when are the state objects created?
How are they addressed?

• Who is responsible for making the state transitions?
Methods in the context object?
Or methods in the state objects?

• Do the state objects implement an interface? Or inherit from an abstract
class? Or a concrete class?

• Where will the the work actually be accomplished? In the concrete
states? Or in the Context object?

69

Let’s leave them in the context object.

Let’s make them singletons
They are created once on initialization

Through methods of the singleton class

The state objects

Design Decisions for the Reflex Tester
• Where are the instance variables? In the context object, or in the state

objects?

• Are the state objects shared?

• How and when are the state objects created?
How are they addressed?

• Who is responsible for making the state transitions?
Methods in the context object?
Or methods in the state objects?

• Do the state objects implement an interface? Or inherit from an abstract
class? Or a concrete class?

• Where will the the work actually be accomplished? In the concrete
states? Or in the Context object?

69

Let’s leave them in the context object.

Let’s make them singletons
They are created once on initialization

Through methods of the singleton class

The state objects

They inherit from an abstract class

Design Decisions for the Reflex Tester
• Where are the instance variables? In the context object, or in the state

objects?

• Are the state objects shared?

• How and when are the state objects created?
How are they addressed?

• Who is responsible for making the state transitions?
Methods in the context object?
Or methods in the state objects?

• Do the state objects implement an interface? Or inherit from an abstract
class? Or a concrete class?

• Where will the the work actually be accomplished? In the concrete
states? Or in the Context object?

69

Let’s leave them in the context object.

Let’s make them singletons
They are created once on initialization

Through methods of the singleton class

The state objects

They inherit from an abstract class

In the concrete states

Summary
• Consider the state pattern when several

methods choose their behavior based on
the value of an instance variable

• You can introduce patterns using
refactoring

• Take baby steps: code a little; test a little;
repeat

70

• Don’t expect to go in a straight line
• You will make changes to enable a refactoring

that you will later undo
• example: introducing the three instance variables to

address the three possible states

• You will make design decisions that turn out to be
inconvenient

• We are not yet done:
• example: the random number generator is accessed

only from ReflexStateIdle, so could be moved there

• but then ReflexStateIdle would no longer be a
Singleton

71

