
LOOM—Large Object
Oriented Memory for
Smalltalk-80 Systems
Ted Kaehler
Glenn Krasner
Software Concepts Group
Xerox Palo Alto Research Center
Palo Alto, California

roduction The Smalltalk-80 virtual machine is specified as a memory-resident sys-
tem containing up to 215 objects. When full, it typically occupies about
2M bytes of memory. Unfortunately, many machines do not have this
capacity in main memory, and many applications require, or will re-
quire, more than this capacity. To solve this space problem, one typical-
ly uses a virtual memory system in which the resident, "real" memory
is used as a cache for the larger mass storage, "virtual" memory.
LOOM, Large Object-Oriented Memory, is a virtual memory system
designed and implemented for the Smalltalk-80 system. The most im-
portant feature of the LOOM design is that it provides virtual addresses
that are much wider than either the word size or the memory address
size of the computer on which it runs.

LOOM is a single-user virtual memory system that swaps objects and
operates without assistance from the programmer. Virtual memory sys-
tems may be characterized by the amount of attention that the pro-
grammer must pay to the transfers between virtual and real memories,
by the extent to which the memory is shared among users, and by the
granularity of transfer between memory levels. Overlay mechanisms
are an example of systems that require much programmer attention,
while all common paging systems require none1. Databases may be

Copyright © Xerox Corporation, 1982. All rights reserved.
251

252
LOOM — Large Object-Oriented Memory for Smalltalk-80 Systems

viewed as the extreme in allowing sharing; the virtual memory for
Interlisp-D2 is one example of a single-user virtual memory. Most over-
lay systems transfer program segments, while paging systems transfer
disk pages, and a few systems such as the OOZE virtual memory for
Smalltalk-763 transfer objects.

The LOOM We view virtual memory design as a process of trying to determine
Design what happens most often, making it go fast, and hoping that it will con-

tinue to be what happens most often. Our experience with previous
Smalltalk systems gave us three major assumptions on which we based
the LOOM design: programmers and users have a large appetite for
memory, object-swapping is an efficient and effective scheme, and the
Smalltalk-80 design for handling resident objects is worth keeping.
From these assumptions and the desire to provide a large number of ob-
jects on a machine with a narrow word width, we created the major de-
sign decisions.

• LOOM assumes that the object is the unit of locality of reference.
It swaps individual objects between primary and secondary memo-
ry, and allows into main memory only those objects actually need-
ed by the interpreter. Unlike paging systems, LOOM packs objects
in main memory at maximum density.

• LOOM is designed for machines with 16-bit words. Fields of objects
in main memory are 16 bits wide.

• The address space of the secondary memory is large. LOOM allows
as many as 231 objects.

• The interpreter accesses objects in main memory exactly as it does
in a resident Smalltalk-80 interpreter. When the necessary objects
are already in main memory, the interpreter runs as fast as it did
in the resident system.

In order to allow the large number of possible objects, and yet treat the
resident objects in the same way they are treated in a non-LOOM
Smalltalk-80 implementation, we decided to create two different name
spaces. The same object is identified by names from different spaces
when it resides in different parts of the system, as shown in Fig. 14.1.
The identifier of an object is called an Oop, which stands for "object
pointer." An object in secondary storage has a 32-bit Oop (a long Oop),
and each of its fields containing a pointer to another object holds that

253
The LOOM Design

Smalltalk-80
Interpreter

Main Memory
16-bit object pointers

(short Oops)
16-bit values in fields of objects.

To the interpreter, objects
look very much like they did
in resident Smalltalk-80

Object Swapping

Figure 14.1

To the large secondary
memory, main memory
looks like a cache.

Secondary Memory
32-bit object pointers

(long Oops)
32-bit values in fields

pointer as a 32-bit Oop. An object cached in main memory has a 16-bit
Oop (a short Oop) and 16-bit fields. As in the resident Smalltalk-80 im-
plementation, main memory has a resident object table {ROT or some-
times called an OT), which contains the actual main memory address of
each resident object. An object's short Oop is an index into the ROT, so
that the object's address can be determined from its Oop with a single
addition and memory reference. When an object is brought into main
memory from disk, it is assigned a short Oop, and those of its fields that
refer to other objects in main memory are assigned the appropriate
short Oop. Fields pointing to objects that are not resident are handled
specially, the details of which make up the crux of LOOM.

Thus, when all objects in the working set are in main memory,
LOOM behaves just like a resident Smalltalk-80 implementation—all
objects have short Oops that index the ROT, providing their actual core
address. When an object in core must access one of its fields that refers
to an object that is not in core, something special must happen. LOOM
brings that object into core, assigns it a short Oop, and resumes normal
Smalltalk execution. The main memory resident space of 215 objects acts
as a cache for up to 231 objects on the disk.

254
LOOM—Large Object-Oriented Memory for Smalltalk-80 Systems

The LOOM
Details

The
Representation of
Resident Objects

The important issues in the LOOM design implementation are:

• The representation of resident objects,
• The representation of objects in secondary memory,
• The translation between representations, and
• The identification of times when the translations must occur.

Resident objects are represented in a manner similar to their represen-
tation in a resident Smalltalk-80 system. Each object has as its name in
main memory, a short (16-bit) Oop. The Oop indexes the ROT in order
to provide the starting address of the object's body, as shown in Fig.
14.2. The ROT entry also has reference-count bits, and a few other bits,
described later. The body of each object contains a word for the length
of the body, a pointer to the object's class, and the object's fields. Each
field is either a pointer to another object or a collection of "bits", in the
same manner as resident Smalltalk-80 fields. We will only deal with
pointer fields here. Each field (as well as the class pointer) that refers

Figure 14.2

Format of Objects in Main Memory

Resident Object Table Body of an Object
(ROT)

Indexed by
short Oop
(16-bits)

ROT entry
of an object

Object
Header

Main Memory
address of an
Object Body

Fields of
the Object

•16-bits-

- 16-bits-

J?55
The LOOM Details

to another resident object contains the short Oop of that object Fields
that refer to non-resident objects (objects on secondary storage) contain
a short Oop of one of two types, a leaf or a lambda.

In addition to these fields, resident objects in a LOOM system have
three extra words. Two of these words contain the long (32-bit) Oop of
that object. The third word, known as the delta word, contains a delta
reference count and some other bits. The short Oop of an object is not
only an index into the ROT for that object's address, but is also the re-
sult of a hash function applied to that object's long Oop. See Fig 14.3,
p. 256. The algorithm for translating an object's short Oop to its long
Oop is:

1. Index the ROT with the short Oop to get the body address
2. Load the long Oop from the first two words of the body

The algorithm for translating an object's long Oop to its short Oop is:

1. Convert the long Oop into a short Oop by applying the hash func-
tion

2. Index the ROT with this short Oop to get a body address
3. Look at the first two words of the body
4. If they match the long Oop, then the short Oop is correct
5. If not, create a new short Oop from the current one with a

reprobe function (e.g., add 1), and go to step 2

The
Representation of
Objects in
Secondary Memory

Secondary memory is addressed as a linear space of 32-bit words. Ob-
jects start with a header word that contains 16 bits of length and some
status bits. Each pointer field in the object is 32 bits wide. Non-pointer
fields (such as the bytes in Strings) are packed, with 4 bytes in each
32-bit word. Resident Smalltalk-80 Smalllntegers are rather short to be
occupying a full word on the disk. However, since they represent legiti-
mate object pointers, their 15 significant bits are stored along with a
flag value in a 32-bit pointer field on the disk. The long Oops in pointer
fields are 31-bit disk pointers, addressing as many objects as will fit into
231 disk words (32-bit words). Fields of objects on secondary storage al-
ways refer to objects in secondary storage and do not change when the
object to which they point is currently cached in main memory. As
shown in Fig. 14.4, no information about primary memory is ever
stored in secondary memory. Information such as an object's short Oop,
its location in primary memory, or whether it is currently cached in
primary memory are never recorded in secondary memory.

256
LOOM — Large Object-Oriented Memory for Smalltalk-80 Systems

Finding an Object's Long Oop from Its Short Oop
ROT Object Body

Short Oop
Delta
Length
Class

Fields

Long Oop

Finding an Object's Short Oop from Its Long Oop
ROT

Apply hash
function to
long Oop

Probe

Figure 14.3

This long Oop is not equal to ours.

Short Oop

Likewise, a miss.

This long Oop is the one we are
looking for. This object's short
Oop is the answer.

j?57
The LOOM Details

How Objects in Primary and Secondary Memory
Refer to Other Objects.

Hash a long Oop into the ROT and see
if the object is cached in primary memory

A Short Oop- The object
(in Primary Memory)

The object's
own long Oop

The object's
fields

A Long Oop. The object
(in Secondary Memory)

The object's
fields

Primary Memory

Figure 14.4

Secondary Memory
Objects here do not know if they
are currently cached in main memory.

When an object on secondary storage is brought into main memory, its
fields must be translated from the long form to short form. The object is
assigned an appropriate short Oop (one to which its long Oop hashes), a
block of memory is reserved for it, and all of its fields are translated
from long Oops to short Oops. Those fields that point to objects already
in main memory are given the short Oops of those objects; those that
point to objects not in main memory are handled in one of two ways,
with leaves or with lambdas.

Q Leaves Leaves are pseudo-objects that represent an object on sec-
ondary storage. They have a short Oop hashed by that object's long Oop
and a ROT entry, but their image in memory only contains a length
word, disk address words, and the delta word. Their image contains no
class word or fields, as shown in Fig. 14.5. Leaves therefore, only take
up 4 words of memory, whereas the average object takes up 13. Leaves
are created without looking at that object's image on secondary storage.

258
LOOM — Large Object-Oriented Memory for Smalltalk-80 Systems

This is very important, since a major cost in virtual memories is the
number of disk accesses. The short Oop of the leaf may be treated as if
it were the short Oop of the object; it may be pushed and popped on the
stack, stored into fields of other objects, without ever needing the actual
contents of that object. Its reference count can be incremented and
decremented (see p. 262).

A Leaf

ROT Primary Memory Secondary Memory

Figure 14.5

Long
Oop
Delta

Length (4)

The object in
Secondary Memory

An object is always in one of three states. Either the entire object is in
main memory, a leaf for the object is in main memory, or the object ex-
ists only on the disk. See Fig. 14.6. When the interpreter needs a field
from an object which is represented by a leaf, the entire object with its
fields must be brought into main memory from disk. Since the leaf con-
tains the disk Oop, the body is easy to find. After the body is translated
into main memory form, its core address is stored into the leaf's OT en-
try, and the leaf body is discarded. Short Oop references to the object
remain the same, but now the full object is actually there. Since a leaf
can be substituted for an object body and vice versa with no effect on
pointers to the object, LOOM is always free to make more room in main
memory by turning resident objects into leaves.

• Lambdas Lambdas are the second way to represent fields of resi-
dent objects that refer to objects on secondary storage. Lambda is a
place holder for a pointer to an object which has not been assigned a
short Oop. Its purpose is to reduce the number of leaves in the system.
Lambda is a pseudo-Oop, a reserved short Oop (the Oop 0) which is not
the name of any resident object. Consider an object which has a lambda
in one of its fields. To discover the actual value of that field, LOOM
must go back to the object's image on secondary storage, look in that

States of an Object in LOOM

259
The LOOM Details

The entire object is
in main memory

A leaf for this
object is in
main memory

The object exists
only in secondary
storage

Expand a leaf Resolve a long Oop
(Assign a short Oop)

Figure 14.6

The entire object is
in main memory

Contract
to a leaf

A leaf for this object
is in main memory

* \

The object exists only
in secondary storage

Retire a
short Oop

field for a long pointer, and create a leaf or resident object. This means
that the cost of fetching a lambda field is an extra disk reference. How-
ever, unlike leaves, lambdas do not take up ROT entries (they all use
the single pseudo-ROT entry at 0) and they do not take up any main
memory storage. Since the number of ROT entries is limited to 215, and
main memory is a somewhat scarce resource, this saving can be impor-
tant. During an object's typical stay in main memory, some of its fields
will not be referenced. If leaves are created for the values in those
fields when the object is swapped in, and then destroyed again when
the object is thrown out, much work is wasted. Putting lambdas into
fields which will not be referenced during the object's current stay in
primary memory saves both the space and the time needed to create
and destroy many leaves.

Determining whether to make the fields of an object be leaves or
lambdas when the object is brought into main memory is a tricky busi-
ness. The choice of strategy strongly affects the performance of a
LOOM system. Creating a leaf takes more time and uses up more mem-
ory and a ROT entry, but does not cause any extra disk accesses. A
lambda will cause an extra disk access if the field it occupies happens
to be referenced, but a lambda is faster to create. One way to make the
decision between leaf and lambda is to rely on history; if a field was a
lambda when this object was written to the disk one time, it is likely to
remain a lambda during its next trip into main memory. Each pointer
field of the disk contains a hint, the noLambda bit, and the object
faulting code follows the advice of the hint.

260
LOOM — Large Object-Oriented Memory for Smalltalk-80 Systems

The Translation
Between Object
Representations

When to Translate

Translating between the memory-resident and secondary-storage repre-
sentations of an object is straightforward. For those fields that contain
short Oops, the Oop refers to an object or a leaf. The corresponding long
Oop can be found in the header of the object or leaf. If the field refers
to an object which has not yet been assigned a long pointer, a long
pointer is assigned to the object and a copy is installed in the field. For
those fields that contain lambdas, the field is guaranteed not to be
changed from the object's previous disk image. (The object's disk image
is read before it is written). If the object being translated still has some
short pointers to it (has a positive in-core reference count), then it must
be converted to a leaf instead of being deleted completely from core.

We have already mentioned when the translation between representa-
tions must occur. When a field of an object being brought into main
memory has the noLambda bit set, and that field refers to a non-resi-
dent object, then a leaf is created. A leaf is also created when a field of
a resident object containing a lambda is accessed. When the interpreter
needs to access a field in a leaf, the flow of control in LOOM begins (see
Fig. 14.7). The leaf is expanded into a resident object; its fields are
translated from long form to short form. This is called an object fault
(because the similar situation in paging virtual memory systems, trying
to access a page that is not resident, is called a page fault). The inverse
operation, contracting an object into a leaf, may be done at any time.
The final part of an object's journey into primary memory consists of
destroying the leaf and reusing its short Oop and memory space. This
can only be done when there are no longer any fields in any resident
objects pointing to the leaf.

Lambdas may be resolved into leaves and leaves may be expanded
into full objects before they are needed, and this is called a prefetch.
The complementary operations of contraction and prefetch of objects
can both be done in the background. The exact order and mix of objects
to prefetch or contract can be adjusted at run-time to optimize the per-
formance of secondary storage (disk head movement or network traffic).

LOOM In this section, we provide some details of how LOOM may be
Implementat ion implemented. In particular we discuss the discovery of object faults, ref-
Details erence-counting, and the assignment of the extra bits in the ROT entry

and the delta word.

Object Faults
Object faults occur when the interpreter tries to access a field in a leaf
or a field in an object whose value is lambda. By the time the interpret-
er scrutinizes them, all objects must be full resident objects. How can
leaves and lambdas be discovered without greatly slowing the speed of
the interpreter?

261
LOOM Implementation Details

The Flow of Control in LOOM

The entire object
is in main memory

A leaf for this object
is in main memory

The object exists only
in secondary storage

Expand
the object

f
Resolve a
long Oop

The interpreter needs a
field from an object
which is a leaf

Expand needs to con-
vert long Oop in each
field to a short Oop

In the very rare case
that there is no empty
ROT entry with the
proper hash, contract
objects until such an
entry is freed

May have to contract
some objects to get
space in main memory

The entire object
is in main memory

The object exists only
in secondary storage

Contract an object
to a leaf If

Retire a short Oop
(Destroy the leaf)

Contract converts \
many short Oops to
long Oops

The last short Oop \
pointing to a leaf is
destroyed

Figure 14.7

262
LOOM — Large Object-Oriented Memory for Smalltalk-80 Systems

It has been our experience that implementations tend to have a sin-
gle subroutine (or expanded macro) that takes an Oop and sets up some
base register to point to the actual address of that object. We call this
subroutine "Otmap." It corresponds roughly to the ot:bits: method of the
memory manager in the formal specification of the Smalltalk-80 virtual
machine, in Smalltalk-80: The Language and its Implementation4.
Otmap is called if and only if you want to fetch or store a field of an ob-
ject. Note that this is exactly the condition where you must test for the
object being a leaf. (Otmap may sometimes be used for other purposes—
for example a compaction routine may call Otmap to get the main
memory address of the object in order to move it, but it wants to treat
leaves and objects the same. These cases tend to be rare, so it is worth
having a second subroutine for them.) We reserve one bit of the ROT
entry to say whether the entry is for an object or a leaf. The Otmap
subroutine tests this bit and calls the LOOM routines when the entry is
a leaf. Since both words of the ROT entry are fetched anyway, this ex-
tra test usually only costs one or two extra instruction executions.

Testing for lambda however, must be done on every field reference. In
the worst case, this would mean testing occurs every time a field is
fetched from an object and every time an object is pushed onto the
stack. To decrease the number of tests, we include one bit in each resi-
dent object called "holds lambda." It is set by the LOOM routines
whenever that object has a field that is a lambda. The interpreter guar-
antees that the current context, the home context, the current method,
and the receiver all have no lambdas in them. If any of them does con-
tain a lambda, then the LOOM routines are called to make those fields
into leaves. In this way, the most common fields fetched and all stack
operations can work without testing for lambda. Note that these objects
must be cleared of lambdas only when the active context changes. This
occurs during message sends, returns, process switches, and during the
execution of BlockContext value and value:.

It is useful to note that the LOOM design actually will work with
leaves alone, and without lambdas. When the expand routine brings an
object into main memory, it turns all the fields into leaves and never
creates a lambda. This approach tends to use more short Oops and
main memory than the full LOOM design, but could be an intermediate
stage in the implementation; providing a working virtual memory sys-
tem with only the modification to the Otmap subroutine.

Although some Smalltalk-80 implementations use mark/sweeping gar-
Reference bage collection, most implementations so far, including ours, use refer-
Counting ence counting to identify garbage. Therefore we will describe the

reference-counting scheme as it applies to LOOM. Reference counting
serves two different purposes. One purpose is to detect when the total
count of any object goes to zero. The other is to detect when the last
short pointer to any object disappears so that the short pointer may be

263
LOOM Implementation Details

Other Data
LOOM Holds for
Each Object

reused. The resident Smalltalk-80 interpreter keeps reference counts of
short pointers. This count is kept in the ROT. LOOM uses the ROT ref-
erence count to keep the number of short pointers to an object. In addi-
tion, every object on the disk contains a reference count which is the
number of long pointers to the object. The total count is the sum of the
number of short and long pointers to an object. Whenever a long Oop is
converted to a short Oop and installed in a field in main memory, both
counts for the object pointed at must change. To avoid a disk access to
find and modify the long Oop count every time a field is converted,
LOOM keeps a "delta" or running change in the long Oop reference
count for each object in main memory. The true long pointer reference
count of any object is the count found on the disk in the object's header
plus the count found in the "delta" part of the object's delta word in
main memory. Fig. 14.8 shows the ROT entry, object body, and disk im-
age of an object. The object has three short Oops pointing at it. It used
to have pointers from 6 long Oops, but two were destroyed recently
(they were probably converted to short Oops). The total number of ref-
erences to the object is seven.

There are three sources of reference-count changes. One pointer can
be stored over another, a long pointer can be converted to a short point-
er, and a short pointer can be converted back. Since the interpreter
only deals with short Oops, every store consists of a short pointer re-
placing another short pointer. This high-bandwidth operation touches
only the short pointer reference counts, so the existing code in the in-
terpreter does not need modification. When a leaf expands to a normal
object, pointers in its fields change from long Oops to short ones. The
expand-a-leaf routine increments the short count of that object and dec-
rements the delta of its long count. The inverse happens when the rou-
tine which shrinks objects into leaves converts short Oops to long ones.

Consider the case when the short Oop count of an object goes to zero.
The reference-count routine then looks at the object's long Oop count to
see if the total count of the object is zero. If it is zero, the object is truly
free, and its storage can be recycled. If not, the object is still held by
some long pointers. When the short Oop reference count goes to zero,
and the delta reference count is zero, then the object's long Oop count
on disk need not change. Thus if the ultimate long pointer count of a
leaf can be guessed correctly when the leaf is created, the disk count
and delta count can be adjusted so that the leaf disappears from main
memory without further disk references.

As a help to the LOOM system, two other bits are added to the ROT en-
try for any object—"clean" and "unTouched." Clean is cleared when-
ever a field of the object is changed; unTouched is cleared whenever a
field of the object is read or changed. Clean tells the LOOM system that
it need not rewrite the object's image on disk (unless of course, its true
reference count changed). Clean is set when the object is newly created

264
LOOM — Large Object Oriented Memory for Smalltalk 80 Systems

The Three Types of Reference Counts

ROT Main Memory Secondary Memory

ROT Count

f »
Γ

/
/

Di?k
Count

Figure 14.8

Example Reference Counts

There are a total of seven references to this object.
Three are from short Oops and
(6 Λ—2) = 4 are from long Oops.

 2

or swapped in. UnTouched is set by a routine that sweeps core whenev
er space is needed. Any object that the routine finds with unTouched
still set has not been touched in an entire pass through memory, and is
thus a candidate for being contracted (turned into a leaf).

The activity which is most likely to cause LOOM to thrash is the res
olution of lambdas. When a lambda needs to be resolved (turned into a
leaf or discovered to be an existing short Oop), LOOM must first look at
the disk image of the parent object. If the pattern of computation is

265
LOOM Implemented in the Smalltalk-80 Language

such that the noLambda hint does not correctly predict which fields are
needed by the interpreter, lambdas would have to be resolved often.
Even so, lambda resolution is likely to happen soon after the parent
was expanded, so keeping the most recently fetched disk pages in a
cache relieves the need to go to the disk. When a lambda needs to be
resolved, the LOOM procedure looks first in the cache of pages that is
called the disk buffer. If it finds the object in the buffer, it can directly
retrieve the long Oop for the lambda, saving one disk access.

LOOM
Implemented
in the
Smalltalk-80
Language

The LOOM design, though based on only a couple of simple principles,
has a number of reasonably complex algorithms that require a substan-
tial amount of code. We were faced with the problem of whether to im-
plement LOOM's object swapping algorithms in a low-level language or
a high-level language. Low-level implementations typically provide bet-
ter performance at the cost of some flexibility.

We opted to implement the LOOM system in our favorite high-level
system, the Smalltalk-80 system. A number of factors influenced this
choice. The overriding factor was that for us, the Smalltalk-80 language
was the most natural way to express and understand complex algo-
rithms. We are implementing LOOM on the Xerox Dorado computer5

(see also Chapter 7). We believe that the Dorado has sufficient perfor-
mance and memory space so that the LOOM system will not be called
very often. When LOOM is called, it will run with acceptable perfor-
mance. Also, once the system is up and running, we will have a com-
plete, debugged high-level description of the algorithms. Should we
decide to reimplement LOOM on the Dorado or another machine in a
lower-level language, only a translation of the code would be required.
In addition, we designed LOOM not only as a working virtual memory
system for our Smalltalk-80 work, but also as a test-bed for virtual
memory techniques. Jim Stamos' master's thesis6 is an example of one
experimental technique based on simulation. We want further studies
to use a real virtual memory system.

Deciding to implement LOOM in the Smalltalk-80 language itself led
to problems that might not be encountered in a low-level language im-
plementation. In particular, the amount of "machine state" that needs
to be saved when switching between running the Smalltalk-80 inter-
preter for "user" and for LOOM was quite large. The amount is much
larger than the amount of Smalltalk-80 virtual machine state that
would have to be saved to run the LOOM code written in machine lan-
guage. Also, to avoid a fault on the faulting code, all of the code and
other objects which comprise the implementation of LOOM must be
guaranteed to stay in main memory at all times.

266 _ ^ _ _ _
LOOM Large Object-Oriented Memory for Smalltalk-80 Systems

We handled the first problem, saving state, by reworking our inter-
preter. It now obeys the convention that within the execution of a
bytecode, an object fault is possible only before any "destructive" opera-
tions occur. In other words, before the interpreter writes into a field of
any object or changes the reference count of any object, it reads fields
from all objects needed by the current bytecode. In this way, the state
we needed to save was only the "permanent" state that exists between
bytecodes. Temporary state within a bytecode is not saved. In our sys-
tem then, if an object fault occurs, we back up the Smalltalk program
counter, switch the interpreter to the LOOM system, handle the fault,
and then restart the bytecode.

The second problem, insuring that no object faults occur during the
execution of the LOOM algorithms themselves, went through a couple
of different designs. The first method we tried was to have the LOOM
objects and the user's objects in the same Smalltalk-80 space, but to
mark all the objects LOOM would ever need "unpurgable", and to guar-
antee that free space never went below a certain level. We made an al-
most-complete implementation of LOOM using this method on the
Xerox Alto computer7 before moving onto the Dorado. The problem with
LOOM and the user sharing the same Smalltalk is retaining the marks
on objects that LOOM needs. If the user adds many methods to class
Small Integer and its method dictionary grows, how does the new array
in the dictionary get marked "unpurgable"? There are many similar
cases.

The LOOM implementation on the Dorado has two separate
Smalltalk-80 systems in the same machine: a full-size system for user's
programs, and a smaller one for LOOM. The LOOM system has some
primitives that enable it to manipulate the bits inside of objects in the
user system. (Note that because they use the same interpreter, the user
system has these primitives also. However, they make no sense in the
user system, so are never used.) Because the LOOM system uses only a
small subset of the Smalltalk-80 system, it can be much smaller, and
can be guaranteed to fit entirely within its portion of main memory and
never cause an object fault. Fig. 14.9 provides a view of the communica-
tion between the systems.

Alternative
Smalltalk
Virtual
Memory
Designs

The LOOM virtual memory design is only one of many ways to imple-
ment a virtual memory for a Smalltalk-80 system. The advantages of
the LOOM design are:

1. It runs as fast as a resident Smalltalk-80 interpreter when the
working set is in core,

267
Alternative Smalltalk Virtual Memory Designs

Two Separate Smalltalks in the Same Machine

User's Smalltalk

Resident Objects

(Really, these are the same
interpreter. Only pointers to the
interpreter state and location
of the ROT change)

Loom manipulation of
bits in user's ROT and
resident object space

Objects on I
Secondary ι
Storage

Interpreter requests to LOOM:
Expand a leaf
Fix a lambda
Make more space
Make more ROT space
Handle overflow

reference counts

Loom manipulation of
user's objects in
secondary storage using
normal Smalltalk file
and ethernet code

4 Primitives

ROT Resident Objects

Interpreter
State

Figure 14.9

268
LOOM — Large Object-Oriented Memory for Smalltalk-80 Systems

2. It uses 16-bit fields in core to conserve space,
3. It allows the interpreter to avoid handling 32-bit Oops, which

makes the interpreter smaller and faster on 16-bit machines,
4. It only uses memory for objects that are actually referenced, and
5. It provides a large, 32-bit virtual address space.

Its major disadvantages are:

1. It relies on fairly complicated algorithms to translate between the
address spaces,

2. It takes no advantage of current hardware technology for memory
fault detection, and

3. It must move objects between disk buffers and their place in mem-
ory.

There are alternatives to many of the design decisions within LOOM
and to using the LOOM design itself.

LOOM was designed specifically to experiment with various methods
of "grouping" objects on disk pages. If objects which are likely to be
faulted on at the same time live on the same disk page, only the first
fault actually has to wait for the disk. Static grouping restructures the
arrangement of objects on disk pages while the system is quiescent. It
reduces the number of disk accesses for both paged virtual memories
and object swapping systems. Stamos extensively studied the advan-
tages of static grouping and compared LOOM to paged virtual memo-
ries8. LOOM is also designed for experiments in dynamic grouping. We
have several algorithms in mind for moving objects on the disk while
Smalltalk is running. These algorithms will endeavor to reduce faulting
by dynamically placing related objects on the same disk page.

We also mentioned that a LOOM system can be built that only uses
leaves and not lambdas. Another alternative that we did not pursue is
to use a marking garbage collection scheme for resident objects and ref-
erence counting for disk references. This should be possible using the
delta reference-count scheme.

LOOM is currently intended for use over a local area network. The
design could be extended to bring many users, many machines, and
large quantities of immutable data into the same large address space. If
32-bit long Oops are not big enough, objects in secondary memory could
be quad-word aligned, giving 236 bytes of address space. The LOOM al-
gorithms are parameterized for the width of long pointers, so that a
change to 48-bit wide long Oops would not be difficult to do.

The LOOM design may be used for non-Smalltalk systems. In partic-
ular, we have proposed a LOOM-like design to extend the address space
of Interlisp-D. The design adds another level of virtual memory to the

269
Acknowledgments

existing Interlisp-D paging system by treating a page as a single object
and an existing page address as a short pointer.

Learning from
LOOM

Our LOOM virtual memory system is in its infancy. We are only begin-
ning to make measurements on its performance. The design choices of
the LOOM system are based on the belief that the way to design good
virtual memory systems is to determine what happens most of the time,
make it go fast, and hope it continues to happen most of the time.
Many trade-offs were made to meet this goal. Some of the design
choices we made apply to almost all Smalltalk-80 implementations and
some were determined by our hardware/software environment. For ex-
ample, the general idea that object swapping saves main memory over
paging applies to all Smalltalk-80 systems, but the relative cost of ob-
ject swapping versus paging can be heavily influenced by hardware sup-
port for one or the other. Since we know of no current hardware that
supports object swapping, but we do know that a great deal of current
hardware supports paging, paging has a tremendous advantage. Many
of the costs of paging are hidden, such as the address computation on
every memory reference, and the "built in" paging hardware on many
machines. If those costs were brought into the open, and the same
amount were spent on assisting object references, object oriented virtu-
al memories might have better cost-performance than paging systems.

The LOOM design uses two levels of object addressing and translates
between address spaces when necessary. Up to 231 objects residing on
secondary storage are represented by a cache of 215 objects in main
memory. These behave almost identically to resident Smalltalk-80 ob-
jects. When a reference from an object in main memory to one in sec-
ondary memory is made, an object fault occurs, the latter is brought
into main memory, and processing continues. This design allows for a
large virtual address space and a space- and speed-efficient resident
space. Because the major algorithms in LOOM are written in Smalltalk
itself, LOOM will be a major test-bed for new swapping algorithms and
for new ways of reducing page faults by grouping objects in secondary
storage.

Acknowledg-
ments

The design of LOOM was a true group effort. Jim Althoff and Steve
Weyer proposed an early version to improve the speed of their work on
programmer directed object overlays. Peter Deutsch worked out a de-
sign for an early version of the dual name spaces (short and long Oops).

270
LOOM — Large Object Oriented Memory for Smalltalk 80 Systems

Dan Ingalls, Glenn, and Ted designed the three kinds of reference
counts. Danny Bobrow said that leaves were not enough, and Larry
Tesler suggested lambdas from the design of his operating system called
Caravan. Ted, Dan, and Glenn worked out the final system design, and
Ted and Diana Merry built a test version of the LOOM algorithms. Ted
and Glenn did the Alto and Dorado implementations.

References 1. Denning, Peter J., "Virtual Memory", Computing Surveys vol. 2,
no. 3, Sept. 1970.

2. Burton, Richard R., et al., (The Interlisp D Group), Papers on
Interlisp D, Xerox PARC CIS 5, July 1981; (a revised version of
Xerox PARC SSL 80 4).

3. Kaehler, Ted, "Virtual Memory for an Object Oriented Lan
guage", Byte vol. 6, no. 8, Aug. 1981.

4. Goldberg, Adele, and Robson, David, Smalltalk 80: The Language
and Its Implementation, Addison Wesley, Reading, Mass., 1983.

5. Lampson, Butler W., and Pier, Kenneth Α., "A Processor for a
High Peformance Personal Computer", Seventh International
Symposium on Computer Architecture, SigArch/ IEEE, La Baule,
France, May 1980; (also in Xerox PARC CSL 81 1, Jan. 1981.)

6. Stamos, James W., "A Large Object Oriented Virtual Memory:
Grouping Strategies, Measurements, and Performance," Xerox
PARC SCG 82 2, May 1982.

7. Thacker, C. P., et al., "Alto: A Personal Computer", in Computer
Structures: Readings and Examples, 2nd Edition, Eds. Sieworek,
Bell, and Newell, McGraw Hill, New York, 1981; (also Xerox
PARC CSL 79 11, Aug. 1979.

8. See reference 6.

