

1 of 30

CS 420/520: Object-Oriented Programming

CS 420/520 — Winter 2007

To Type or not to Type:

Why

 is there a Question?

2 of 30

CS 420/520: Object-Oriented Programming

What is Type?

•

Value

 and

 Objects

...

– the entities with which we compute

• Types

– a specification of what can meaningfully be done to,
or done by, those Values or Objects

• Examples:

v, w: Integer

!

!

 can add v and w

c: Char, v: Integer

!

!

 can’t add v and c

s: Stack, e: Element

!

!

 push e onto s

3 of 30

CS 420/520: Object-Oriented Programming

An older view:

• Types describe data layouts in memory

– this is essentially the meaning of type in C

• This view of type is deprecated

– it’s important to distinguish between implementation
and interface

• In a class-based language

– The class describes the implementation

– The type describes the protocol (a.k.a. the interface)

4 of 30

CS 420/520: Object-Oriented Programming

Varieties of Typing

• Most languages compute with typed

values

– Tkl, Lisp, Snobol, Csh

– most machines too (float

vs.

 int

vs

. long)

• The distinctions between languages:

– whether the types of

identifiers

 are fixed

– whether the types of

 identifiers

and

 expressions

 are
inferred

– whether there are checks between the programmer’s
intent and the executing code

- compare Lisp to BCPL (or C)

5 of 30

CS 420/520: Object-Oriented Programming

Typing Expressions

Static

• Types are known and checked at compile
time.

– explicitly typed,

e.g.

, Java

– implicitly typed,

e.g.

, ML, Haskell

Dynamic

• Types are known and checked at runtime

6 of 30

CS 420/520: Object-Oriented Programming

Whether types are checked

Untyped:

• The programmer is on her own!

Typed:

• syntactic elements of language—the variables and
expressions—are assigned types by the
programmer and by inspecting the code.

• The

type system

 is the set of rules that let us do
this assignment, or check the programmer’s
assignment.

7 of 30

CS 420/520: Object-Oriented Programming

Sample Type Rules

Inference

Checking

Each language has its own type system

= set of rules for checking and inference

o :obj " ":# $% "##$ % a:##
o ." a& ': $

--

":# $% r:$ ok s0() ok s1() "# # # s0 s1 " return r;;;$ %=#

ok "()
--

8 of 30CS 420/520: Object-Oriented Programming

Type Systems

• Type systems exist for languages, logics,
inter-operation frameworks (e.g., COM,
CORBA)

• “Healthiness condition”

– When an expression e is determined to have type t
(via the type system, statically) then …

– when e is evaluated (at run time), the resulting value
will have type t.

 e.g., a+b/c

9 of 30CS 420/520: Object-Oriented Programming

• The subject-reduction property

– When an expression is “reduced” (i.e., evaluated),
the type of the reduced form conforms to the type of
the expression

– In other words: soundness

• Sample Rule applications

 a: int
 b: int
 c: int
 div: int x int!% rat
 plus: int x int % int

 plus(a, b): int
 div(plus(a, b), c) : rat

10 of 30CS 420/520: Object-Oriented Programming

Typed and Untyped Languages

Explicitly typed

• all functions and variables are given types
(signatures) by the programmer.

– e.g., Java:

Person p;
Student s;

11 of 30CS 420/520: Object-Oriented Programming

Implicitly typed

• all functions and variables are given types
by the compiler. The type (signature) is the
most general signature that is

– expressible in the type language

– consistent with the code that the programmer wrote

• Examples

concat : int (int list % int list
 char (char list % char list

&#)!#!(# list %!#!list

– Different type languages have different
expressiveness.

Andrew P. Black

Andrew P. Black
cons

12 of 30CS 420/520: Object-Oriented Programming

Type Inference

• Type inference (or type reconstruction) is
the process by which the compiler assigns
types to expressions

– using the type rules for the language.

• All compilers use some inference

a.append(“Hi“).append(“ “).append(“there”)

x / (n + 1)

• Some languages do a great deal (ML,
Haskell)

13 of 30CS 420/520: Object-Oriented Programming

Untyped Languages

• Examples: Lisp, Csh, Smalltalk, Self

– any variable can name data of any type (including
methods!)

– the type of a variable may vary from one program
point to another:

 ...
s find: x '

 ...
x match: y '

 ...
f reportOn: x '

14 of 30CS 420/520: Object-Oriented Programming

The Rôle of Types

• Types characterize what can be done to
values or objects

• Used in conjunction with your code (which
states what you want done to your values
and objects) provides redundancy:

– if what you want done is consistent with what the
types say can be done, your code is more likely to be
doing something sensible.

– Types are an explicit statement about intent:

 list xs; xs will behave like a list and all actions
on xs will be consistent with action on lists.

15 of 30CS 420/520: Object-Oriented Programming

Types in a Value Oriented Language

• Values are bit patterns.

 0011010001110011

– an int? a date? a uid? what is it?

• a types defines a set of operations that act
as interpreters of the bit patterns.

Date d;
nextDay(d);
previousDay(d);

 String s, t;
strcat(s,t);
streq(s,t);

16 of 30CS 420/520: Object-Oriented Programming

Types in OO Languages

• We can’t see bit patterns any more!

• Every object is a package: bit pattern + set
of operations.

• Can’t see the bit pattern except through the
set of operations.

– The action of strcat, streq, substring, etc. are entirely
encapsulated in the String object.

17 of 30CS 420/520: Object-Oriented Programming

What can Go Wrong Without Types?

• With values: an incorrect operation can be
applied to a bit pattern.

Date d; String s;
strcat(d,s);

– the code now treats d as a String even though it isn’t.

• The Result?

18 of 30CS 420/520: Object-Oriented Programming

Chaos!

In a precise technical sense!

• The resulting state cannot be determined
from the definition of the language!

– We would have to know the details of how dates are
represented

– This ought to be machine dependent

• the failure of the program may not be
apparent until much later.

19 of 30CS 420/520: Object-Oriented Programming

In a Statically typed, Value-oriented
Language

This program could never be run!

• Only “well-typed” programs are legal

– an application of a function to a value is only well
typed if it can never be applied to a value of an
incorrect type.

• “Well-typed programs don’t go wrong”

– in ways that can’t be understood in terms of the
language itself

20 of 30CS 420/520: Object-Oriented Programming

In Dynamically Typed, Value-Oriented
Languages

• A run-time type error occurs

– “attempt to apply operation strcat to a date”

• A type error usually indicates a conceptual
problem in the algorithm

– it can be corrected at the level of the programming
language and rather than at the level of the bits.

– The type structure of the program reflects the
conceptual model of the solution.

21 of 30CS 420/520: Object-Oriented Programming

In an Object-Oriented Language

• The client asks an object to perform an
operation. What kind of error can occur?

– the requested operation is not one of the supported
operations defined by the object.

– the result is Message Not Understood

• This occurs in both typed and untyped OO
languages.

• This is better than a jumble of bits!

22 of 30CS 420/520: Object-Oriented Programming

Is it good enough?

• Yes… because we don’t “do” an incorrect
message.

• No... we may travel a long way from the
original conceptual error before we finally
get message not understood.

– We have to wait until the message is sent before we
get the warning of our error

• Typed OO languages

– Let us find all potential message not understood
errors before we ever run the program.

23 of 30CS 420/520: Object-Oriented Programming

Costs of typed languages

• Syntactic noise

• Some programs that will never generate an
error will be type-incorrect

– the type language is not expressive enough to
handle the type.

• In practice, we need a dynamic type
system too!
– Java casts in and out of Vectors and tests into Arrays

– Objects that arrive at run-time

– The “right” type system is an engineering
compromise

24 of 30CS 420/520: Object-Oriented Programming

• More development time (and more
information needed) in order to compile
programs written in typed languages...

– incremental development must include type
information on all pieces, even those not written yet.

– While development time increases, the increase in
the quality of correct code usually more than
compensates for the time and effort.

• Higher-order type systems are being
investigated to increase the
expressiveness of the object language so
that more programs can be well typed.

