CS420/520 — Object-oriented Programming

Testing

If it’s not in version control, it doesn’t exist
If it’s not tested, it doesn’t work

The only software that won’t change is
software that nobody uses
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Why Unit Testing?

® |f it is not tested, it does not work

e Tests represent an executable specification Of
what the methods ought to do

> non-executable specifications gather dust on
shelves.
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Why Unit Testing (2)

e The more time between coding and
testing:
> More effort is needed to write tests
> More effort is needed to find bugs
> Fewer bugs are found
> Time is wasted working with buggy code
» Development time increases
> Quality decreases
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Why Unit Testing (3)

e Without unit tests:

> Code integration is a nightmare
- Changing code required more courage than | have!
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Why Automated Tests?

e What is wrong with:
> Using print statements?
> Writing comments that exercise your code?
> Writing extra methods that exercise your code?

> Writing small workspace scripts to run code?

> Running program and testing it by using it?
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A testing method should;:

* Work with n programmers working for k months
(years)

 Help when modifying code 6 months after it was
written

 Check impact of code changes on rest of system

 Work in a school project as well as in industry

> This is probably unrealistic!

* Help to build good habits and skills
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We have a QA Team, so why should |
write tests?

 How long does it take QA to test your code?

e How much time does your team spend working around
bugs before QA tests?

e How easy is it to find & correct the errors after QA finds
them?

e Most programmers already have an informal testing
process

e With a little more work you can develop a useful and
reusable test suite
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When to Write Unit Tests

* First write the tests — Test Driven Development
* Then write the code to be tested
* Writing tests first saves time!

> Makes you aware of the interface & functionality
of the code

> Removes temptation to skip tests
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SUnit (JUnit, gUnit, ...)

Free frameworks for Unit testing
SUnit originally written by Kent Beck 1994
Built into VisualWorks, Squealk, ...
JUnit written by Kent Beck & Erich Gamma

gUnit written by Andrew Black, 2012



Not just for Smalltalk & Grace

e Ports are available In:

Java .NET Ada AppleScript C

C# C++ Curl Delphi

Eiffel Eiffel Flash Forte 4GL
Gemstone/S Haskell HTML Jade
LISP Objective-C Oracle Palm

Perl Php PowerBuilder Python
Ruby Scheme Smalltalk Visual Basic
XML XSLT
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The minitest dialect

minitest is a Grace dialect that provides a veneer
over gUnit.

It means that you don't have to remember the
syntactic details of using “raw” gUnit — what to
inherit from, what to define, etc.

it has essentially the same functionality.

minispec is the same thing, but with BDD language



Don’t let slow tests bog you down

e Michael Feathers (htip:/tinyurl.com/87nj2) Writes:

e Atestis not a unit test if:
o |t talks to the database
° |t communicates across the network
° |t touches the file system

° |t can't run at the same time as any of your other
unit tests

° You have to do special things to your environment
(such as editing config files) to run it.
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Rationale

e Tests that do these things aren't bad. Often they

are worth writing, and they can be written in a
unit test harness.

e However, it Is Important to be able to separate
them from true unit tests so that we can keep a
set of tests that we can run fast whenever we
make our changes.
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Acceptance Tests vs. Unit Tests

e Unit tests:

> capture one piece of functionality

> make it easier to identify bugs in that functionality

e Acceptance tests (aka Functional tests)
> represent a scenario in the larger application

> Tests that break Feathers’ rules may make good
acceptance tests.
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Acceptance lests

e Example: a compiler

> one test for each possible source language
statement, makes assertions about the emitted
code

> might exercise many classes, read and write from
the file system ...

e You can put such tests in xUnit

> but separate them from the true unit tests (why?)
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How to test a client

e S0, your job is to write a client that
interacts with a database. How do you
test it?

» Use Fake Objects to simulate the database

fﬁs,?fd"iven

— http://www.mockobjects.com
Test Driven Development, A

— Practical Guide by David Astels
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Coverage

class String TestString (inherits testCase)
append: — testAppendChar
substring:to: = — testAppendString
at:putChar: “ _ testSubstring

charAt: ~ testSubstringBoundaries

L testPutChar

/)]
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Asserting more things

—assert () description
takes what you expect to be true

—deny ()description
takes what you expect to be false

—assert{}shouldRaise

takes a block and the kind of error it should
raise

—assert () hasType

asserts that the expression has all of the methods
of the type
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Unit Tests: More Detalls

e The setUp method happens before each

testX method (the framework ensures
this)

e The tearDown method happens after
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Best Practices

e Test everything that you want to work

e More test methods in your TestCase than in the
class you are testing

e Tests should be as fine grained as possible
e TJests should be independent

e Should not take long to run (a few seconds)
e Easy to understand: tests read like a

specification
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Black's rule of testing

e Clearly:

> For every important property, there should be a
test

e Not so obvious:

> For every test, there should be a property, such
that when the test passes, your confidence in the
property increases

> Multiple tests of same property are bad (why?)

Have a property in mind
when you write a test
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Tests as Specification

dialect "minitest" the description
e)qaLaiws the sttuation if the
testSuiteNamed "set tests" with { assertion is false

test "a new set is empty" by {
def newSet = set [ |
assert (newSet.isEmpty) description "a new set is not empty"
§
test "sets don't contain duplicates" by {
def s = set ["one"]
assert (s.size) shouldBe 1
s.add "one"
assert (s.size) shouldBe 1
§
test "even if an element has been added twice, it's in the set just once" by {
def s = set ["one"]
s.add "one"
s.remove "one"
assert (s.isEmpty) description "after removing its single element, set is not empty"

}

}
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BDD makes Specification View Clear

‘orsag‘

dialec "minispec" ; : -
P arg explains the situation

Lf the e)qseotatiow Ls not

describe "set tests" with {
specify "a new set is empty" by { met
def newSet = set [ |
expect (newSet.isEmpty) toBe true orSay "a new set is not empty"
5
specify "sets don't contain duplicates" by {
def s = set ["one"]
expect (s.size) toBe 1
s.add "one"
expect (s.size) toBe 1
5
specify "even if an element has been added twice, it’s in the set just once" by {
def s = set ["one"]
s.add "one"
s.remove "one"
expect (s.isEmpty) toBe true orSay "after removing its single element, set is not empty"
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So why Unit Test?

e Not much work to write or run

e Documents your class

e Gives you and others confidence that your code works
 No need to wait for “testing team”

e Tests are fined grained — can be run independently
 Tests can be aggregated easily

 Which tests fail give you a hint of where a bug was
iIntroduced

 Provides a fairly-complete regression test
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What is Test-Driven Development?

e A different way to build software

e A strict development method:
> Add a test.

> Run the test.

> Make a small change.

> Run the tests again. (If they fail, go back to 3)

> Refactor (while testing)
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Where did this come from?

e Test-First Development (+refactoring)

e A practice of Extreme Programming

> Accept and love change

> Release early, release often

e There are many supposed advantages,
but we’ll discuss those after we try it
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So why Test-first?

* You always know what to do next: write a test or make a test
pass

* You test code while you are writing it, instead of after you
have forgotten about it

* Your tests are always up to date — no backlogs of testing to-
do

* You take the customer’s point of view — what do | really want
the code to do

* The code you have is exactly what is requested — no more,
no less
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Patterns for Testing

Simple Smalltalk Testing: With Patterns

Kent Beck,

First Class Software, Inc.
KentBeck@compuserve.com

http://swing fit.cvut.cz/projects/stx/doc/online/english/tools/misc/testfram.htm
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