CS420/520 — Object-oriented Programming

Testing

If it’s not in version control, it doesn’t exist
If it’s not tested, it doesn’t work

The only software that won’t change is
software that nobody uses

Portland State

IIIIIIIIII

Why Unit Testing?

® |f it is not tested, it does not work

e Tests represent an executable specification Of
what the methods ought to do

> non-executable specifications gather dust on
shelves.

Portland State 2

IIIIIIIIII

Why Unit Testing (2)

e The more time between coding and
testing:
> More effort is needed to write tests
> More effort is needed to find bugs
> Fewer bugs are found
> Time is wasted working with buggy code
» Development time increases
> Quality decreases

Portland State

IIIIIIIIII

Why Unit Testing (3)

e Without unit tests:

> Code integration is a nightmare
- Changing code required more courage than | have!

Portland State

IIIIIIIIII

Why Automated Tests?

e What is wrong with:
> Using print statements?
> Writing comments that exercise your code?
> Writing extra methods that exercise your code?

> Writing small workspace scripts to run code?

> Running program and testing it by using it?

Portland State

IIIIIIIIII

A testing method should;:

* Work with n programmers working for k months
(years)

 Help when modifying code 6 months after it was
written

 Check impact of code changes on rest of system

 Work in a school project as well as in industry

> This is probably unrealistic!

* Help to build good habits and skills

Portland State ¢

IIIIIIIIII

We have a QA Team, so why should |
write tests?

 How long does it take QA to test your code?

e How much time does your team spend working around
bugs before QA tests?

e How easy is it to find & correct the errors after QA finds
them?

e Most programmers already have an informal testing
process

e With a little more work you can develop a useful and
reusable test suite

Portland State 7

IIIIIIIIII

When to Write Unit Tests

* First write the tests — Test Driven Development
* Then write the code to be tested
* Writing tests first saves time!

> Makes you aware of the interface & functionality
of the code

> Removes temptation to skip tests

Portland State 8

IIIIIIIIII

SUnit (JUnit, gUnit, ...)

Free frameworks for Unit testing
SUnit originally written by Kent Beck 1994
Built into VisualWorks, Squealk, ...
JUnit written by Kent Beck & Erich Gamma

gUnit written by Andrew Black, 2012

Not just for Smalltalk & Grace

e Ports are available In:

Java .NET Ada AppleScript C

C# C++ Curl Delphi

Eiffel Eiffel Flash Forte 4GL
Gemstone/S Haskell HTML Jade
LISP Objective-C Oracle Palm

Perl Php PowerBuilder Python
Ruby Scheme Smalltalk Visual Basic
XML XSLT

Portland State 10

IIIIIIIIII

The minitest dialect

minitest is a Grace dialect that provides a veneer
over gUnit.

It means that you don't have to remember the
syntactic details of using “raw” gUnit — what to
inherit from, what to define, etc.

it has essentially the same functionality.

minispec is the same thing, but with BDD language

Don’t let slow tests bog you down

e Michael Feathers (htip:/tinyurl.com/87nj2) Writes:

e Atestis not a unit test if:
o |t talks to the database
° |t communicates across the network
° |t touches the file system

° |t can't run at the same time as any of your other
unit tests

° You have to do special things to your environment
(such as editing config files) to run it.

Portland State 12

IIIIIIIIII

Rationale

e Tests that do these things aren't bad. Often they

are worth writing, and they can be written in a
unit test harness.

e However, it Is Important to be able to separate
them from true unit tests so that we can keep a
set of tests that we can run fast whenever we
make our changes.

Portland State '3

IIIIIIIIII

Acceptance Tests vs. Unit Tests

e Unit tests:

> capture one piece of functionality

> make it easier to identify bugs in that functionality

e Acceptance tests (aka Functional tests)
> represent a scenario in the larger application

> Tests that break Feathers’ rules may make good
acceptance tests.

Portland State 4

IIIIIIIIII

Acceptance lests

e Example: a compiler

> one test for each possible source language
statement, makes assertions about the emitted
code

> might exercise many classes, read and write from
the file system ...

e You can put such tests in xUnit

> but separate them from the true unit tests (why?)

Portland State >

IIIIIIIIII

How to test a client

e S0, your job is to write a client that
interacts with a database. How do you
test it?

» Use Fake Objects to simulate the database

fﬁs,?fd"iven

— http://www.mockobjects.com
Test Driven Development, A

— Practical Guide by David Astels

Portland State 16

IIIIIIIIII

Coverage

class String TestString (inherits testCase)
append: — testAppendChar
substring:to: = — testAppendString
at:putChar: “ _ testSubstring

charAt: ~ testSubstringBoundaries

L testPutChar

/)]

Portland State

UNIVERSITY

Asserting more things

—assert () description
takes what you expect to be true

—deny ()description
takes what you expect to be false

—assert{}shouldRaise

takes a block and the kind of error it should
raise

—assert () hasType

asserts that the expression has all of the methods
of the type

Portland State

IIIIIIIIII

Unit Tests: More Detalls

e The setUp method happens before each

testX method (the framework ensures
this)

e The tearDown method happens after

Portland State

IIIIIIIIII

Best Practices

e Test everything that you want to work

e More test methods in your TestCase than in the
class you are testing

e Tests should be as fine grained as possible
e TJests should be independent

e Should not take long to run (a few seconds)
e Easy to understand: tests read like a

specification

Portland State 20

IIIIIIIIII

Black's rule of testing

e Clearly:

> For every important property, there should be a
test

e Not so obvious:

> For every test, there should be a property, such
that when the test passes, your confidence in the
property increases

> Multiple tests of same property are bad (why?)

Have a property in mind
when you write a test

Portland State 2l

IIIIIIIIII

Tests as Specification

dialect "minitest" the description
e)qaLaiws the sttuation if the
testSuiteNamed "set tests" with { assertion is false

test "a new set is empty" by {
def newSet = set [|
assert (newSet.isEmpty) description "a new set is not empty"
§
test "sets don't contain duplicates" by {
def s = set ["one"]
assert (s.size) shouldBe 1
s.add "one"
assert (s.size) shouldBe 1
§
test "even if an element has been added twice, it's in the set just once" by {
def s = set ["one"]
s.add "one"
s.remove "one"
assert (s.isEmpty) description "after removing its single element, set is not empty"

}

}

Portland State 22

UNIVERSITY

BDD makes Specification View Clear

‘orsag‘

dialec "minispec" ; : -
P arg explains the situation

Lf the e)qseotatiow Ls not

describe "set tests" with {
specify "a new set is empty" by { met
def newSet = set [|
expect (newSet.isEmpty) toBe true orSay "a new set is not empty"
5
specify "sets don't contain duplicates" by {
def s = set ["one"]
expect (s.size) toBe 1
s.add "one"
expect (s.size) toBe 1
5
specify "even if an element has been added twice, it’s in the set just once" by {
def s = set ["one"]
s.add "one"
s.remove "one"
expect (s.isEmpty) toBe true orSay "after removing its single element, set is not empty"

Portland State 23

UNIVERSITY

So why Unit Test?

e Not much work to write or run

e Documents your class

e Gives you and others confidence that your code works
 No need to wait for “testing team”

e Tests are fined grained — can be run independently
 Tests can be aggregated easily

 Which tests fail give you a hint of where a bug was
iIntroduced

 Provides a fairly-complete regression test

Portland State 24

IIIIIIIIII

What is Test-Driven Development?

e A different way to build software

e A strict development method:
> Add a test.

> Run the test.

> Make a small change.

> Run the tests again. (If they fail, go back to 3)

> Refactor (while testing)

Portland State 25

IIIIIIIIII

Where did this come from?

e Test-First Development (+refactoring)

e A practice of Extreme Programming

> Accept and love change

> Release early, release often

e There are many supposed advantages,
but we’ll discuss those after we try it

Portland State

IIIIIIIIII

So why Test-first?

* You always know what to do next: write a test or make a test
pass

* You test code while you are writing it, instead of after you
have forgotten about it

* Your tests are always up to date — no backlogs of testing to-
do

* You take the customer’s point of view — what do | really want
the code to do

* The code you have is exactly what is requested — no more,
no less

Portland State

IIIIIIIIII

Portland State

UNIVERSITY

Patterns for Testing

Simple Smalltalk Testing: With Patterns

Kent Beck,

First Class Software, Inc.
KentBeck@compuserve.com

http://swing fit.cvut.cz/projects/stx/doc/online/english/tools/misc/testfram.htm

28

mailto:KentBeck@compuserve.com
http://swing.fit.cvut.cz/projects/stx/doc/online/english/tools/misc/testfram.htm

