
Testing

If it’s not in version control, it doesn’t exist

If it’s not tested, it doesn’t work

The only software that won’t change is
software that nobody uses

CS420/520 — Object-oriented Programming

 Why Unit Testing?

• If it is not tested, it does not work

• Tests represent an executable specification of
what the methods ought to do
‣ non-executable specifications gather dust on

shelves.

 2

Why Unit Testing (2)

• The more time between coding and
testing:
‣ More effort is needed to write tests
‣ More effort is needed to find bugs
‣ Fewer bugs are found
‣ Time is wasted working with buggy code
‣ Development time increases
‣ Quality decreases

 3

• Without unit tests:
‣ Code integration is a nightmare

° Changing code required more courage than I have!

 4

Why Unit Testing (3)

• What is wrong with:
‣ Using print statements?

‣Writing comments that exercise your code?

‣Writing extra methods that exercise your code?

‣Writing small workspace scripts to run code?

‣ Running program and testing it by using it?

Why Automated Tests?

 5

A testing method should:

• Work with n programmers working for k months
(years)

• Help when modifying code 6 months after it was
written

• Check impact of code changes on rest of system

• Work in a school project as well as in industry
‣ This is probably unrealistic!

• Help to build good habits and skills

 6

We have a QA Team, so why should I
write tests?

• How long does it take QA to test your code?

• How much time does your team spend working around
bugs before QA tests?

• How easy is it to find & correct the errors after QA finds
them?

• Most programmers already have an informal testing
process

• With a little more work you can develop a useful and
reusable test suite

 7

When to Write Unit Tests

• First write the tests — Test Driven Development

• Then write the code to be tested

• Writing tests first saves time!

‣ Makes you aware of the interface & functionality
of the code

‣ Removes temptation to skip tests

 8

 9

SUnit (JUnit, gUnit, …)

• Free frameworks for Unit testing

• SUnit originally written by Kent Beck 1994

• Built into VisualWorks, Squeak, ...

• JUnit written by Kent Beck & Erich Gamma

• gUnit written by Andrew Black, 2012–

Not just for Smalltalk & Grace

• Ports are available in:
- Java .NET Ada AppleScript C  

 C# C++ Curl Delphi  
 Eiffel Eiffel Flash Forte 4GL  
 Gemstone/S Haskell HTML Jade  
 LISP Objective-C Oracle Palm  
 Perl Php PowerBuilder Python  
 Ruby Scheme Smalltalk Visual Basic  
 XML XSLT

 10

The minitest dialect

• minitest is a Grace dialect that provides a veneer
over gUnit.

• It means that you don't have to remember the
syntactic details of using “raw” gUnit — what to
inherit from, what to define, etc.

• it has essentially the same functionality.

• minispec is the same thing, but with BDD language

 11

Don’t let slow tests bog you down

• Michael Feathers (http://tinyurl.com/87nj2) writes:
• A test is not a unit test if:

° It talks to the database

° It communicates across the network

° It touches the file system

° It can't run at the same time as any of your other
unit tests

° You have to do special things to your environment
(such as editing config files) to run it.

 12

Rationale

• Tests that do these things aren't bad. Often they
are worth writing, and they can be written in a
unit test harness.

• However, it is important to be able to separate
them from true unit tests so that we can keep a
set of tests that we can run fast whenever we
make our changes.

 13

Acceptance Tests vs. Unit Tests

• Unit tests:
‣ capture one piece of functionality

‣ make it easier to identify bugs in that functionality

• Acceptance tests (aka Functional tests)
‣ represent a scenario in the larger application

‣ Tests that break Feathers’ rules may make good
acceptance tests.

 14

Acceptance Tests

• Example: a compiler
‣ one test for each possible source language

statement, makes assertions about the emitted
code

‣ might exercise many classes, read and write from
the file system …

• You can put such tests in xUnit
‣ but separate them from the true unit tests (why?)

 15

How to test a client

• So, your job is to write a client that
interacts with a database. How do you
test it?

• Use Fake Objects to simulate the database
– http://www.mockobjects.com

– Test Driven Development
,

Test Driven Development, A
Practical Guide by David Astels

 16

Coverage

class String

 append:

 substring:to:

 at:putChar:

 charAt:

TestString (inherits testCase)

 testAppendChar

 testAppendString

 testSubstring

 testSubstringBoundaries

 testPutChar

 17

Asserting more things
-assert() description  

 takes what you expect to be true
-deny()description  

takes what you expect to be false
-assert{}shouldRaise  

takes a block and the kind of error it should
raise

-assert()hasType  
asserts that the expression has all of the methods
of the type

 18

Unit Tests: More Details

• The setUp method happens before each
testX method (the framework ensures
this)

• The tearDown method happens after

Best Practices
• Test everything that you want to work

• More test methods in your TestCase than in the
class you are testing

• Tests should be as fine grained as possible

• Tests should be independent

• Should not take long to run (a few seconds)

• Easy to understand: tests read like a
specification

 20

Black's rule of testing
• Clearly:
‣ For every important property, there should be a

test

• Not so obvious:
‣ For every test, there should be a property, such

that when the test passes, your confidence in the
property increases

‣ Multiple tests of same property are bad (why?)

 21

Have a property in mind 
when you write a test

Tests as Specification
dialect "minitest" 
 
testSuiteNamed "set tests" with { 
 test "a new set is empty" by { 
 def newSet = set [] 
 assert (newSet.isEmpty) description "a new set is not empty" 
 } 
 test "sets don't contain duplicates" by { 
 def s = set ["one"] 
 assert (s.size) shouldBe 1 
 s.add "one" 
 assert (s.size) shouldBe 1 
 } 
 test "even if an element has been added twice, it's in the set just once" by { 
 def s = set ["one"] 
 s.add "one" 
 s.remove "one" 
 assert (s.isEmpty) description "after removing its single element, set is not empty"  
 } 
}

 22

the description
explains the situation if the

assertion is false

BDD makes Specification View Clear
dialect "minispec" 
 
describe "set tests" with { 
 specify "a new set is empty" by { 
 def newSet = set [] 
 expect (newSet.isEmpty) toBe true orSay "a new set is not empty" 
 } 
 specify "sets don't contain duplicates" by { 
 def s = set ["one"] 
 expect (s.size) toBe 1 
 s.add "one" 
 expect (s.size) toBe 1 
 } 
 specify "even if an element has been added twice, it’s in the set just once" by { 
 def s = set ["one"] 
 s.add "one" 
 s.remove "one" 
 expect (s.isEmpty) toBe true orSay "after removing its single element, set is not empty"  
 } 
}

 23

`orSay`
arg explains the situation

if the expectation is not
met

So why Unit Test?

• Not much work to write or run

• Documents your class

• Gives you and others confidence that your code works

• No need to wait for “testing team”

• Tests are fined grained – can be run independently

• Tests can be aggregated easily

• Which tests fail give you a hint of where a bug was
introduced

• Provides a fairly-complete regression test

 24

What is Test-Driven Development?

• A different way to build software

• A strict development method:
‣ Add a test.

‣ Run the test.

‣ Make a small change.

‣ Run the tests again. (If they fail, go back to 3)

‣ Refactor (while testing)

 25

Where did this come from?

• Test-First Development (+refactoring)

• A practice of Extreme Programming
‣ Accept and love change

‣ Release early, release often

• There are many supposed advantages,
but we’ll discuss those after we try it

So why Test-first?

• You always know what to do next: write a test or make a test
pass

• You test code while you are writing it, instead of after you
have forgotten about it

• Your tests are always up to date – no backlogs of testing to-
do

• You take the customer’s point of view – what do I really want
the code to do

• The code you have is exactly what is requested – no more,
no less

Patterns for Testing

Simple Smalltalk Testing: With Patterns
Kent Beck,  

First Class Software, Inc.  
KentBeck@compuserve.com

http://swing.fit.cvut.cz/projects/stx/doc/online/english/tools/misc/testfram.htm

 28

mailto:KentBeck@compuserve.com
http://swing.fit.cvut.cz/projects/stx/doc/online/english/tools/misc/testfram.htm

