Sequence Diagrams

Within a sequence diagram, an @b;;eei: is shown as a box at the top of a
dashed vertical line (see Figure 5-1).

i i
der Ent - . N
an Order Entry ; arn Order an Order Line a Stack Trem |
wingdow | j
5% i i)
! prepare {} 2) |
g | | |
i § * prepare ()
onect| | 4| g7 |
% Eh U L !
: |
Message %
L _ Condition
[teration
[hasStock] fg&
remove() | needsReorder=
b needdsTOReorder()
i —
1 |
| e Selrcal
ijﬁA ~~~~~ =
i
Retur
&
y
i Vi
! /
R - B
! f
‘ 1
fhasStock] new ! i
I (Bl dtem
b
e s & T
i i ? ‘%
- | i P,f 5
| g /,f |
e ! R |
Creation)

"'Dﬁieé‘ic}rz

Figure 5-1: Sequence Diagram
From: UML Distilled (2e), by Martin Fowler & Kendall Scott. Addison Wesley 1999

This vertical line is called the object’s lifeline. The lifeline represents
the object’s life during the interaction. This form was first popularized
by }&CODM}}L

Each message is represented by an arrow between the lifelines of two

objects. The order in which these messages occur is shown top to bot-
tom on the page. Each message is labeled at minimum with the mes-
sage name; you can also include the arguments and some control
information. You can show a self-call, a o essage that an object sends
to itself, by sending the message arrow back to tfh@ same lifeline.

TO show when an object is active (for a procedural interaction, this

rould indicate that a procedure is on the stack), you include an activa-
ﬁ(m box. You can omit activation boxes; this makes the diagrams easier
to draw, but harder to understand.

Two bits of control information are valuable.

First, there is a condition, which indicates when a message is sent (for
example, [needsReorder]). The mese;azga is sent only if the condition is
true. Conditions are useful in simple cases like this, but for more com-
plicated cases, I prefer to draw sepamte sequence diagrams for each
case.

The second useful control marker is the iteration marker, which shows
that a message is sent many times to X“ﬂi‘-i‘ﬂﬁt} receiver ob}ecés, as
would happen when you are iterating over a mﬂe tion. You can show
the basis of the iteration within br aa,.ksﬂtsf such as *[for all order lines].

Figure 5-1 includes a return, which indicates a return from a message,
not a new message. Returns differ from the regular messages in that
the line is dashed. Some people draw a return f@r every message, but I
find that clutiers the diagram, so | draw them only when I feel they
add clarity. The only reason [used a remm in Figure 5-1 is to demon-
strate the notation; if vou remove the return, I think the diagram
remains just as clear. That’s a good test.

As you Caﬁ see, Figure 5-1 is very simple and has immediate visual
appeal. This is its great strength.

One of the hardest things to understand in an object-oriented program
is the overall flow of control. A good design has lots of small methods
in different classes, and at times it can be tricky to figure out the over-

Andrew P. Black
From: UML Distilled (2e), by Martin Fowler & Kendall Scott. Addison Wesley 1999

