
Refactoring

“Design is too important to be done only when we know 
nothing about the project”

CS420/520 — Object-oriented Programming
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Refactoring

• Refactoring is improving the  
design of existing code

• Two choices: 
‣ Design up front, getting everything exactly right the 

first time, or

‣ Design as you go, and be prepared to refactor

These slides based on materials by Don Roberts and John Brant
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Software Maintenance

• Practically all “maintenance” is just 
continuing development

• Initial development is just “maintaining” a 
blank sheet of paper

• Software is never finished…
‣ until it’s pried from the cold dead hands of its last 

user.
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A Simple Refactoring: Add Empty Class
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Another Refactoring …
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So, what’s the problem?

• Complexity
‣ It’s hard to understand what’s there

• Fear
‣ Changing what you don’t understand is scary

• Errors
‣ If you get it wrong, you break a working program

If it ain’t broke, don’t fix it.
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Schedule Pressure

• Every project is in a time crunch

• Refactoring can be time consuming
‣ wouldn’t it be better to put it off until after the next 

release?

• You are being paid to add new functionality

If it ain’t broke, don’t fix it.
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Consequences of deferring 
refactoring

• Changes are “hacked in”, rather than 
designed

• Overall system design degenerates
‣ Code becomes more brittle

‣ The next change becomes more difficult

• The pace of development slows to a crawl

Don’t let this happen to your system!

Technical 
Debt



 9

The Refactoring Process

• Think about manipulating a mathematical 
expression:

ax2+ bx + c  ➠ axx + bx + c  ➠ (ax + b)x + c

• Each step is semantics-preserving, so 
many small steps can be combined to have 
a large effect



Refactoring Example

• Chapter 1 of Fowler’s book is an extended 
example. 

• The initial code, written in Java, is an 
accounting system for a video rental store
‣ Not a realistic example — too small
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Why Refactor?
We have a change that the users would like to make. 

• First they want a statement printed in HTML so that the 
statement can be Web enabled and fully buzzword compliant. 

• The users want to make changes to the way they classify 
movies, but they haven’t yet decided on the change they are 
going to make. They have a number of changes in mind. 
These changes will affect both the way renters are charged for 
movies and the way that frequent renter points are calculated 

• As an experienced developer you are sure that whatever 
scheme users come up with, the only guarantee you’re going 
to have is that they will change it again within six months.
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The First Step in Refactoring

“Whenever I do refactoring, the first step is 
always the same. I … build a solid set of tests 
for that section of code. The tests are 
essential … even though I follow [a] 
refactoring [process that is] structured to avoid 
… introducing bugs. I'm still human and still 
make mistakes. Thus, I need solid tests.” 
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Martin Fowler, Refactoring
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Individual Refactorings
• Remove Something:

Remove field
Remove temporary variable
Remove Class variable
Remove Class
Remove methods

• Add Something:
Add field
Add temporary variable
Add Class variable
Add Class
Add methods

• Rename Something:
Rename field
Rename temporary variable
Rename Class variable
Rename Class
Rename methods (see next slide)

• Move Something:
Move field up or down
Move temp to inner/outer scope 
Move class variable up or down
Move method to component
Move field to component
Change superclass
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Method-level Refactorings

• Eliminations
Inline method
Inline temporary

• Introductions
Extract code into method
Extract code into temporary variable

• Method Renamings
Simple rename
Permute arguments
Add argument
Remove argument
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Safe Refactoring

• Use tests
‣ tests should pass before and after refactoring

• Use a refactoring tool if it’s available
‣ Smalltalk Refactoring Browser

‣ Plugins for Java in Eclipse

• Take small steps, testing between each 
step
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Code Smells

• Develop a “nose” for code
‣ Does the code smell bad?

• What bad smells have you seen in others’ 
code?



Some smells that I have known
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Code violates the  
“once and only once” rule

• code does not say it at all

• code says it twice, thrice, … fifteen times!
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Methods are too large

• Why is this a problem?
‣ methods are the smallest unit of overriding
‣ statements in a method should be at same level of 

abstraction



 24

Methods in the wrong class

• if a method does not refer to self, it is 
probably in the wrong class
‣ implicit self counts as referring to self

• check the parameters

• However:
‣ there are “utility methods” that have no natural 

home
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“Feature Envy”

• method over-uses accessors (getters and 
setters) of another object

• can the method be moved into the other 
object?
‣ sometimes only part of the method should be 

moved

‣ extract method into component
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The “God” class

• a large class with many methods and many 
fields

• can you partition the methods and the 
fields that they access?

• turn each partition into new class
‣ large class becomes composition of smaller classes
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Field not always used

• Some instances use a particular field, 
others don’t

• Create two or more subclasses with the 
right fields

• Is a field used only during a certain 
operation?
‣ “operation” spans more than one method
‣ consider using a method object
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Co-occurring Parameters 
(a.k.a Data Clumps)

• if the same pair (or triplet) of parameters is 
passed to several methods:

• perhaps they represent an abstraction that 
should be captured in an object?
‣ e.g., x and y should be grouped into a point object

‣ e.g., list and index should be grouped into an iterator object

• once the object exists, you will often find it 
natural to add behavior
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Comments

• Most comments are written to compensate 
for poorly written code!
‣ if you feel that your code needs explaining, consider 

refactoring it instead
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initialize
| w button |

super initialize.
self layoutPolicy: TableLayout new.
self listDirection: #leftToRight.
self layoutInset: 2.
self borderWidth: 0.
self hResizing: #shrinkWrap.
self vResizing: #shrinkWrap.
self color: Color gray.

w := TheWorldMenu new 

world: World project: 
        (World project ifNil: [Project current])
hand: World primaryHand.

button := LaunchButtonMorph new.
button label: 'Browser';
actionSelector: #openBrowser;

target: Browser;
actWhen: #buttonUp.
self addMorph: button.

button := LaunchButtonMorph new.
button label: 'Workspace';
actionSelector: #openWorkspace;

target: w;
actWhen: #buttonUp.
self addMorph: button.

button := LaunchButtonMorph new.
button label: 'Transcript';
actionSelector: #openTranscript;
target: w;
actWhen: #buttonUp.
self addMorph: button.

button := LaunchButtonMorph new.
button label: 'Change Sorter';
actionSelector: #openChangeSorter2;

target: w;
actWhen: #buttonUp.
self addMorph: button.

button := LaunchButtonMorph new.
button label: 'File List';
actionSelector: #openFileList;
target: w;

actWhen: #buttonUp.
self addMorph: button

Original Code



 31

Add comments and explaining names
initialize

| w browserButton workspaceButton 
transcriptButton changeButton fileListButton |

super initialize.

       "initialize layout"
self layoutPolicy: TableLayout new.

self listDirection: #leftToRight.
self layoutInset: 2.
self borderWidth: 0.
self hResizing: #shrinkWrap.
self vResizing: #shrinkWrap.
self color: Color gray.

w := TheWorldMenu new 

world: World project: 
        (World project ifNil: [Project current])
hand: World primaryHand.

        "initialize buttons"
browserButton := LaunchButtonMorph new.

browserButton label: 'Browser';
actionSelector: #openBrowser;

target: Browser;
actWhen: #buttonUp.
self addMorph: browserButton.

workspaceButton := LaunchButtonMorph new.
workspaceButton label: 'Workspace';
actionSelector: #openWorkspace;

target: w;
actWhen: #buttonUp.
self addMorph: workspaceButton.

transcriptButton := LaunchButtonMorph new.
transcriptButton label: 'Transcript';
actionSelector: #openTranscript;
target: w;
actWhen: #buttonUp.
self addMorph: transcriptButton.

changeButton := LaunchButtonMorph new.
changeButton label: 'Change Sorter';
actionSelector: #openChangeSorter2;

target: w;
actWhen: #buttonUp.
self addMorph: changeButton.

fileListButton := LaunchButtonMorph new.
fileListButton label: 'File List';
actionSelector: #openFileList;
target: w;

actWhen: #buttonUp.
self addMorph: fileListButton
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Composed Method
initialize

super initialize.
self initializeLayout.
self initializeButtons

initializeLayout
self layoutPolicy: TableLayout new.
self listDirection: #leftToRight.
self layoutInset: 2.
self borderWidth: 0.
self hResizing: #shrinkWrap.
self vResizing: #shrinkWrap.
self color: Color gray.

initializeButtons
| w |
w := TheWorldMenu new

world: World 
project: (World project ifNil: [Project current])
hand: World primaryHand.

self addAButton: 'Browser' sending: #openBrowser to: Browser.
self addAButton: 'Workspace' sending: #openWorkspace to: w.
self addAButton: 'Transcript' sending: #openTranscript to: w.
self addAButton: 'Change Sorter' sending: #openChangeSorter2 to: w.
self addAButton: 'File List' sending: #openFileList to: w

addAButton: label sending: s to: target 
| button |
button := LaunchButtonMorph new.
button label: label;

 actionSelector: s;
 target: target;
 actWhen: #buttonUp.

self addMorph: button
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Nested Conditionals

• Message send = procedure call + case selection

‣ use this to eliminate explicit conditionals

‣ the goal: adding new cases does not require 
changing existing code

• e.g., instead of testing isEmpty or isNil, consider a 
separate object to represent the Empty or Nil case

‣ The Null Object Pattern (http://www.cs.oberlin.edu/
~jwalker/refs/woolf.ps)
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Nested Conditionals (cont.)

• Early returns are often better than nested 
conditionals.

method totalDue { 
// Answer the total owed 
if (self.cart.isEmpty) then { return 0 } 

                    var result := 0 
for (cart.items) do { each → 

                        result := result + (each.cost * each.count) 
                    } 
                    return result 
          }

• Is there a need for the test at all?
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Nested Conditionals (cont.)

• If conditional involves a test of the object’s 
class, move the method to that class
‣ self class = … or

‣ isKindOf:  
AbstractSound >>loudness: aNumber 

"Initialize my volume envelopes and initial volume. …" 
| vol | 
vol := (aNumber asFloat max: 0.0) min: 1.0. 
envelopes do: [:e | (e isKindOf: VolumeEnvelope) ifTrue: [e scale: vol]]. 
self initialVolume: vol. 
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Strategies for Refactoring

1.Extend then Refactor

2.Refactor then Extend

3.Debug then Refactor

4.Refactor then Debug

5.Refactor for Understandability
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Extend then Refactor

• test fails
• hack in a change to make the test pass
‣ e.g., copy and paste a method, and then edit the new 

method.

• test passes, but you are not done yet!
‣ eliminate redundancy

Coding is like mountain climbing: getting 

the green light is like reaching the summit
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Refactor then Extend

• It seems awkward to implement a new 
feature

• Refactor design to make the change easy

• add a test for the feature

• add the feature
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Debug then Refactor

• Find the bug

• Fix the bug

• Refactor to make the bug obvious, e.g.,
‣ extract method and give it an explaining name

‣ rename method or temp

‣ extract expression to temporary variable

° eliminate “magic numbers”
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Refactor then Debug

• Suppose that you can’t find the bug?
‣ Refactoring preserves bad behavior too!

• Simplify complex method

• Fix the bug
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Refactor for Understandability

• What was obvious when a method was 
written isn’t always obvious a day later!
‣ use composed method (Beck p. 21)

‣ use intention revealing selectors (Beck p. 49)

‣ use explaining temporary variable (Beck p. 108)

‣ don’t worry about performance

° “clever” code is usually dumb
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The Loan Metaphor
“Quick and dirty” coding is like taking out a loan

Living with the bad code is like paying interest

Refactoring your code is like paying off the loan

————

• Some debt is OK, in fact necessary, to grow a 
business

• Too much debt is unhealthy: it will eventually 
kill you



“Technical Debt”  
must be paid off
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Listen to your Code

• If something seems difficult or awkward, 
refactor to make it easy

• Let the program tell you where it needs to 
be fixed
‣ Does the code speak to you?  Does it smell?

• If you copy and paste, you probably want to 
refactor to remove the duplication



Do you know all of the refactorings?
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