
Refactoring

“Design is too important to be done only when we know
nothing about the project”

CS420/520 — Object-oriented Programming

 2

Refactoring

• Refactoring is improving the
design of existing code

• Two choices:
‣ Design up front, getting everything exactly right the

first time, or

‣ Design as you go, and be prepared to refactor

These slides based on materials by Don Roberts and John Brant

 3

Software Maintenance

• Practically all “maintenance” is just
continuing development

• Initial development is just “maintaining” a
blank sheet of paper

• Software is never finished…
‣ until it’s pried from the cold dead hands of its last

user.

 4

A Simple Refactoring: Add Empty Class

Association

WeakValue-
Association

LookupKey

Association

WeakValue-
Association

LookupKey

Abstract-
Association

 5

Another Refactoring …

Abstract-
Association

WeakValue-
Association

LookupKey

AssociationWeakValue-
Association

LookupKey

Abstract-
Association

Association

 6

So, what’s the problem?

• Complexity
‣ It’s hard to understand what’s there

• Fear
‣ Changing what you don’t understand is scary

• Errors
‣ If you get it wrong, you break a working program

If it ain’t broke, don’t fix it.

 7

Schedule Pressure

• Every project is in a time crunch

• Refactoring can be time consuming
‣ wouldn’t it be better to put it off until after the next

release?

• You are being paid to add new functionality

If it ain’t broke, don’t fix it.

 8

Consequences of deferring
refactoring

• Changes are “hacked in”, rather than
designed

• Overall system design degenerates
‣ Code becomes more brittle

‣ The next change becomes more difficult

• The pace of development slows to a crawl

Don’t let this happen to your system!

Technical
Debt

 9

The Refactoring Process

• Think about manipulating a mathematical
expression:

ax2+ bx + c ➠ axx + bx + c ➠ (ax + b)x + c

• Each step is semantics-preserving, so
many small steps can be combined to have
a large effect

Refactoring Example

• Chapter 1 of Fowler’s book is an extended
example.

• The initial code, written in Java, is an
accounting system for a video rental store
‣ Not a realistic example — too small

 10

Why Refactor?
We have a change that the users would like to make.

• First they want a statement printed in HTML so that the
statement can be Web enabled and fully buzzword compliant.

• The users want to make changes to the way they classify
movies, but they haven’t yet decided on the change they are
going to make. They have a number of changes in mind.
These changes will affect both the way renters are charged for
movies and the way that frequent renter points are calculated

• As an experienced developer you are sure that whatever
scheme users come up with, the only guarantee you’re going
to have is that they will change it again within six months.

 15

The First Step in Refactoring

“Whenever I do refactoring, the first step is
always the same. I … build a solid set of tests
for that section of code. The tests are
essential … even though I follow [a]
refactoring [process that is] structured to avoid
… introducing bugs. I'm still human and still
make mistakes. Thus, I need solid tests.”

 16

Martin Fowler, Refactoring

 17

Individual Refactorings
• Remove Something:

Remove field
Remove temporary variable
Remove Class variable
Remove Class
Remove methods

• Add Something:
Add field
Add temporary variable
Add Class variable
Add Class
Add methods

• Rename Something:
Rename field
Rename temporary variable
Rename Class variable
Rename Class
Rename methods (see next slide)

• Move Something:
Move field up or down
Move temp to inner/outer scope 
Move class variable up or down
Move method to component
Move field to component
Change superclass

 18

Method-level Refactorings

• Eliminations
Inline method
Inline temporary

• Introductions
Extract code into method
Extract code into temporary variable

• Method Renamings
Simple rename
Permute arguments
Add argument
Remove argument

 19

Safe Refactoring

• Use tests
‣ tests should pass before and after refactoring

• Use a refactoring tool if it’s available
‣ Smalltalk Refactoring Browser

‣ Plugins for Java in Eclipse

• Take small steps, testing between each
step

 20

Code Smells

• Develop a “nose” for code
‣ Does the code smell bad?

• What bad smells have you seen in others’
code?

Some smells that I have known

 22

Code violates the
“once and only once” rule

• code does not say it at all

• code says it twice, thrice, … fifteen times!

 23

Methods are too large

• Why is this a problem?
‣ methods are the smallest unit of overriding
‣ statements in a method should be at same level of

abstraction

 24

Methods in the wrong class

• if a method does not refer to self, it is
probably in the wrong class
‣ implicit self counts as referring to self

• check the parameters

• However:
‣ there are “utility methods” that have no natural

home

 25

“Feature Envy”

• method over-uses accessors (getters and
setters) of another object

• can the method be moved into the other
object?
‣ sometimes only part of the method should be

moved

‣ extract method into component

 26

The “God” class

• a large class with many methods and many
fields

• can you partition the methods and the
fields that they access?

• turn each partition into new class
‣ large class becomes composition of smaller classes

 27

Field not always used

• Some instances use a particular field,
others don’t

• Create two or more subclasses with the
right fields

• Is a field used only during a certain
operation?
‣ “operation” spans more than one method
‣ consider using a method object

 28

Co-occurring Parameters 
(a.k.a Data Clumps)

• if the same pair (or triplet) of parameters is
passed to several methods:

• perhaps they represent an abstraction that
should be captured in an object?
‣ e.g., x and y should be grouped into a point object

‣ e.g., list and index should be grouped into an iterator object

• once the object exists, you will often find it
natural to add behavior

 29

Comments

• Most comments are written to compensate
for poorly written code!
‣ if you feel that your code needs explaining, consider

refactoring it instead

 30

initialize
| w button |

super initialize.
self layoutPolicy: TableLayout new.
self listDirection: #leftToRight.
self layoutInset: 2.
self borderWidth: 0.
self hResizing: #shrinkWrap.
self vResizing: #shrinkWrap.
self color: Color gray.

w := TheWorldMenu new

world: World project:
 (World project ifNil: [Project current])
hand: World primaryHand.

button := LaunchButtonMorph new.
button label: 'Browser';
actionSelector: #openBrowser;

target: Browser;
actWhen: #buttonUp.
self addMorph: button.

button := LaunchButtonMorph new.
button label: 'Workspace';
actionSelector: #openWorkspace;

target: w;
actWhen: #buttonUp.
self addMorph: button.

button := LaunchButtonMorph new.
button label: 'Transcript';
actionSelector: #openTranscript;
target: w;
actWhen: #buttonUp.
self addMorph: button.

button := LaunchButtonMorph new.
button label: 'Change Sorter';
actionSelector: #openChangeSorter2;

target: w;
actWhen: #buttonUp.
self addMorph: button.

button := LaunchButtonMorph new.
button label: 'File List';
actionSelector: #openFileList;
target: w;

actWhen: #buttonUp.
self addMorph: button

Original Code

 31

Add comments and explaining names
initialize

| w browserButton workspaceButton
transcriptButton changeButton fileListButton |

super initialize.

 "initialize layout"
self layoutPolicy: TableLayout new.

self listDirection: #leftToRight.
self layoutInset: 2.
self borderWidth: 0.
self hResizing: #shrinkWrap.
self vResizing: #shrinkWrap.
self color: Color gray.

w := TheWorldMenu new

world: World project:
 (World project ifNil: [Project current])
hand: World primaryHand.

 "initialize buttons"
browserButton := LaunchButtonMorph new.

browserButton label: 'Browser';
actionSelector: #openBrowser;

target: Browser;
actWhen: #buttonUp.
self addMorph: browserButton.

workspaceButton := LaunchButtonMorph new.
workspaceButton label: 'Workspace';
actionSelector: #openWorkspace;

target: w;
actWhen: #buttonUp.
self addMorph: workspaceButton.

transcriptButton := LaunchButtonMorph new.
transcriptButton label: 'Transcript';
actionSelector: #openTranscript;
target: w;
actWhen: #buttonUp.
self addMorph: transcriptButton.

changeButton := LaunchButtonMorph new.
changeButton label: 'Change Sorter';
actionSelector: #openChangeSorter2;

target: w;
actWhen: #buttonUp.
self addMorph: changeButton.

fileListButton := LaunchButtonMorph new.
fileListButton label: 'File List';
actionSelector: #openFileList;
target: w;

actWhen: #buttonUp.
self addMorph: fileListButton

 32

Composed Method
initialize

super initialize.
self initializeLayout.
self initializeButtons

initializeLayout
self layoutPolicy: TableLayout new.
self listDirection: #leftToRight.
self layoutInset: 2.
self borderWidth: 0.
self hResizing: #shrinkWrap.
self vResizing: #shrinkWrap.
self color: Color gray.

initializeButtons
| w |
w := TheWorldMenu new

world: World
project: (World project ifNil: [Project current])
hand: World primaryHand.

self addAButton: 'Browser' sending: #openBrowser to: Browser.
self addAButton: 'Workspace' sending: #openWorkspace to: w.
self addAButton: 'Transcript' sending: #openTranscript to: w.
self addAButton: 'Change Sorter' sending: #openChangeSorter2 to: w.
self addAButton: 'File List' sending: #openFileList to: w

addAButton: label sending: s to: target
| button |
button := LaunchButtonMorph new.
button label: label;

 actionSelector: s;
 target: target;
 actWhen: #buttonUp.

self addMorph: button

 33

Nested Conditionals

• Message send = procedure call + case selection

‣ use this to eliminate explicit conditionals

‣ the goal: adding new cases does not require
changing existing code

• e.g., instead of testing isEmpty or isNil, consider a
separate object to represent the Empty or Nil case

‣ The Null Object Pattern (http://www.cs.oberlin.edu/
~jwalker/refs/woolf.ps)

 34

Nested Conditionals (cont.)

• Early returns are often better than nested
conditionals.

method totalDue {
// Answer the total owed
if (self.cart.isEmpty) then { return 0 } 

 var result := 0
for (cart.items) do { each → 

 result := result + (each.cost * each.count) 
 } 
 return result 
 }

• Is there a need for the test at all?

 35

Nested Conditionals (cont.)

• If conditional involves a test of the object’s
class, move the method to that class
‣ self class = … or

‣ isKindOf:
AbstractSound >>loudness: aNumber

"Initialize my volume envelopes and initial volume. …"
| vol |
vol := (aNumber asFloat max: 0.0) min: 1.0.
envelopes do: [:e | (e isKindOf: VolumeEnvelope) ifTrue: [e scale: vol]].
self initialVolume: vol.

 36

Strategies for Refactoring

1.Extend then Refactor

2.Refactor then Extend

3.Debug then Refactor

4.Refactor then Debug

5.Refactor for Understandability

 37

Extend then Refactor

• test fails
• hack in a change to make the test pass
‣ e.g., copy and paste a method, and then edit the new

method.

• test passes, but you are not done yet!
‣ eliminate redundancy

Coding is like mountain climbing: getting

the green light is like reaching the summit

 38

Refactor then Extend

• It seems awkward to implement a new
feature

• Refactor design to make the change easy

• add a test for the feature

• add the feature

 39

Debug then Refactor

• Find the bug

• Fix the bug

• Refactor to make the bug obvious, e.g.,
‣ extract method and give it an explaining name

‣ rename method or temp

‣ extract expression to temporary variable

° eliminate “magic numbers”

 40

Refactor then Debug

• Suppose that you can’t find the bug?
‣ Refactoring preserves bad behavior too!

• Simplify complex method

• Fix the bug

 41

Refactor for Understandability

• What was obvious when a method was
written isn’t always obvious a day later!
‣ use composed method (Beck p. 21)

‣ use intention revealing selectors (Beck p. 49)

‣ use explaining temporary variable (Beck p. 108)

‣ don’t worry about performance

° “clever” code is usually dumb

 42

The Loan Metaphor
“Quick and dirty” coding is like taking out a loan

Living with the bad code is like paying interest

Refactoring your code is like paying off the loan

————

• Some debt is OK, in fact necessary, to grow a
business

• Too much debt is unhealthy: it will eventually
kill you

“Technical Debt”  
must be paid off

 43

 44

Listen to your Code

• If something seems difficult or awkward,
refactor to make it easy

• Let the program tell you where it needs to
be fixed
‣ Does the code speak to you? Does it smell?

• If you copy and paste, you probably want to
refactor to remove the duplication

Do you know all of the refactorings?

 45

 46

 47

 48

 49

