
Reducing Costs
with

Duck Typing

1

Structural

In computer programming with object-oriented programming languages,
duck typing is a layer of programming language and design rules on top
of typing. Typing is concerned with assigning a type to any object. Duck
typing is concerned with establishing the suitability of an object for some
purpose. With normal typing, suitability is assumed to be determined by
an object’s type only.

In contrast in duck typing, an object's suitability is determined by the
presence of certain methods and properties (with appropriate meaning),
rather than the actual type of the object.
The name of the concept refers to the duck test, attributed to James Whitcomb Riley,
which may be phrased as follows:

When I see a bird that walks like a duck and swims like a duck and quacks like a duck, I
call that bird a duck.[1]

Some confusion present here

“Duck Typing”

2

class

vacuous!

class

unnecessary!

With nominal typing, suitability is assumed to depend on the claims made when the
object was created

http://en.wikipedia.org/wiki/Computer_programming
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Type_system
http://en.wikipedia.org/wiki/Method_(computer_programming)
http://en.wikipedia.org/wiki/Duck_test
http://en.wikipedia.org/wiki/James_Whitcomb_Riley

Metz:
• Duck types are public interfaces that are not tied

to any specific class

• A Ruby object is like a partygoer at a masquerade
ball that changes masks to suit the theme. It can
expose a different face to every viewer; it can
implement many different interfaces.

• … an object’s type is in the eye of the beholder.
Users of an object need not, and should not, be
concerned about its class.

• It’s not what an object is that matters, it’s what it
does.

3

Grace

Structural vs. Nominal
• Structural typing (Duck Typing)

✦ a type T describes a set of properties (so, it’s like a predicate).
An object o has a type T if it satisfies that predicate.

✦ Grace has Structural typing.

• Nominal Typing (Class Typing +)
✦ a type T is identified with both a set of properties and a name.
✦ An object o has a type T if it was made by a class that says

that its objects have type T. The language is designed in such a
way that this also means that it must have the properties of T.

✦ Even though p might have all the right properties, it’s not of
type T unless the class that made it says so.

4

• Static typing:
✦ the type of every expression can be determined before the

program starts to execute. The programmer is usually (but not
always) required to annotate declarations with types.

• Dynamic typing:
✦ no attempt is made to determine the type of an expression until

the program is executing.

• Gradual Typing:
✦ type annotations are optional; when given, they enable the

types of some expressions to be evaluated before the
programs starts to execute. Others will be checked at runtime.

5

Explore consequences of not using Duck Types

• Seems OK, so long as we have only mechanics

6

ptg8315951

of how a Trip gets prepared into Mechanic. The next example here, alas, is no
improvement at all.

Imagine that requirements change. In addition to a mechanic, trip preparation
now involves a trip coordinator and a driver. Following the established pattern of the
code, you create new TripCoordinator and Driver classes and give them the
behavior for which they are responsible. You also change Trip’s prepare method to
invoke the correct behavior from each of its arguments.

The following code illustrates the change. The new TripCoordinator and
Driver classes are simple and inoffensive but Trip’s prepare method is now a cause
for alarm. It refers to three different classes by name and knows specific methods im-
plemented in each. Risks have dramatically gone up. Trip’s prepare method might
be forced to change because of a change elsewhere and it might unexpectedly break as
the result of a distant, unrelated change.

1 # Trip preparation becomes more complicated
2 class Trip
3 attr_reader :bicycles, :customers, :vehicle
4
5 def prepare(preparers)
6 preparers.each {|preparer|
7 case preparer
8 when Mechanic
9 preparer.prepare_bicycles(bicycles)
10 when TripCoordinator
11 preparer.buy_food(customers)
12 when Driver

88 Chapter 5. Reducing Costs with Duck Typing

some
object

a
Trip

a
Mechanic

a
Mechanic

some
object

a
Trip

prepare_bicycles(bicycles)

prepare(mechanic)

Figure 5.1 Trip prepares itself by asking a mechanic to prepare the bicycles.

From the Library of Avi Flombaum

But when there are other preparers…

• type-case,

• instance-of,

• “branding”
with strings,

are all equally
evil

7

ptg8315951

point of view, the problem is straightforward. The prepare method wants to prepare
the trip. Its arguments arrive ready to collaborate in trip preparation. The design
would be simpler if prepare just trusted them to do so.

Figure 5.3 illustrates this idea. Here the prepare method doesn’t have a preor-
dained expectation about the class of its arguments, instead it expects each to be a
“Preparer.”

This expectation neatly turns the tables. You’ve pried yourself loose from existing
classes and invented a duck type. The next step is to ask what message the prepare
method can fruitfully send each Preparer. From this point of view, the answer is
obvious: prepare_trip.

91Understanding Duck Typing

some
object

a
Trip

a
Mechanic

a
Coordinator

a
Driver

some
object

a
Trip

a
Mechanic

a
Coordinator

a
Driver

prepare(preparers)

[preparers]

[Mechanic]

[Driver]

prepare_bicycles(bicycles)

buy_food(customers)

gas_up(vehicle)

fill_water_tank(vehicle)

loop

alt

[TripCoordinator]

Figure 5.2 Trip knows too many concrete classes and methods.

From the Library of Avi Flombaum

The Root of the Problem
• “If	your	design	imagination	is	constrained	
by	class	and	you	4ind	yourself	
unexpectedly	dealing	with	objects	that	
don’t	understand	the	message	you	are	
sending,	your	tendency	is	to	go	hunt	for	
messages	that	these	new	objects	do	
understand”.

• Instead: create new messages that all
the objects can reasonably understand

8

What do the targets have in common?

• They all help a trip make preparations

9
ptg83159511 # Trip preparation becomes easier

2 class Trip
3 attr_reader :bicycles, :customers, :vehicle
4
5 def prepare(preparers)
6 preparers.each {|preparer|
7 preparer.prepare_trip(self)}
8 end
9 end
10
11 # when every preparer is a Duck
12 # that responds to ‘prepare_trip’
13 class Mechanic
14 def prepare_trip(trip)
15 trip.bicycles.each {|bicycle|
16 prepare_bicycle(bicycle)}
17 end
18
19 # ...
20 end
21
22 class TripCoordinator
23 def prepare_trip(trip)

93Understanding Duck Typing

some
object

a
Trip

a
Preparer

some
object

a
Trip

a
Preparer

[preparers]

prepare(preparers)

prepare_trip(self)

request_additional info

additional info response

loop

Figure 5.4 Trip collaborates with the preparer duck.

From the Library of Avi Flombaum

“What kind of thing is
Preparer? At this point
it has no concrete
existence; it’s an
abstraction, an agreement
about the public interface
on an idea. It’s a figment of
design.”

Documenting Duck Types

• “When	you	create	duck	types	you	must	
both	document	and	test	their	public	
interfaces.”

• document the existence of the type

• test that certain objects have that type

10

Polymorphism
• Functional programmers: a function is

(parametrically) polymorphic if it can be applied to
arguments of more than one type, and treats them
all uniformly

• Metz: a message is polymorphic if there are many
objects that have a corresponding method, and
they do related things

• Black: a method is polymorphic if it can be applied
to arguments of more than one type. It does this
by sending messages that are polymorphic in
Metz's sense.

11

Static typing does not prevent Duck typing

• Class typing prevents duck typing
✦ Class typing says: I don't care how capable you

are, or how good you are at your job …
✦ if you don’t come from the right class, I won’t

even let you try

• Even in Java, you can do Duck typing if
you use interfaces as types, not classes.

12

What’s Wrong with Static Typing?

After Simon Peyton Jones

13

Programs that
are well-typed Programs

that work

Zone of
Abysmal Pain

What’s Wrong with Static Typing?

After Simon Peyton Jones

14

Programs that
are well-typed

Programs
that work

Smaller
Zone of Abysmal

Pain

Accomplished by
inventing ever-more
powerful type
systems

that are ever-harder
to understand

