Reducing Costs

with

mTyping

IIIIIIIIII

“‘Duck Typing”

In computer programming with object-oriented programming languages,
duck typing is a layer of programming language and desian rules on top
of typing. yazgeighing a tvpe to anv obiject. Bisk)
typing is concerned with establishing the suitability of an object for some
purpose. With | class_| typing, suitability is assumed to be determined by

an object’s class only.

————
With nominal typing, suitability is assumed to depend on the claims made when the

ob'!ect was created

In contrast in duck typing, an object's suitability is determined by the
presence of certain methods and properties (with appropriate meaning),
rather than the actual type of the object.

The name of the concept refers to the duck test, attribiit~~' = James Whitcomb Riley,
which may be phrased as follows:

When | see a bird that w-~'

c;ll tr\ia‘lzﬂ CO“{US\O“ Pr
O

uck and quacks like a duck, |

Portland State

IIIIIIIIII

http://en.wikipedia.org/wiki/Computer_programming
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Type_system
http://en.wikipedia.org/wiki/Method_(computer_programming)
http://en.wikipedia.org/wiki/Duck_test
http://en.wikipedia.org/wiki/James_Whitcomb_Riley

Metz:

Duck types are public interfaces that are not tied
to any specific class

A Greee Object is like a partygoer at a masquerade
ball that changes masks to suit the theme. It can
expose a different face to every viewer; it can
implement many different interfaces.

... an object’s type is in the eye of the beholder.
Users of an object need not, and should not, be
concerned about its class.

It’'s not what an object is that matters, it's what it
does.

Portland State 3

IIIIIIIIII

Structural vs. Nominal

Structural typing (Duck Typing)

a type T describes a set of properties (so, it’s like a predicate).
An object o0 has a type T if it satisfies that predicate.

Grace has Structural typing.

Nominal Typing (Class Typing +)
a type T is identified with both a set of properties and a nhame.

An object o has a type T if it was made by a class that says
that its objects have type T. The language is designed in such a
way that this also means that it must have the properties of T.

Even though p might have all the right properties, it's not of
type T unless the class that made it says so.

Portland State

IIIIIIIIII

Static typing:

the type of every expression can be determined before the
program starts to execute. The programmer is usually (but not
always) required to annotate declarations with types.

Dynamic typing:

no attempt is made to determine the type of an expression until
the program is executing.

Gradual Typing:

type annotations are optional; when given, they enable the
types of some expressions to be evaluated before the
programs starts to execute. Others will be checked at runtime.

Portland State

IIIIIIIIII

Explore consequences of not using Duck Types

some a a
object Trip Mechanic

prepare(mechanic)
1 > :

prepare_bicycles(bicycles)

<€
rE n
some a a
object Trip Mechanic

Figure 5.1 Trip prepares itself by asking a mechanic to prepare the bicycles.

* Seems OK, so long as we have only mechanics

Portland State

IIIIIIIIII

But when there are other preparers...

some a a a a
object Trip Mechanic Coordinator Driver
prepare(preparers)
D ———————————————— >

loop | [preparers]
[

P type_Case, alt] [Mechanic]

prepare_bicycles(bicycles)

» !
>

* instance-of, D |

[TripCoordinator]

* “pranding” 1]

Wlth Strlngs, [Driver]

e G e i —
are all equally i water anvericle) o
evil S B T
R EEEEEEEEEEEEE -
some a a a a
object Trip Mechanic Coordinator Driver

Figure 5.2 Trip knows too many concrete classes and methods.

Portland State 7

IIIIIIIIII

The Root of the Problem

* “If your design imagination is constrained
by class and you find yourself
unexpectedly dealing with objects that
don't understand the message you are
sending, your tendency is to go hunt for
messages that these new objects do
understand”.

* |nstead: create new messages that all
the objects can reasonably understand

Portland State 8

IIIIIIIIII

What do the targets have in common?

* They all help a trip make preparations

“What kind of thing 1s
Preparer? At this point
it has no concrete
existence; it’s an
abstraction, an agreement
about the public interface
on an 1dea. It’s a figment of
design.”

some a
object Trip
prepare(preparers)
' >

a
Preparer

loop | [preparers]

prepare_trip(self)

<request_addi’[ional info

additional info response

_____________________ »
B O e L
some a a
object Trip Preparer
Figure 5.4 Trip collaborates with the preparer duck.
9

Portland State

IIIIIIIIII

Documenting Duck Types

* “When you create duck types you must
both document and test their public

interfaces.”
» document the existence of the type

* test that certain objects have that type

Portland State 10

IIIIIIIIII

Polymorphism

Functional programmers: a function is
(parametrically) polymorphic if it can be applied to
arguments of more than one type, and treats them
all uniformly

Metz: a message is polymorphic if there are many
objects that have a corresponding method, and
they do related things

Black: a method is polymorphic if it can be applied
to arguments of more than one type. It does this
by sending messages that are polymorphic in
Metz's sense.

Portland State .

IIIIIIIIII

Static typing does not prevent Duck typing

Class typing prevents duck typing

Class typing says: | don't care how capable you
are, or how good you are at your job ...

if you don’t come from the right class, | won't
even let you ftry

Even in Java, you can do Duck typing if
You use interfaces as types, not classes.

Portland State 12

IIIIIIIIII

What’s Wrong with Static Typing?

Programs that
are well-typed

Programs
that work

Zone of
After Simon Peyton Jones Abysmal Pain

Portland State 3

IIIIIIIIII

What’s Wrong with Static Typing?

Programs that
are well-typed

Programs
that work

Accomplished by
Inventing ever-more
powerful type
systems

that are ever-harder

to understand Smaller

Zone of Abysmal

After Simon Peyton Jones ;
Pain
Portland State 4

IIIIIIIIII

