i Download

(Grace version

gearFactory.grace

Delete ®

‘;yuha}nrlng(ch) cog(cg) rim(r) tire(t) {

2 cha1nr1ng 1s publldir ch
3 e

4

5

6~

7 chainring / cog

8 }

9~ method gearInches {

10 (ratio * (rim + (tire * 2))*10).rounded/10
11 }

12 }

13

14 def gl = gearFromChainring 52 cog 11 rim 26 tire 1.5
15 print "a:igl.chainringf-T chainring and '{gl.cog}-T cog on a {gl.rim{ inch rim provides a {gl.gearInches} inch gear"
16 def g2 = gearrromCnainring 52 cog 11 rim 24 tire 1.25
17 print "a {g2.chainring}-T chainring and {g2.cog}-T cog on a {g2.rim}-inch rim provides a {g2.gearInches} inch gear"

18 print "gl is {gl}"

Build 42

a 52-T chainring and 11-T cog on a 26-inch rim provides a 137.1 inch gear
a 52-T chainring and 11-T cog on a 24-inch rim provides a 125.3 inch gear

gl is an object

Friday, 10 April 2015



Single Responsibility?

e Not really!
> since when does a gear have a a tire and a rim?

> mixed up with other bits of bicycle

e Does it matter?
> Maybe!

Portland State

IIIIIIIIII

Friday, 10 April 2015



Arguments to “Leave it be”

e Code is Transparent and Reasonable
» Consequence of a change should be Transparent

» Cost of change proportional to benefits
e Why”? Because there are no dependents

e How should we improve it?

> We don't yet know — but the moment that we
acquire some dependents, we will

= \Nait until that time

Portland State 20

IIIIIIIIII

Friday, 10 April 2015



Arguments for Change

e Code is neither (re)usable, nor exemplary
> multiple responsibilities = can't be used for other
gears

> not a pattern to be emulated

Portland State 2l

IIIIIIIIII

Friday, 10 April 2015



Improve it now vs. improve it later

e This tension always exists!
> designs are never perfect

> the designer has to weigh the costs and benefits of
a change

Portland State 22

IIIIIIIIII

Friday, 10 April 2015



Embracing Change

e Some basic rules that will help, regardless
of what change happens:

e Depend on Behaviour, not data

» encapsulate instance variables

> (Grace gives us this one for free

> encapsulate data

° e.g., don’t expose an array of pairs of numbers

Portland State 23

IIIIIIIIII

Friday, 10 April 2015



method knows all about

¥ Download obscringReferences. ) the structure of d

1~ factory method obscurlngReferences(d) {
2~ method dlamet ” = :

PEST

} i
def data is publlc =d

}

def or = obscuringReferences(
list.with(

[y
S Weoo~NOYWU & W

il )
12 )

14 print(or.diameters.aslist)
15 print(or.data)

.}.

data. uas pa1r' -> palr' 'F'Ll"St + (pa1r' second * 2) }

list.with(622, 20), list.with(622, 23), list.with(559, 30), list.with (559, 40)

Run p

[662,668,619,639]
[[622,20],[622,23],[559,30],[559,40]]

Portland State

UNIVERSITY

Friday, 10 April 2015

24



Separate Structure from Meaning

* |f you need a table of wheel and tire sizes, make
it contain objects, not lists

» Metz uses a Ruby Struct to create a transparent
object.

e In Grace:

factory method wheelWithRim(r) tire(t) {
// this is equivalent to the Ruby "Struct.new(:rim, :tire)
method rim {r }

method tire { t }
method asString { "{rim} wheel with {tire} tire" }

}

Portland State

IIIIIIIIII

25

Friday, 10 April 2015



K Download revealingReferences.grace Delete ®

1~ factory method revealingReferences(d:List<List<Number>>) {

2~ method diameters {

3 wheels.map { each -> each.rim + (each.tire * 2) }

4 }

5 def wheels is public = wheelify(d)

6~ method wheelify(pairs) {

7 pairs.map { pair -> wheelWithRim(pair.first) tire(pair.second) }.aslist
8 }

9~ factory method wheelWithRim(r) tire(t) {

10 // this 1s equivalent to the Ruby “Struct.new(:rim, :tire)’
11 method rim { r }

12 method tire { t }

13 method asString { "{rim} wheel with {tire} tire" }

14 }

15 }

16

17

18

19 def rr = revealingReferences(

20 list.with(

21 list.with(622, 20), list.with(622, 23), list.with(559, 30), list.with (559, 40)
22 )

23 )

24

25 print(rr.diameters.aslList)

26 print(rr.wheels)

27

Run p

[662,668,619,639]
[622 wheel with 20 tire,622 wheel with 23 tire,559 wheel with 3@ tire,559 wheel with 4@ tire]

Friday, 10 April 2015



Embracing Change

e Enforce Single Responsibility Everywhere
» Extract extra responsibilities from methods

> |solate responsibilities in classes

- Grace lets you create “local” factory methods

Portland State 27

IIIIIIIIII

Friday, 10 April 2015



The Real Wheel

 The customer tells you that she has need
for computing wheel circumference.

e This tells you that your “bicycle calculator
app” needs to model wheels.

e So let’s move wheel out of gear.

Portland State 28

IIIIIIIIII

Friday, 10 April 2015



