Sharing Behaviour
without Inheritance

Based on Metz Chapter 7

IIIIIIIIII

Why?

* Single inheritance can be used for
classification in only one dimension

o Often, we want objects to play multiple
roles

e Traits let us implement the role behavior
once, reuse it in many places

Portland State

IIIIIIIIII

When to use 1t?

* When your language supports it!

» Java interfaces can now include default
iImplementation code — like traits

* Roles often come in pairs

> Preparable & Preparer, Observable & Observer

» Sometimes there is no useful code to share

o jterator in the collections framework

Portland State 3

IIIIIIIIII

instigating the
etz object Schedule
The ‘target’ argument

Exa m I e . | contains an instance of
' | Bicycle, Vehicle or Mechanic. !

schedulable?(target, starting, ending)

alt___J [target.class==Bicycle]

lead_days = 1 :'

[target.class==Mechanic]

lead_days = 4 :|

[target.class==Vehicle]

lead_days = 3 2

Ischeduled?(target, starting + lead_days, ending) :'

T4 “““““““““““““““““““““““ .
instigating the
object Schedule

Figure 7.1 The schedule knows the lead time for other objects.

Portland State

UNIVERSITY

Better:

Figure 7.2 The schedule expects targets to know their own lead time.

Portland State

UNIVERSITY

instigating the the
object Schedule targe
schedulable?(target, starting, ending) g
lead_days
< _________

Ischeduled?(target, starting + lead_days, ending)

S T
instigating the
object Schedule

Better:

Figure 7.2 The schedule expects targets to know their own lead time.

Portland State

UNIVERSITY

instigating the the
object Schedule targe
schedulable?(target, starting, ending) g
lead_days
< _________

Ischeduled?(target, starting + lead_days, ending)

S T
instigating the
object Schedule

Minimize dependencies

* objects should manage themselves; they
should contain their own behavior

e |f your interest is in object B, you should
not be forced to know about object A if
your only use of it is to find out things
about B.

Portland State

IIIIIIIIII

Why ask schedule about target?

instigating the the
object Schedule target
schedulable?(target, starting, ending) g
lead_days
< _________

Ischeduled?(target, starting + lead_days, ending) :|

instigating the the

S T
object Scf@ule tar—et

Figure 7.2 The schedule expects targets to know their own lead time.

Portland State 7

UNIVERSITY

Why ask schedule about target?

instigating the the
object Schedule target
schedulable?(target, starting, ending) g
lead_days
< _________

Ischeduled?(target, starting + lead_days, ending) :|

instigating the the

S T
object Scf@ule tar—et

Figure 7.2 The schedule expects targets to know their own lead time.

Portland State 7

UNIVERSITY

How to implement traits

 Make the code concrete first
* Make it run green

* Then refactor into a trait.

e Why?

Portland State

IIIIIIIIII

Like inheritance...

e Traits can have hook methods, and
abstract methods ...

 What about super?

> depends ...

> Ruby modules don’t change the superclass

Portland State

IIIIIIIIII

Beware!

e Without good tools, understanding code
written with traits can be a scary
experience.

* The usefulness and maintainability of
reuse hierarchies (whether using traits or
superclasses) is in direct proportion to
the quality of the code.

Portland State

IIIIIIIIII

Insist on the Abstraction

* When an object checks the class of a
receiving object to determine what
message to send, you have overlooked a
“duck type”, a.k.a. an interface

* Define that type!

> Give its methods intention-revealing
names

> Figure out which objects should
iImplement them

Portland State '

IIIIIIIIII

Insist on the Abstraction

Metz says:

* All of the code in an abstract superclass
should apply to every class that inherits it.

* |f you cannot correctly identify the
abstraction there may not be one!

* |f no common abstraction exists then
(neither) inheritance (nor trait use) is the
solution to your design problem.

Portland State 12

IIIIIIIIII

Well, Maybe ...

* |I’'m not sure of the degree to which | believe
that

e Consider:

trait emptiness {
method size 1s required
method isEmpty { size == 0 }
method isNotEmpty { isEmpty.not }
I3

e |s it useful to factor-out this code?

> Is there an underlying abstraction.?

Portland State 3

IIIIIIIIII

341

method
method
method
method
method
method
method
method
method
method
method
method
method
method

// end

Portland State

UNIVERSITY

What about this?

trait collection[T] {

asString { "a collection trait" }
sizeIfUnknown(action) { ===}

size { #*+ }

do(action) is required

iterator is required

isEmpty { ==+ }

first { ===}

do(blockl) separatedBy(block®) { ==+ }
reduce(initial, blk) { ===}
fold(blk)startingWith(initial) { ===}
map[R]}(blockl:Functionl[T, R]) => Enumerable[R] { *** }

filter(selectionCondition:Predicatel[T]) -> EnumerablelT]'d°°°}

>>(target) { target << self }
<<(source) { self ++ source }

of trait collection

Use the Template Pattern

 The fundamental coding technique for
creating inheritable code is the template
method.

 This pattern is what allows you to
separate the abstract from the concrete.

* The template’s requests represent the
parts of the algorithm that vary. This
forces you to make explicit decisions
about what varies and what does not.

Portland State 15

IIIIIIIIII

Create Shallow Hierarchies

 Easy to understand

> an object depends on all of its ancestors.

* Metz’s template hook pattern works only
for one level

> more than 1 level => back to depending on
super

Portland State 6

IIIIIIIIII

