
Sharing Behaviour
without Inheritance

Based on Metz Chapter 7

 1

Why?

• Single inheritance can be used for
classification in only one dimension

• Often, we want objects to play multiple
roles

• Traits let us implement the role behavior
once, reuse it in many places

 2

When to use it?

• When your language supports it!
‣ Java interfaces can now include default

implementation code — like traits

• Roles often come in pairs
‣ Preparable & Preparer, Observable & Observer

‣ Sometimes there is no useful code to share
° iterator in the collections framework

 3

Metz
Example

 4

ptg8315951

You’ve seen the pattern of checking class to know what message to send; here the
Schedule checks class to know what value to use. In both cases Schedule knows too
much. This knowledge doesn’t belong in Schedule, it belongs in the classes whose
names Schedule is checking.

This implementation cries out for a simple and obvious improvement, one sug-
gested by the pattern of the code. Instead of knowing details about other classes, the
Schedule should send them messages.

Removing Unnecessary Dependencies
The fact that the Schedule checks many class names to determine what value to
place in one variable suggests that the variable name should be turned into a message,
which in turn should be sent to each incoming object.

145Understanding Roles

instigating
object

the
Schedule

instigating
object

the
Schedule

The ‘target’ argument
contains an instance of
Bicycle, Vehicle or Mechanic.

schedulable?(target, starting, ending)

!scheduled?(target, starting + lead_days, ending)

lead_days = 1

lead_days = 4

lead_days = 3

[target.class==Bicycle]

[target.class==Mechanic]

[target.class==Vehicle]

alt

Figure 7.1 The schedule knows the lead time for other objects.

From the Library of Avi Flombaum

Better:

 5

ptg8315951

Discovering the Schedulable Duck Type

Figure 7.2 shows a sequence diagram for new code that removes the check on class
from the schedulable? method and alters the method to instead send the
lead_days message to its incoming target argument. This change replaces an if
statement that checks the class of an object with a message sent to that same object. It
simplifies the code and pushes responsibility for knowing the correct number of lead
days into the last object that could possibly know the correct answer, which is exactly
where this responsibility belongs.

A close look at Figure 7.2 reveals something interesting. Notice that this diagram
contains a box labeled “the target.” The boxes on sequence diagrams are meant to rep-
resent objects and are commonly named after classes, as in “the Schedule” or “a
Bicycle.” In Figure 7.2, the Schedule intends to send lead_days to its target, but
target could be an instance of any of a number of classes. Because target’s class is
unknown, it’s not obvious how to label the box for the receiver of this message.

The easiest way to draw the diagram is to sidestep this issue by labeling the box
after the name of the variable and sending the lead_days message to that “target”
without being precise about its class. The Schedule clearly does not care about
target’s class, instead it merely expects it to respond to a specific message. This
message-based expectation transcends class and exposes a role, one played by all targets
and made explicitly visible by the sequence diagram.

The Schedule expects its target to behave like something that understands
lead_days, that is, like something that is “schedulable.” You have discovered a
duck type.

146 Chapter 7. Sharing Role Behavior with Modules

Figure 7.2 The schedule expects targets to know their own lead time.

instigating
object

the
target

the
Schedule

instigating
object

the
target

the
Schedule

schedulable?(target, starting, ending)

lead_days

!scheduled?(target, starting + lead_days, ending)

From the Library of Avi Flombaum

Better:

 5

ptg8315951

Discovering the Schedulable Duck Type

Figure 7.2 shows a sequence diagram for new code that removes the check on class
from the schedulable? method and alters the method to instead send the
lead_days message to its incoming target argument. This change replaces an if
statement that checks the class of an object with a message sent to that same object. It
simplifies the code and pushes responsibility for knowing the correct number of lead
days into the last object that could possibly know the correct answer, which is exactly
where this responsibility belongs.

A close look at Figure 7.2 reveals something interesting. Notice that this diagram
contains a box labeled “the target.” The boxes on sequence diagrams are meant to rep-
resent objects and are commonly named after classes, as in “the Schedule” or “a
Bicycle.” In Figure 7.2, the Schedule intends to send lead_days to its target, but
target could be an instance of any of a number of classes. Because target’s class is
unknown, it’s not obvious how to label the box for the receiver of this message.

The easiest way to draw the diagram is to sidestep this issue by labeling the box
after the name of the variable and sending the lead_days message to that “target”
without being precise about its class. The Schedule clearly does not care about
target’s class, instead it merely expects it to respond to a specific message. This
message-based expectation transcends class and exposes a role, one played by all targets
and made explicitly visible by the sequence diagram.

The Schedule expects its target to behave like something that understands
lead_days, that is, like something that is “schedulable.” You have discovered a
duck type.

146 Chapter 7. Sharing Role Behavior with Modules

Figure 7.2 The schedule expects targets to know their own lead time.

instigating
object

the
target

the
Schedule

instigating
object

the
target

the
Schedule

schedulable?(target, starting, ending)

lead_days

!scheduled?(target, starting + lead_days, ending)

From the Library of Avi Flombaum

Minimize dependencies

• objects should manage themselves; they
should contain their own behavior

• If your interest is in object B, you should
not be forced to know about object A if
your only use of it is to find out things
about B.

 6

Why ask schedule about target?

 7

ptg8315951

Discovering the Schedulable Duck Type

Figure 7.2 shows a sequence diagram for new code that removes the check on class
from the schedulable? method and alters the method to instead send the
lead_days message to its incoming target argument. This change replaces an if
statement that checks the class of an object with a message sent to that same object. It
simplifies the code and pushes responsibility for knowing the correct number of lead
days into the last object that could possibly know the correct answer, which is exactly
where this responsibility belongs.

A close look at Figure 7.2 reveals something interesting. Notice that this diagram
contains a box labeled “the target.” The boxes on sequence diagrams are meant to rep-
resent objects and are commonly named after classes, as in “the Schedule” or “a
Bicycle.” In Figure 7.2, the Schedule intends to send lead_days to its target, but
target could be an instance of any of a number of classes. Because target’s class is
unknown, it’s not obvious how to label the box for the receiver of this message.

The easiest way to draw the diagram is to sidestep this issue by labeling the box
after the name of the variable and sending the lead_days message to that “target”
without being precise about its class. The Schedule clearly does not care about
target’s class, instead it merely expects it to respond to a specific message. This
message-based expectation transcends class and exposes a role, one played by all targets
and made explicitly visible by the sequence diagram.

The Schedule expects its target to behave like something that understands
lead_days, that is, like something that is “schedulable.” You have discovered a
duck type.

146 Chapter 7. Sharing Role Behavior with Modules

Figure 7.2 The schedule expects targets to know their own lead time.

instigating
object

the
target

the
Schedule

instigating
object

the
target

the
Schedule

schedulable?(target, starting, ending)

lead_days

!scheduled?(target, starting + lead_days, ending)

From the Library of Avi Flombaum

Why ask schedule about target?

 7

ptg8315951

Discovering the Schedulable Duck Type

Figure 7.2 shows a sequence diagram for new code that removes the check on class
from the schedulable? method and alters the method to instead send the
lead_days message to its incoming target argument. This change replaces an if
statement that checks the class of an object with a message sent to that same object. It
simplifies the code and pushes responsibility for knowing the correct number of lead
days into the last object that could possibly know the correct answer, which is exactly
where this responsibility belongs.

A close look at Figure 7.2 reveals something interesting. Notice that this diagram
contains a box labeled “the target.” The boxes on sequence diagrams are meant to rep-
resent objects and are commonly named after classes, as in “the Schedule” or “a
Bicycle.” In Figure 7.2, the Schedule intends to send lead_days to its target, but
target could be an instance of any of a number of classes. Because target’s class is
unknown, it’s not obvious how to label the box for the receiver of this message.

The easiest way to draw the diagram is to sidestep this issue by labeling the box
after the name of the variable and sending the lead_days message to that “target”
without being precise about its class. The Schedule clearly does not care about
target’s class, instead it merely expects it to respond to a specific message. This
message-based expectation transcends class and exposes a role, one played by all targets
and made explicitly visible by the sequence diagram.

The Schedule expects its target to behave like something that understands
lead_days, that is, like something that is “schedulable.” You have discovered a
duck type.

146 Chapter 7. Sharing Role Behavior with Modules

Figure 7.2 The schedule expects targets to know their own lead time.

instigating
object

the
target

the
Schedule

instigating
object

the
target

the
Schedule

schedulable?(target, starting, ending)

lead_days

!scheduled?(target, starting + lead_days, ending)

From the Library of Avi Flombaum

How to implement traits

• Make the code concrete first

• Make it run green

• Then refactor into a trait.

• Why?

 8

Like inheritance…

• Traits can have hook methods, and
abstract methods ...

• What about super?
‣ depends ...

‣ Ruby modules don’t change the superclass

 9

Beware!

• Without good tools, understanding code
written with traits can be a scary
experience.

• The usefulness and maintainability of
reuse hierarchies (whether using traits or
superclasses) is in direct proportion to
the quality of the code.

 10

Insist on the Abstraction
• When an object checks the class of a

receiving object to determine what
message to send, you have overlooked a
“duck type”, a.k.a. an interface

• Define that type!

‣ Give its methods intention-revealing
names

‣ Figure out which objects should
implement them

 11

Insist on the Abstraction
Metz says:

• All of the code in an abstract superclass
should apply to every class that inherits it.

• If you cannot correctly identify the
abstraction there may not be one!

• If no common abstraction exists then
(neither) inheritance (nor trait use) is the
solution to your design problem.

 12

Well, Maybe ...
• I’m not sure of the degree to which I believe

that

• Consider:
trait emptiness { 
 method size is required 
 method isEmpty { size == 0 } 
 method isNotEmpty { isEmpty.not } 
}

• Is it useful to factor-out this code?

‣ is there an underlying abstraction.?
 13

What about this?

 14

Use the Template Pattern
• The fundamental coding technique for

creating inheritable code is the template
method.

• This pattern is what allows you to
separate the abstract from the concrete.

• The template’s requests represent the
parts of the algorithm that vary. This
forces you to make explicit decisions
about what varies and what does not.

 15

Create Shallow Hierarchies

• Easy to understand
‣ an object depends on all of its ancestors.

• Metz’s template hook pattern works only
for one level
‣ more than 1 level => back to depending on

super

 16

