Managing dependencies

Andrew P. Black

Based on Chapter 3 of POODR

IIIIIIIIII

Why Dependencies?

e A single object can't do everything, so it
will have to talk to other objects

Portland State

IIIIIIIIII

For any desired behaviour:

e an object can either:
1. know it itself,
2. Inherit it, or

3. know another object that knows it.

e This chapter is about 3.

Portland State 3

IIIIIIIIII

Collaboration

e Collaborating with another object
introduces a dependency

e That is, if the other object changes, you
might be forced to change too.

Portland State

IIIIIIIIII

Dependencies exist when:

e an object has a dependency when it
KNnows:

» The name of another object (Metz says “class”)

> the name of a request that it makes on someone
other than self

> the arguments of a request (number and position)

Portland State >

IIIIIIIIII

Why limit dependencies?

e The more dependencies you have, the
greater are the chances that minor
tweaks turn into major undertakings.

 Dependencies create coupling

> an object and its dependencies act like a single
big object; you can’t reuse (or test) the object
without also reusing (or testing) its dependencies
too.

Portland State ¢

IIIIIIIIII

Gear depends on wheel, A, B, C and D Gear and its dependencies act like one thing

Figure 3.1 Dependencies entangle objects with one another.

Portland State 7

UNIVERSITY

Law of Demeter

e Law of Demeter violation is a particular
case of case 3: knowing another object
that knows ... another object that can
respond to your request.

e Design interfaces to avoid it

Portland State

IIIIIIIIII

Dependencies in Testing

e Jests must depend on code

e write tests to avoid over-coupling

Portland State

IIIIIIIIII

Dependencies in Gear

e Gear depends on Wheel class

» Metz: “Gear becomes less useful when it knows
too much about other objects; if it knew less, it
could do more”

» My paraphrase: smart objects know how to
delegate

* Instead, give a gear a wheel instance
when the gear is created.

» Called: “Dependency Injection”

Portland State 10

IIIIIIIIII

(Removed) Dependencies in Gear

1~ method gearWithChainRing(chain) cog(c) {

2 gearWithChainRing(chain) cog(c) wheel(defaultWheel)
B

4

5+ class gearWithChainRing(chain) cog(c) wheel(w) {
6 method chainring { chain }

7 method cog { c }

8 method wheel { w }

9

10 ~ method ratio {

11 chainring / cog

12 }

13

14 ~ method gearInches {

15 ratio * wheel.diameter

16 }

17 }

18

19 ~ class defaultWheel {
20 ~ method diameter {
21 EnvironmentException.raise "the user should have provided a wheel if they want a

diameter"

22 }
23 ~ method asString {
24 "please set the wheel"
25 }
26 }

27

Portland State .

UNIVERSITY

» If you can't remove class dependencies,
Isolate them by:

* moving them to instance Iinitialization, or

* moving them to their own method.

Portland State 12

IIIIIIIIII

Gear knows:

e what requests some other objects
understand

e replace these requests (wheel.diameter)
with self-requests:

e add a diameter method to self

> |Solates the knowledge that wheel understands
diameter

Portland State '3

IIIIIIIIII

Argument—Parameter Dependencies

 Knowing the parameters of a request is a
dependency

e Sometimes, you can pass a dictionary
containing the arguments.

e This may be a good approach if the
parameters are likely to grow or shrink, or
If you need defaults.

Portland State 4

IIIIIIIIII

Pros and Cons of Dictionary Parameters

 Fixed named arguments are simpler
today, but increase the risk that changes
will be harder tomorrow.

 There is still a dependency on the keys
used for the parameters

> and it can’t be checked statically

Portland State >

IIIIIIIIII

» Using new for instance creation means
that confusion over the meaning and
position of parameters is likely
 Grace avoids this problem by encouraging you to

give intention revealing names for instance
creation method (aka classes)

Portland State 16

IIIIIIIIII

» Using many creation-time arguments
means that confusion over the meaning
and position of parameters is likely

» Having a long parameter listis a code
smell: get rid of it

* use replace parameter with method, preserve
whole object, and introduce parameter object.

Portland State

IIIIIIIIII

» Dictionaries make it easy to make
arguments optional and to have defaults

» Fixed parameter lists can lead to a
combinatorial explosion of variants with
and without the optional parameters

Portland State

IIIIIIIIII

Defaults

e Default parameters are best specified:

> In a separate method for each default value

> In a defaults method (requires merge of
dictionaries)

Portland State

IIIIIIIIII

External modules

e if you don't control the interface of the
offending request,

> wrap it in a factory method that you do own and
control.

e put that method on a singleton object
(Ruby module)

> In Grace, you can just leave it as a factory method
at the top-level of your own module

Portland State 20

IIIIIIIIII

Direction of dependencies

e The direction of a dependency matters

e gear depends on wheel # wheel
depends on gear

> You can make either “work”

e getting direction “right” means that your
application will be pleasant to work on
and easy to maintain into the future.

Portland State 2l

IIIIIIIIII

What's “Right”?

 Key idea: depend on things that will change
less often than you do.

* Some objects are more likely than others to
have changes in requirements

» Basic libraries, vendor frameworks, application code

* implementations are more likely to change
than interfaces

 depend on abstractions rather than on
concretions

Portland State 22

IIIIIIIIII

Beware!

e Classes with lots of dependents are
unlikely to ever change!

e Metz: "Your application will be
permanently handicapped by your
reluctance to pay the price required to
make a change to this class”

Portland State

IIIIIIIIII

23

w ~+ 3 ® O > O T O U

Classifying dependencies

e Put them on this grid:

Many

Few

IIIIIIIIII

Abstract Zone:

Changes are unlikely §
but, if they occur, will §

have broad effects.

#* Danger Zone:

These classes WILL
change and the

Neutral Zone:
Changes are unlikely
and have few side
effects.

Neutral Zone:
Changes are likely but
they have few side
effects.

2y
3 t\(\em .

L changes will cascade |2
N Jnto dependents.

Likelihood of Requirements Change

24

Summary

1. Injecting dependencies creates self-
contained objects that can be reused in ways
that you might never have guessed

2. Isolating dependencies lets you react to
changes, when they come, quickly and easily

3. Depend on things that change less often than
you do.

> When possible, depend on abstractions rather than
concretions.

Portland State 25

IIIIIIIIII

