
Managing dependencies
Andrew P. Black

 1

Based on Chapter 3 of POODR

Why Dependencies?

• A single object can't do everything, so it
will have to talk to other objects

 2

For any desired behaviour:

• an object can either:
1. know it itself,

2. inherit it, or

3. know another object that knows it.

• This chapter is about 3.

 3

Collaboration

• Collaborating with another object
introduces a dependency

• That is, if the other object changes, you
might be forced to change too.

 4

Dependencies exist when:

• an object has a dependency when it
knows:
‣ The name of another object (Metz says “class”)

‣ the name of a request that it makes on someone
other than self

‣ the arguments of a request (number and position)

 5

Why limit dependencies?

• The more dependencies you have, the
greater are the chances that minor
tweaks turn into major undertakings.

• Dependencies create coupling
‣ an object and its dependencies act like a single

big object; you can’t reuse (or test) the object
without also reusing (or testing) its dependencies
too.

 6

 7

ptg8315951

Figure 3.1 illustrates the problem. In this case, Gear depends on Wheel and four
other objects, coupling Gear to five different things. When the underlying code was
first written everything worked fine. The problem lies dormant until you attempt to
use Gear in another context or to change one of the classes upon which Gear
depends. When that day comes the cold hard truth is revealed; despite appearances,
Gear is not an independent entity. Each of its dependencies is a place where another
object is stuck to it. The dependencies cause these objects to act like a single thing.
They move in lockstep; they change together.

When two (or three or more) objects are so tightly coupled that they behave as a
unit, it’s impossible to reuse just one. Changes to one object force changes to all. Left
unchecked, unmanaged dependencies cause an entire application to become an entan-
gled mess. A day will come when it’s easier to rewrite everything than to change anything.

Other Dependencies
The remainder of this chapter examines the four kinds of dependencies listed above
and suggests techniques for avoiding the problems they create. However, before going
forward it’s worth mentioning a few other common dependency related issues that
will be covered in other chapters.

One especially destructive kind of dependency occurs where an object knows
another who knows another who knows something; that is, where many messages are
chained together to reach behavior that lives in a distant object. This is the “knowing
the name of a message you plan to send to someone other than self ” dependency, only
magnified. Message chaining creates a dependency between the original object and

38 Chapter 3. Managing Dependencies

Gear depends on wheel, A, B, C and D Gear and its dependencies act like one thing

Gear Gear

Wheel

W
he

el

B

B

A A

C C

D
D

Figure 3.1 Dependencies entangle objects with one another.

From the Library of Avi Flombaum

Law of Demeter 

• Law of Demeter violation is a particular
case of case 3: knowing another object
that knows … another object that can
respond to your request.

• Design interfaces to avoid it

 8

Dependencies in Testing

• Tests must depend on code

• write tests to avoid over-coupling

 9

Dependencies in Gear
• Gear depends on Wheel class
‣ Metz: “Gear becomes less useful when it knows

too much about other objects; if it knew less, it
could do more”

‣ My paraphrase: smart objects know how to
delegate

• Instead, give a gear a wheel instance
when the gear is created.
‣ Called: “Dependency Injection”

 10

(Removed) Dependencies in Gear

 11

• If you can't remove class dependencies,
isolate them by:

• moving them to instance initialization, or

• moving them to their own method.

 12

Gear knows:

• what requests some other objects
understand

• replace these requests (wheel.diameter)
with self-requests:

• add a diameter method to self
‣ isolates the knowledge that wheel understands

diameter

 13

Argument–Parameter Dependencies

• Knowing the parameters of a request is a
dependency

• Sometimes, you can pass a dictionary
containing the arguments.

• This may be a good approach if the
parameters are likely to grow or shrink, or
if you need defaults.

 14

Pros and Cons of Dictionary Parameters

• Fixed named arguments are simpler
today, but increase the risk that changes
will be harder tomorrow.

• There is still a dependency on the keys
used for the parameters
‣ and it can’t be checked statically

 15

• Using new for instance creation means
that confusion over the meaning and
position of parameters is likely

• Grace avoids this problem by encouraging you to
give intention revealing names for instance
creation method (aka classes)

 16

• Using many creation-time arguments
means that confusion over the meaning
and position of parameters is likely

• Having a long parameter list is a code
smell: get rid of it

• use replace parameter with method, preserve
whole object, and introduce parameter object.

 17

• Dictionaries make it easy to make
arguments optional and to have defaults

• Fixed parameter lists can lead to a
combinatorial explosion of variants with
and without the optional parameters

 18

Defaults

• Default parameters are best specified:
‣ in a separate method for each default value

‣ in a defaults method (requires merge of
dictionaries)

 19

External modules

• if you don't control the interface of the
offending request,
‣ wrap it in a factory method that you do own and

control.

• put that method on a singleton object
(Ruby module)
‣ In Grace, you can just leave it as a factory method

at the top-level of your own module

 20

Direction of dependencies

• The direction of a dependency matters

• gear depends on wheel ≠ wheel
depends on gear
‣ You can make either “work”

• getting direction “right” means that your
application will be pleasant to work on
and easy to maintain into the future.

 21

What’s “Right”?
• Key idea: depend on things that will change

less often than you do.

• Some objects are more likely than others to
have changes in requirements
‣ Basic libraries, vendor frameworks, application code

• implementations are more likely to change
than interfaces

• depend on abstractions rather than on
concretions

 22

Beware!

• Classes with lots of dependents are
unlikely to ever change!

• Metz: “Your application will be
permanently handicapped by your
reluctance to pay the price required to
make a change to this class”

 23

Classifying dependencies
• Put them on this grid:

 24

were extracted. Depending on an abstraction is always safer than depending on a
concretion because by its very nature, the abstraction is more stable. Ruby does not
make you explicitly declare the abstraction in order to define the interface, but for
design purposes you can behave as if your virtual interface is as real as a class. Indeed, in
the rest of this discussion, the term “class” stands for both class and this kind of interface.
These interfaces can have dependents and so must be taken into account during design.

Avoiding Dependent-Laden Classes

The final idea, the notion that having dependent-laden objects has many conse-
quences, also bears deeper examination. The consequences of changing a dependent-
laden class are quite obvious—not so apparent are the consequences of even having a
dependent-laden class. A class that, if changed, will cause changes to ripple through
the application, will be under enormous pressure to never change. Ever. Under any
circumstances whatsoever. Your application may be permanently handicapped by your
reluctance to pay the price required to make a change to this class.

Finding the Dependencies That Matter

Imagine each of these truths as a continuum along which all application code falls.
Classes vary in their likelihood of change, their level of abstraction, and their number
of dependents. Each quality matters, but the interesting design decisions occur at the
place where likelihood of change intersects with number of dependents. Some of the
possible combinations are healthy for your application; others are deadly.

Figure 3.2 summarizes the possibilities.

55Managing Dependency Direction

C
A
B

D
Neutral Zone:

Less

ManyD
e
p
e
n
d
e
n
t
s Few

Likelihood of Requirements Change

More

Changes are unlikely
and have few side
effects.

Neutral Zone:
Changes are likely but
they have few side
effects.

Danger Zone:
These classes WILL
change and the
changes will cascade
into dependents.

Abstract Zone:
Changes are unlikely
but, if they occur, will
have broad effects.

Figure 3.2 Likelihood of change versus number of dependents

Fix

them!

Summary
1. Injecting dependencies creates self-

contained objects that can be reused in ways
that you might never have guessed

2. Isolating dependencies lets you react to
changes, when they come, quickly and easily

3. Depend on things that change less often than
you do.
‣ When possible, depend on abstractions rather than

concretions.

 25

