
Lessons from the glob
Homework

CS 420/520
Andrew P. Black

�1

Test first development
• A student wrote:

• Solution:
• add one test case at a time

• helps you focus on a single issue

• if you need to change your design, do it one step at a
time

�2

CS520/Cem Onder/Assignment_2

Test Driven Development: This was my first time trying test driven development. Obviously I had written
tests before, but never before the implementation phase. So based on this one and only experience I have
made the following observations:

● I was significantly slower during the implementation. This might also have to do with
the content of what we were implementing, which required many edge cases, but making
sure I covered these edge cases in both the actual design and in the test slowed me down
a little bit

● I enjoyed the immediate feedback which directed me towards the possible problem area
in my design immensely, but at the same time this made me more skeptical about design
with every failing test case. I guess at times, I felt like I was implementing patches to a
design that I failed. I don’t know if this is due to the fact that I indeed failed with the
design or because it was my first time dealing with this many failing tests and I
subconsciously felt bad about it.

Grace feedback: Although the code was significantly more complex this time around, it was easier to
write code in Grace. However, using Grace still slows me down. I think this is due to the fact when we are
dealing with more popular languages majority of us never bother going to the documentation page for
simple stuff and instead just google syntax. With Grace, because there is not a prominent online
community, I find myself spending a lot of time in the documentation page.

Use More Objects

�3

• A student writes:
I was pretty happy with my code before I posted a question to the
class forum about the behavior of extra symbols inside brackets.
At that point I had only one "bracketParseState", rather than the
"leftBracketParseState" and "bracketCharsParseState" I ended up
with. I chose to raise an error any time one of the other symbols
appeared inside brackets, if a left bracket appeared without a right
bracket, or if a right bracket appeared before a left bracket.

After reading the discussion on the forum, I switched to the two
state implementation, where one is used when a left bracket first
appears, and the second one is used to fill the brackets with
characters. Now the combinations of symbols described above are
all treated as plain characters rather than raising errors. I'm
happier with this version of the code.

testAddWithOccurrences

 | sizeOfBag1Ref sizeOfBag1Act occuranceOfCharRef occuranceOfCharAct errMsg testName |
 testName:='testAddWithOccurrences'.

 "---Populate Bag1---"
 bag1 add: #Q withOccurrences: 15.
 occuranceOfCharAct := bag1 occurrencesOf: #Q.
 occuranceOfCharRef := 15.

 sizeOfBag1Act := bag1 size.
 sizeOfBag1Ref := 15.

 "---Do asserts on Bag1---"
 errMsg:=testName, '-- Bag1 size failed; REF:', sizeOfBag1Ref asString, ' ACT:',
sizeOfBag1Act asString.
 self assert: (sizeOfBag1Ref = sizeOfBag1Act) description: (errMsg).

 errMsg:=testName, '-- Bag1 numQs failed; REF:', occuranceOfCharRef asString, ' ACT:',
occuranceOfCharAct asString.
 self assert: (occuranceOfCharRef = occuranceOfCharAct) description: (errMsg).

�4

Tests/Specs should Communicate

testAddWithOccurrences

 bag1 add: #Q withOccurrences: 15.
 self assert: bag1 size equals: 15 .
 self assert: (bag1 occurrencesOf: #Q) equals: 15.

�5

States exist to simplify tokenization

• Ideal tokenization loop:

state := initialState 
patternChars.do { ch → 
 state.consume(ch) 
}  
state.finalize

�6

Avoid “encodings”
• Compare

patternChars.do { ch → 
 state.consume(ch) 
}  
state.finalize

to

patternChars.do { ch → 
 state.consume(ch) 
}  
state.consume "" // use "" to mean "end of input"

�7

• The Once and Only Once rule:

• everything that the program has to say should be said,
and

• it should be said just once

• There are two situations, thus two things to say:
(1) consuming a character, and (2) the end of
the input.

• give each its own method

def plainCharsState = object { 
 method consume(ch) { ... } 
 method finalize { ... } 
}

Shopping vs. Building
• Constructing an Object-oriented application is a

process of shopping for the components that
one needs
• occasionally, we add a new item to the shelf

• often, we can find a component that almost fits

• The openness of an OO language allows the
programmer to change the component that
almost fits into one that is a good fit.
• works only if we have a rich set of components on the

shelf, and if they are open to change.

�9

Know thy libraries

• A mature OO-ecosystem like Java’s is likely to have a
component that you can modify

• Even in Grace, you should take advantage of the
available components
e.g., Grace strings have 

substringFrom(start) to(stop) → String 
but also  
 substringFrom(start) size(max) → String 
and 
 substringFrom(start) → String

�10

• Grace has Dictionaries: no need to simulate
them with 2 parallel sequences:

method transition(ch){ 
 def edgeNames = ["*", "?", "[", ""] 
 def states = [starState, wildcardState,  
 emptySquareState "[", 
 accumulateState “"] 
 if (edgeNames.contains(ch) && accum.isEmpty.not) then { 
 addToken(plainToken(accum)) 
 }  
 def stateIndex = edgeNames.indexOf(ch) ifAbsent { 
 state := accumulateState(accum ++ ch) 
 return 
 } 
 state := states.at(stateIndex) 
 }

• Code is hard to read, and inefficient

http://states.at

• Instead:

method transition(ch) { 
 def transitions = dictionary [ 
 "*"::starState,  
 "?"::wildcardState, 
 "["::emptySquareState "[", 
 ""::accumulateState ""] 
 if (transitions.containsKey(ch) &&  
 accum.isEmpty.not) then { 
 addToken(plainToken(accum)) 
 } 
 state := transitions.at(ch)  
 ifAbsent {accumulateState(accum ++ ch)} 
 }

Hoist Constants

�13

• transitions never changes:

method transition(ch) { 
 def transitions = dictionary [ 
 "*"::starState,  
 "?"::wildcardState, 
 "["::emptySquareState "[", 
 ""::accumulateState ""] 
 if (transitions.containsKey(ch) &&  
 accum.isEmpty.not) then { 
 addToken(plainToken(accum)) 
 } 
 state := transitions.at(ch)  
 ifAbsent {accumulateState(accum ++ ch)} 
 }

Hoist Constants

�14

• transitions never changes:

def transitions = dictionary [ 
 "*"::starState,  
 "?"::wildcardState, 
 "["::emptySquareState "[", 
 ""::accumulateState ""] 
 method transition(ch) { 
 if (transitions.containsKey(ch) &&  
 accum.isEmpty.not) then { 
 addToken(plainToken(accum)) 
 } 
 state := transitions.at(ch)  
 ifAbsent {accumulateState(accum ++ ch)} 
 }

Ockham’s Razor

• pluralitas non est ponenda sine necessitate, or
“plurality should not be posited without
necessity”

• In our context: don’t use a class when all you
need is an object

�15

