L.essons from the
two-three tree Homework

‘

CS 420/520
Andrew P. Black

Portland State

IIIIIIIIII

(Goals

e See multiple objects implementing the same interface

e See blocks being used as arguments

®* replaceMeBy and absorb blocks

® continuation block as argument to sort3

 [istlessness as a programming pattern

* jterators deliver their results one-by-one

® Listlessness is Better than Laziness (Wadler, 1984)

Portland State

UNIVERSITY 2

(Goals

i . | . |
multiple objects implementing the same interface

e See blocks being used as arguments

4 . :
continuation block as argument to sort3

o T:
Listlessness as a programming pattern
* jterators deliver their results one-by-one

® Listlessness is Better than Laziness (Wadler, 1984)

Portland State

UNIVERSITY

replaceMeBy and absorb blocks

Listlessness is Better than Laziness
Lazy evaluation and garbage collection at compile-time

Philip Wadler
Programming Research Group, Oxford University
g-1l Keble Rd., Oxford, OX1 3QD

0. Introduction

One reason for interest in functional programming is that it is
well-suited for program development by transformation: begin by
writing a clear (but inefficient) program, and transform this to an
efficient (but less clear) program. Promising research bas occured
in this area [Burstall and Darlington 77; Clark and Darlington 80;
Feather 82; Manna and Waldinger 79; Scherlis 81) and it is ripe
for further exploration.

Most desirable is a transformation system that can always
automatically transform 3 program to optimal form. It is
unreasonable to expect this in general, but it may be possible over
limited domains.

One important source of both clarity and inefficiency in
functional programs is the use of intermediate lists. This paper
describes a listless transformer that, where possible, eliminates all
intermediate lists from a program.

The source programs for this transformer are expressed in a
functional language With lazy evaluation. The target programs are
graphs (similar to flowchart schemata) that can be executed by a
simple machine (similar to & finite state machine). Because this
listless machine needs neither delayed evaluation nor complicated
storage allocation, one can say that the transformer performs lazy
evaluation and garbage collection at compile-time.

The main drawback is that, of course, not all programs can be
transformed to this form. The method has been shown to apply
to all programs that can be evaluated in a bounded amount of
space, not counting space for input or output. This class has been
formally characterized. It includes many useful programs, but
excludes many others.

The listless transformer has been implemented, and run on some
non-trivial programs including pattern matching, the telegram
problem, and some text processing problems inspired by Unix.

Permission to copy without fec all or part of this material is granted
provided that the copics are not ‘made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the.
publication and its date appcear, and notice s given that copying isby
permission of the Association for Computing Machinery. Tocopy
otherwise, or o republish, requires a fec and/or specific permission.

<1984 ACM 0-89791-142-3 84 008 0045 $00.75

A

This paper is mainly a summary of the author’s PhD. thesis
[wadler 84), but it also includes a few results that are not in the
thesis.

This paper is organized as follows. Section 1 explains why
intermediate lists are a source of both clarity and inefficiency.
Section 2 gives an example of the transformation method. Section
3 presents the machine for executing transformed programs.
Section 4 outlines theoretical results and extensions to the method.
Section 5 gives a more realistic example of program
transformation, using a text processing method inspired by Unix.
Section 6 discusses related work. Section 7 suggests topics for
future work and presents conclusions.

1. Intermediate Lists

Consider finding the sum of the squares of the numbers from 1
to n. In a functional style, this might be written

(1) sum (map square (upto 1 n))

A key feature of this style is that it uses operators (upto, map,
sum) that encode common patterns of com putation ("consider the
numbers from 1 to n®, “apply a function to cach element”, “sum
a collection of clements”). In contrast, in an imperative program
for the same task

(2) s+« 0:
for i « 1 ton do
s s+ (i %)
result + si

these operators cannot be directly expressed (except for upto,
which is built into the language as for). These operators have
\lso been called paradigns [Floyd 79] and cliches [Waters 79}

Intermediate lists are central to this style; they are the “glue” that
holds it together. For cxample, the intermediate tist (1,2,...00)
connects upto to map, and the intermediate list (1,4,...00%)
connects map 1o sum.

But intermediate lists have a cost in run-time efficiency. In
addition to the space occupied by a list, there is also the time
required to allocate the list (one cons operation per element),
traverse it (one null, head, and tail operation per element), and
deallocate it (garbage collection).

* Program to an Interface, not to an
Implementation

 The implementation was given; all you had to do was
figure out the interface

e Reading tests and documentation to discover the
interface

e Resolving ambiguities:
— writing tests, asking questions

— spotting bugs or inconsistencies

Portland State

IIIIIIIIII

Using multiple Classes

Portland State

Using multiple Classes

e A student wrote™:

I had experience coding a 2-3 tree in CS 163. Back in those days, I struggled for many days to
deal with insert and remove. I wrote a 2-page method to add a new node to tree. I used an if-then-
else statement to find out if the current node was empty, contained one value, or contained two.
And then another nested if inside each branch to see if we needed to add left/middle/right, or go
left/middle/right. That was a mess. I could imagine how hard it would be for a person to
comprehend the code.

Using OOP to implement 1t makes life easier. We don’t need to find out which kind of node we
are in: we already know. We also already know when we should change to another kind of node,
and which it should be. All we need do is implement a specific case in each class, and then let
the objects do their jobs.

Portland State * text corrected for grammar

UNIVERSITY 4

Using multiple Classes

e A student wrote™:

I had experience coding a 2-3 tree in CS 163. Back in those days, I struggled for many days to
deal with insert and remove. I wrote a 2-page method to add a new node to tree. I used an if-then-
else statement to find out if the current node was empty, contained one value, or contained two.
And then another nested if inside each branch to see if we needed to add left/middle/right, or go
left/middle/right. That was a mess. I could imagine how hard it would be for a person to
comprehend the code.

Using OOP to implement 1t makes life easier. We don’t need to find out which kind of node we

e arcin: we already know. We also already know when we should change to another kind of node,
and which it should be. All we need do is implement a specific case in each class, and then let
the objects do their jobs.

Portland State * text corrected for grammar

UNIVERSITY 4

Using multiple Classes

e A student wrote™:

I had experience coding a 2-3 tree in CS 163. Back in those days, I struggled for many days to
deal with insert and remove. I wrote a 2-page method to add a new node to tree. I used an if-then-
else statement to find out if the current node was empty, contained one value, or contained two.
And then another nested if inside each branch to see if we needed to add left/middle/right, or go
left/middle/right. That was a mess. I could imagine how hard it would be for a person to
comprehend the code.

Using OOP to implement 1t makes life easier. We don’t need to find out which kind of node we
e arcin: we already know. We also already know when we should change to another kind of node,
and which it should be. All we need do is implement a specific case in each class, and then let

the objects do their jobs.
x J.VlUJ.Ll}JlC LUKCI?L L1iAaddUD 111 L1110 SI/UU 11U111C WUIL KN

Portland State * text corrected for grammar

UNIVERSITY 4

Using multiple Classes

e A student wrote™:

I had experience coding a 2-3 tree in CS 163. Back in those days, I struggled for many days to
deal with insert and remove. I wrote a 2-page method to add a new node to tree. I used an if-then-
else statement to find out if the current node was empty, contained one value, or contained two.
And then another nested if inside each branch to see if we needed to add left/middle/right, or go
left/middle/right. That was a mess. I could imagine how hard it would be for a person to
comprehend the code.

Using OOP to implement 1t makes life easier. We don’t need to find out which kind of node we
e arcin: we already know. We also already know when we should change to another kind of node,
and which it should be. All we need do is implement a specific case in each class, and then let

the objects do their jobs.
y J.VLUJ.LLPLC LUKCI?L L1iAaddUD 111 L1110 SLUU 11U111C WUIL KN

* Many difterent kinds of component on a canvas

Portland State * text corrected for grammar

UNIVERSITY 4

Using multiple Classes

e A student wrote™:

I had experience coding a 2-3 tree in CS 163. Back in those days, I struggled for many days to
deal with insert and remove. I wrote a 2-page method to add a new node to tree. I used an if-then-
else statement to find out if the current node was empty, contained one value, or contained two.
And then another nested if inside each branch to see if we needed to add left/middle/right, or go
left/middle/right. That was a mess. I could imagine how hard it would be for a person to
comprehend the code.

Using OOP to implement 1t makes life easier. We don’t need to find out which kind of node we
e arcin: we already know. We also already know when we should change to another kind of node,
and which it should be. All we need do is implement a specific case in each class, and then let

the objects do their jobs.
y LVLUJ.LLPJ.C LUKCI?L L1iAaddUD 111 L1110 SLUU 11U111C WUIL KN

* Many difterent kinds of component on a canvas

* Many different test cases in a test suite

Portland State * text corrected for grammar

UNIVERSITY 4

* When using the state pattern

Use More Objects

e A student writes:

I was pretty happy with my code before I posted a question to the
class forum about the behavior of extra symbols inside brackets.
At that point I had only one "bracketParseState", rather than the
"leftBracketParseState" and "bracketCharsParseState" I ended up
with. I chose to raise an error any time one of the other symbols
appeared inside brackets, if a left bracket appeared without a right
bracket, or if a right bracket appeared before a left bracket.

After reading the discussion on the forum, I switched to the two
state implementation, where one is used when a left bracket first
appears, and the second one is used to fill the brackets with
characters. Now the combinations of symbols described above are
all treated as plain characters rather than raising errors. I'm
happier with this version of the code.

Portland Stat
Portland State oF anUNIVER%ITeY 3

UNIVERSITY

* Dictionary itself!
e hash-table implementation

* search-tree implementation

Portland State

IIIIIIIIII

Objects have Two Intertaces

1. Interface to use the object:

type Dictionary = interface {
at(_)put(_); keys; iterator; do(_); .. }

2. Interface to create the object:

type DictionaryFactory = interface {
dictionary(_); dictionary.withAll(_);
dictionary <<; dictionary.with(_);
dictionary.empty }

Assignment wasn’t explicit about this; most students
missed its importance.

* To test a dictionary, you have to create a dictionary

Portland State

Tests/Specs Communicate

type Collection[T] = type {
iterator -> Iterator[T]
// Returns an iterator over my elements. It is an error to modify self while iterating
// over it. Note: all other methods can be defined using iterator. Iterating over a

// dictionary yields its values.

type Dictionary[K, T = Collection[T] & interface {

keys -> Collection[K] // returns my keys as a lazy sequence in arbitrary order
values -> Collection[T] // returns my values as a lazy sequence in arbitrary order

bindings -> Enumerable[Binding[K, T1 1 // returns my bindings as a lazy sequence

My tests tell much the same story:
test _small_iterator: <set{3::three, 4::four, 2::two, 1::one, 5::five}>
should be <set{"'five", "three", "two", "one", "four'}>

Portland State g

UNIVERSITY

Simple Methods

e Compare

method #(someOtherDictionary) {
if (self == someOtherDictionary) then {
return false

1 else {
return true
I

¥

to
method z(other) { (self == other).not }

* Does other have to be a dictionary?

Portland State

Shop, don’t Build

Portland State
IIIIIIIIII I O

Shop, don’t Build

e (Consider

Portland State
IIIIIIIIII I O

http://iter.zipper.at
http://current.bindingList.at

Shop, don’t Build

e (Consider

method ++ (t) {

def newTree = self.copy

def iter = t.iterator

var current

(1 .. iter.zipper.size).do { i -
current := iter.zipper.at(i)
(1 .. current.bindinglList.size).do { j -

newTree.at(current.bindingList.at(j).key)
put (current.bindinglList.at(j).value)

5

1

newlree

Portland State
UNIVERSITY IO

http://iter.zipper.at
http://current.bindingList.at

Shop, don’t Build

e (Consider

method ++ (t) {
def newTree = self.copy
def iter = t.iterator
var current
(1 .. iter.zipper.size).do { i -
current := iter.zipper.at(i)
(1 .. current.bindinglList.size).do { j -
newTree.at(current.bindingList.at(j).key)
put (current.bindinglList.at(j).value)
5

h

newlree

¥

e '[rain wreck!

e This will work on/y when t has an iterator with a
zipper method that is itself a collection

Portland State
UNIVERSITY IO

http://iter.zipper.at
http://current.bindingList.at

* Better to reuse the implementation from
collectionsPrelude dictionary:

method ++ (other:Collection[T]) {

// answers a new dictionary containing all my keys and
// the keys of other; if other contains one of my keys,
// other’s value overrides mine

def newDict = self.copy

other.keysAndValuesDo {k, v —>
newDict.at(k) put(v)

I3

return newDict

* This works for any other that understands
keysAndValuesDo(_)
* Many of the methods in the dictionary

implementation could be tactored out into a
reusable trait.

Lazy Sequences, aka Streams

 Implementations are available for reuse in
collectionsprelude

trait iteratorOver[T,R] (sourcelterator: Iterator[T])
mappedBy (function:Functionl[T, R]) -> Iterator[R] {
method asString { "a mapped iterator over {sourcelterator}" }
method hasNext { sourcelterator.hasNext }
method next { function.apply(sourcelterator.next) }

Portland State
UNIVERSITY 12

class lazySequenceOver[T,R] (source: Collection[T])
mappedBy (function:Functionl[T, R]) -> Enumerable[R] {

use enumerable[T]

class iterator {
use 1teratorOver[T,R] (source.iterator) mappedBy (function)

}
method size { source.size }

method 1isEmpty { source.isEmpty }
method asDebugString { "a lazy sequence mapping over {source}" }

Portland State
UNIVERSITY 13

method iteratorOver[T] (sourcelterator: Iterator[T])
filteredBy(predicate:Predicatel[T]) -> Iterator[T] {
// returns a trait that supplies the iteration protocol

var cache
var cacheloaded := false
object {
method asString { "a filtered iterator over {sourcelterator}" }
method hasNext {
// To determine if this iterator has a next element, we have to find
// an acceptable element; this is then cached, for the use of next
// If I return true, the cache 1is loaded.
if (cachelLoaded) then { return true }
while { sourcelterator.hasNext } do {
def outerNext = sourcelterator.next
def isAcceptable = predicate.apply(outerNext)
if (isAcceptable) then {
cachelLoaded := true
cache := outerNext
return true

}
return false
}
method next {
24 if (hasNext) then {
261H cachelLoaded := false
' return cache
} else {
IteratorExhausted.raise "no more elements in {self}"

method iteratorOver[T] (sourcelterator: Iterator[T])
filteredBy(predicate:Predicatel[T]) -> Iterator[T] {
// returns a trait that supplies the iteration protocol

var cache private
var cachelLoaded := false .
obiect variables

method asString { "a filtered iterator over {sourcelterator}" }
method hasNext {
// To determine if this iterator has a next element, we have to find
// an acceptable element; this is then cached, for the use of next
// If I return true, the cache 1is loaded.
if (cachelLoaded) then { return true }
while { sourcelterator.hasNext } do {
def outerNext = sourcelterator.next
def isAcceptable = predicate.apply(outerNext)
if (isAcceptable) then {
cachelLoaded := true
cache := outerNext
return true

}
return false
}
method next {
24 if (hasNext) then {
261H cachelLoaded := false
' return cache
} else {
IteratorExhausted.raise "no more elements in {self}"

method iteratorOver[T] (sourcelterator: Iterator[T])
filteredBy(predicate:Predicatel[T]) -> Iterator[T] {
// returns a trait that supplies the iteration protocol

var cache private
var cachelLoaded := false .
b variables

method asString { "a filtered iterator over {sourcelterator}" }
method hasNext {
// To determine if this iterator has a next element, we have to find
// an acceptable element; this is then cached, for the use of next
// If I return true, the cache 1is loaded.
if (cachelLoaded) then { return true }
while { sourcelterator.hasNext } do {
def outerNext = sourcelterator.next
def isAcceptable = predicate.apply(outerNext)
if (isAcceptable) then {
cachelLoaded := true
cache := outerNext
return true

}
return false
}
method next {
24 if (hasNext) then {
261H cachelLoaded := false
' return cache
} else {
IteratorExhausted.raise "no more elements in {self}"

class lazySequenceOver[T] (source: Collection[T])
filteredBy(predicate:Predicatel[T]) -> Enumerable[T] {

use enumerable[T]
class iterator {
use 1teratorOver[T] (source.iterator) filteredBy (predicate)

}

method asDebugString { "a lazy sequence filtering {source}" }

Portland State
UNIVERSITY 15

When are you done?

Tests pass

Start

Portland State
|||||||||| I6

When are you done?

Tests pass

Start Done

Portland State
IIIIIIIIII I7

Iterators are tricky to implement

* but handy to use!

* Some languages make it easier, e.g., Python:

def fibonacci(limit):
a, b, c=0, 1, 0
while ¢ < limit:
yield a

it = fibonacci(10)
while True:
try:

value = it._ next_ ()

except StopIlteration:
break

it e AT

print(value)

for v in fibonacci(10):

print(v)

Portland State

UNIVERSITY

Note: yield, not return
a, b, c =Db, atb, c+l

gets the next value; no

advances the iterator.

for stmt also uses iterator

18

The generator constructs an iterator

effect. Also next(it)

Also iter(it)

