
Lessons from the
two-three tree Homework

CS 420/520
Andrew P. Black

�1

Goals

• See multiple objects implementing the same interface

• See blocks being used as arguments

• replaceMeBy and absorb blocks

• continuation block as argument to sort3

• Listlessness as a programming pattern

• iterators deliver their results one-by-one

• Listlessness is Better than Laziness (Wadler, 1984)

�2

Goals

• See multiple objects implementing the same interface

• See blocks being used as arguments

• replaceMeBy and absorb blocks

• continuation block as argument to sort3

• Listlessness as a programming pattern

• iterators deliver their results one-by-one

• Listlessness is Better than Laziness (Wadler, 1984)

�2

• Program to an Interface, not to an
Implementation

• The implementation was given; all you had to do was
figure out the interface

• Reading tests and documentation to discover the
interface

• Resolving ambiguities:

– writing tests, asking questions

– spotting bugs or inconsistencies

Using multiple Classes

�4

Using multiple Classes
• A student wrote*:

�4

I had experience coding a 2-3 tree in CS 163. Back in those days, I struggled for many days to
deal with insert and remove. I wrote a 2-page method to add a new node to tree. I used an if-then-
else statement to find out if the current node was empty, contained one value, or contained two.
And then another nested if inside each branch to see if we needed to add left/middle/right, or go
left/middle/right. That was a mess. I could imagine how hard it would be for a person to
comprehend the code.

Using OOP to implement it makes life easier. We don’t need to find out which kind of node we
are in: we already know. We also already know when we should change to another kind of node,
and which it should be. All we need do is implement a specific case in each class, and then let
the objects do their jobs.

* text corrected for grammar

Using multiple Classes
• A student wrote*:

• Where have you seen this before?

�4

I had experience coding a 2-3 tree in CS 163. Back in those days, I struggled for many days to
deal with insert and remove. I wrote a 2-page method to add a new node to tree. I used an if-then-
else statement to find out if the current node was empty, contained one value, or contained two.
And then another nested if inside each branch to see if we needed to add left/middle/right, or go
left/middle/right. That was a mess. I could imagine how hard it would be for a person to
comprehend the code.

Using OOP to implement it makes life easier. We don’t need to find out which kind of node we
are in: we already know. We also already know when we should change to another kind of node,
and which it should be. All we need do is implement a specific case in each class, and then let
the objects do their jobs.

* text corrected for grammar

Using multiple Classes
• A student wrote*:

• Where have you seen this before?
• Multiple token classes in the glob homework

�4

I had experience coding a 2-3 tree in CS 163. Back in those days, I struggled for many days to
deal with insert and remove. I wrote a 2-page method to add a new node to tree. I used an if-then-
else statement to find out if the current node was empty, contained one value, or contained two.
And then another nested if inside each branch to see if we needed to add left/middle/right, or go
left/middle/right. That was a mess. I could imagine how hard it would be for a person to
comprehend the code.

Using OOP to implement it makes life easier. We don’t need to find out which kind of node we
are in: we already know. We also already know when we should change to another kind of node,
and which it should be. All we need do is implement a specific case in each class, and then let
the objects do their jobs.

* text corrected for grammar

Using multiple Classes
• A student wrote*:

• Where have you seen this before?
• Multiple token classes in the glob homework

• Many different kinds of component on a canvas

�4

I had experience coding a 2-3 tree in CS 163. Back in those days, I struggled for many days to
deal with insert and remove. I wrote a 2-page method to add a new node to tree. I used an if-then-
else statement to find out if the current node was empty, contained one value, or contained two.
And then another nested if inside each branch to see if we needed to add left/middle/right, or go
left/middle/right. That was a mess. I could imagine how hard it would be for a person to
comprehend the code.

Using OOP to implement it makes life easier. We don’t need to find out which kind of node we
are in: we already know. We also already know when we should change to another kind of node,
and which it should be. All we need do is implement a specific case in each class, and then let
the objects do their jobs.

* text corrected for grammar

Using multiple Classes
• A student wrote*:

• Where have you seen this before?
• Multiple token classes in the glob homework

• Many different kinds of component on a canvas

• Many different test cases in a test suite

�4

I had experience coding a 2-3 tree in CS 163. Back in those days, I struggled for many days to
deal with insert and remove. I wrote a 2-page method to add a new node to tree. I used an if-then-
else statement to find out if the current node was empty, contained one value, or contained two.
And then another nested if inside each branch to see if we needed to add left/middle/right, or go
left/middle/right. That was a mess. I could imagine how hard it would be for a person to
comprehend the code.

Using OOP to implement it makes life easier. We don’t need to find out which kind of node we
are in: we already know. We also already know when we should change to another kind of node,
and which it should be. All we need do is implement a specific case in each class, and then let
the objects do their jobs.

* text corrected for grammar

• When using the state pattern

�5

Use More Objects

�3

• A student writes:

I was pretty happy with my code before I posted a question to the
class forum about the behavior of extra symbols inside brackets.
At that point I had only one "bracketParseState", rather than the
"leftBracketParseState" and "bracketCharsParseState" I ended up
with. I chose to raise an error any time one of the other symbols
appeared inside brackets, if a left bracket appeared without a right
bracket, or if a right bracket appeared before a left bracket.

After reading the discussion on the forum, I switched to the two
state implementation, where one is used when a left bracket first
appears, and the second one is used to fill the brackets with
characters. Now the combinations of symbols described above are
all treated as plain characters rather than raising errors. I'm
happier with this version of the code.

• Dictionary itself!

• hash-table implementation

• search-tree implementation

Objects have Two Interfaces
1. Interface to use the object:

type Dictionary = interface { 
 at(_)put(_); keys; iterator; do(_); … }

2. Interface to create the object:
type DictionaryFactory = interface {  
 dictionary(_); dictionary.withAll(_);  
 dictionary <<; dictionary.with(_);  
 dictionary.empty }

Assignment wasn’t explicit about this; most students
missed its importance.

• To test a dictionary, you have to create a dictionary

�7

�8

Tests/Specs Communicate

type Collection⟦T⟧ = type {
 iterator -> Iterator⟦T⟧
 // Returns an iterator over my elements. It is an error to modify self while iterating
 // over it. Note: all other methods can be defined using iterator. Iterating over a
 // dictionary yields its values.

 …

type Dictionary⟦K, T⟧ = Collection⟦T⟧ & interface {
 …
 keys -> Collection⟦K⟧ // returns my keys as a lazy sequence in arbitrary order
 values -> Collection⟦T⟧ // returns my values as a lazy sequence in arbitrary order
 bindings -> Enumerable⟦ Binding⟦K, T⟧ ⟧ // returns my bindings as a lazy sequence

My tests tell much the same story:
test_small_iterator: ‹set{3::three, 4::four, 2::two, 1::one, 5::five}›  
 should be ‹set{"five", "three", "two", "one", "four"}›

Simple Methods
• Compare

method ≠(someOtherDictionary) { 
 if (self == someOtherDictionary) then { 
 return false  
 } else {  
 return true  
 }  
}

to
method ≠(other) { (self == other).not }

• Does other have to be a dictionary?

�9

Shop, don’t Build

�10

Shop, don’t Build
• Consider

�10

http://iter.zipper.at
http://current.bindingList.at

Shop, don’t Build
• Consider

method ++ (t) { 
 def newTree = self.copy 
 def iter = t.iterator 
 var current 
 (1 .. iter.zipper.size).do { i → 
 current := iter.zipper.at(i) 
 (1 .. current.bindingList.size).do { j → 
 newTree.at(current.bindingList.at(j).key)  
 put (current.bindingList.at(j).value) 
 } 
 } 
 newTree 
}

�10

http://iter.zipper.at
http://current.bindingList.at

Shop, don’t Build
• Consider

method ++ (t) { 
 def newTree = self.copy 
 def iter = t.iterator 
 var current 
 (1 .. iter.zipper.size).do { i → 
 current := iter.zipper.at(i) 
 (1 .. current.bindingList.size).do { j → 
 newTree.at(current.bindingList.at(j).key)  
 put (current.bindingList.at(j).value) 
 } 
 } 
 newTree 
}

• Train wreck!
• This will work only when t has an iterator with a

zipper method that is itself a collection

�10

http://iter.zipper.at
http://current.bindingList.at

• Better to reuse the implementation from
collectionsPrelude dictionary:
method ++ (other:Collection⟦T⟧) { 

 // answers a new dictionary containing all my keys and 
 // the keys of other; if other contains one of my keys, 
 // other’s value overrides mine 
 
 def newDict = self.copy 
 other.keysAndValuesDo {k, v -> 
 newDict.at(k) put(v) 
 } 
 return newDict 
 }

• This works for any other that understands
keysAndValuesDo(_)

• Many of the methods in the dictionary
implementation could be factored out into a
reusable trait.

Lazy Sequences, aka Streams

• Implementations are available for reuse in
collectionsprelude

�12

�13

�14

�14

private
variables

�14

private
variables

�15

When are you done?

�16

Start

Tests pass

When are you done?

�17

Start Done

Tests pass

Iterators are tricky to implement
• but handy to use!

• Some languages make it easier, e.g., Python:
def fibonacci(limit): # The generator constructs an iterator
 a, b, c = 0, 1, 0
 while c < limit:
 yield a # Note: yield, not return
 a, b, c = b, a+b, c+1

it = fibonacci(10)
while True:
 try:
 value = it.__next__() ## gets the next value; no effect. Also next(it)
 except StopIteration:
 break
 it.__iter__() ## advances the iterator. Also iter(it)
 print(value)  

for v in fibonacci(10): ## for stmt also uses iterator
 print(v)

�18

