
Lessons from the Dancing
Box Homework

CS 420–520

Andrew P. Black

�1

Write Purpose Statements

• A purpose statement is a comment just after
the method header that explains:
• what the method does
• what the method returns, and
• the rôles of the parameters.

• Use one whenever the name of the method
alone is insufficient

�2

• Does this method need a purpose statement?
method maximum(a:Number, b:Number) → Number { … }

• How about this?
//used in update_dir  
method update_spd { … }

• How about this?
method update_dir(pt:Point) {  
 //tells the animator which way the box will move  
 …  
}

• Better
method changeHeading(pt:Point) → Done {
 // modifies heading to try to keep pt inside the canvas 
 …  
}

• Notes:

• Put purpose statements inside the method that they
describe
– method keyword will help us find the method

– parameter names will be in scope

• Refer to the parameters by name; say what they do

• If the method returns something other than Done,
say what it “answers” or “returns” (use those words)

• Not being able to write a concise purpose statement
is a code smell

method danceWith(another) { 
 if (! another.acceptDance(self)) then {  
 return false  
 }  
 partner := another 
 hasPartner := true  
 print "{getName} dancing with {partner.getName}"  
 dance; 
}

method danceWith(another) → Boolean { 
 // asks another to dance; answers false if they decline and ???  
 if (! another.acceptDance(self)) then {  
 return false  
 }  
 partner := another 
 hasPartner := true  
 print "{getName} dancing with {partner.getName}"  
 dance; 
}

Trust your objects
• If alice asks bob to dance, and he accepts, then

alice should trust bob to move his own feet

method dance { 
 var increment := (random.integerIn(-2) to(2) @ 
 random.integerIn(-2) to(2))  
 var count := 0  
 animation.while {count < 10} pausing 100 do {  
 count := count + 1  
 moveBy(increment) 
 if (hasPartner) then { 
 partner.moveTo(origin - increment)
 }  
 }  
 …

�7

Use complex objects, not primitives

• Point are 2-D vectors; can be used to represent
velocities (speed & direction)

var xspd := 0  
var yspd := 0

why not
var velocity = 0@0

• Why use a scaler speed and a scalar heading
(compass bearing), when you can use a vector
velocity?

�8

Sometimes, methods are missing

• No % (modulus) operator on points

• In a better language, we could add it!

• InGrace, we have to fake it

method stayInBoundariesFor(location:Point) → Point { 
 def effectiveSize = size - extent 
 (location.x % effectiveSize.x) @  
 (location.y % effectiveSize.y)  
}

�9

