Creating Flexible
Interfaces

Based on POODR Chapter 4

IIIIIIIIII

Requests, not Objects

e Domain objects correspond to nouns —

> easy to find, but:
> not at the design center of your application.
> can be a trap for the unwary: important objects may be missing

e Sequence diagrams are a vehicle for exposing,
experimenting with, and ultimately defining [the
requests that pass between objects, that is,] ...
interfaces.

e “| need to send this message, who should respond to it?”
IS the first step [towards more flexible applications].

e You don’t send messages because you have objects,
you have objects because you send messages.

Portland State

IIIIIIIIII

Objects Behave

Focus Not on the data in an object, but on

> the requests that are made on it (its interface)

> the requests that it makes of its collaborators
* Think about “co-data” rather than data

* Any object can be represented without data

> except for the stream of requests that has been
made of it (with their arguments)

Portland State 3

IIIIIIIIII

moe class class

Customer Trip Bicycle
moe class
Customer Trip ' suitable_trip :
. . (on_date, : :
 suitable_trips | of difficulty) |
' (on_date, | ’D |
+of_difficulty, EEREREEEEE .
. need bike) ' for each trip founcﬂ
D S .>J:| suitable_bicycle
' ' ' (trip_date, ! !
moe class 'route type) | :
Customer Trip >J:|
e .
Figure 4.3 A simple sequence diagram. moe class || class
Customer Trip Bicycle

Figure 4.4 Moe talks to trip and bicycle.

Portland State

UNIVERSITY

moe class class

Customer Trip Bicycle
moe clags
Customer Arip ' suitable_trip :
. . (on_date, : :
 suitable_trips | of difficulty) |
' (on_date, | ’D |
+of_difficulty, EEREREEEEE .
. need bike) ' for each trip founcﬂ
<= - - - - - ->J:| suitable_bicycle
' ' ' (trip_date, ! !
moe class 'route type) | :
Customer Trip >J:|
T .
Figure 4.3 A simple sequence diagram. moe class || class
Customer Trip Bicycle

Figure 4.4 Moe talks to trip and bicycle.

Portland State

UNIVERSITY

moe class class

Customer Trip Bicycle
moe |3&S
Customer i 'suitable_trip
. . (on_date, : :
 suitable_trips | of difficulty) |
' (on_date, | ’D |
+of_difficulty, EEREREEEEE .
. need bike) ' for each trip founcﬂ
D S .>J:| suitable_bicycle
' ' ' (trip_date, ! !
moe class ' route type) : :
Customer Trip >J:|
e ook
Figure 4.3 A simple sequence diagram. moe class || class
Customer Trip Bicycle

Figure 4.4 Moe talks to trip and bicycle.

Portland State

UNIVERSITY

moe class class

Customer Trip Bicycle

moe lags
Customer % suitable_trip
, , ' (on_date, ! !
 suitable_trips | of difficulty) :
 (on_date, >J:|
+of_difficulty, = mmmmmeee .
need bike) ' for each trip founcﬂ
D ->J:| ' suitable_bicycle :
' ' ' (trip_date, '
moe cla | route type) :

Customer | .

T ------ 1

Figure 4.3 A simple sequence diagram. moe class class
Customer Trip Bicycle

Figure 4.4 Moe talks to trip and bicycle.

Portland State

UNIVERSITY

moe class class

Customer Trip Bicycle
moe I9£5
Customer % 'suitable_trip
' (on_date, !
suitable_trips of difficulty) .

need bike)

for each trip founcﬂ
F—

suitable_bicycle

' (trip_date, ;
moe la | route type) :
Customer >J:|

 (on_date, ’D
+of_difficulty, P

:< _____________
Figure 4.3 A simple sequence diagram. moe class class
Customer Trip Bicycle

Figure 4.4 Moe talks to trip and bicycle.

Portland State

UNIVERSITY

tri VW’ 4
p Y moe class class

Customer Trip Bicycle
moe I9£5
Customer % 'suitable_trip
' (on_date, !
suitable_trips of difficulty) .

need bike)

for each trip founcﬂ
F—

suitable_bicycle

' (trip_date, ;
moe la | route type) :
Customer >J:|

 (on_date, ’D
+of_difficulty, P

:< _____________
Figure 4.3 A simple sequence diagram. moe class class
Customer Trip Bicycle

Figure 4.4 Moe talks to trip and bicycle.

Portland State

UNIVERSITY

tri VW’ 4
p Y moe cla class

Customer i Bicycle
moe [a&s
Customer ; ' suitable_trip

' (on_date,

suitable_trips of difficulty)

need bike)

for each trip founcﬂ
F—

suitable_bicycle

' (trip_date, ;
moe la | route type) :
Customer >J:|

 (on_date, ’D
+of_difficulty, P

:< _____________
Figure 4.3 A simple sequence diagram. moe class class
Customer Trip Bicycle

Figure 4.4 Moe talks to trip and bicycle.

Portland State

UNIVERSITY

trip registry moe a class
Customer Bicycle
moe %

Customer 'suitable_trip
' (on_date, !
suitable_trips of difficulty)

need bike)

for each trip founcﬂ
F—

suitable_bicycle

' (trip_date, ;
moe la | route type) :
Customer >J:|

 (on_date, ’D
+of_difficulty, P

:< _____________
Figure 4.3 A simple sequence diagram. moe class class
Customer Trip Bicycle

Figure 4.4 Moe talks to trip and bicycle.

Portland State

UNIVERSITY

trip registry moe a class
Customer Bicycle
moe %

Customer 'suitable_trip
' (on_date, !
suitable_trips of difficulty)

need bike)

for each trip founcﬂ
F—

suitable_bicycle

' (trip_date,
moe la | route type)
Customer

 (on_date, ’D
+of_difficulty, P

é
=

Figure 4.3 A simple sequence diagram. moe clas _c_:lass
Customer Bicycle

Figure 4.4 Moe talks to trip and bicycle.

Portland State

UNIVERSITY

trip registry moe a class
Customer Bicycle
moe %

Customer 'suitable_trip
' (on_date, !
suitable_trips of difficulty)

need bike)

for each trip founcﬂ
F—

suitable_bicycle

' (trip_date,
moe la | route type)
Customer

- - - - - == - == - - =

Figure 4.3 A simple sequence diagram. moe as class
Customer Bicycle

A

(on_date, ’D
+of_difficulty, P

=

Figure 4.4 Moe talks to trip and bicycle.

Portland State

UNIVERSITY

trip

regisiry
trip regustyy moe % class
Customer Bicycle
moe l38s
Customer % 'suitable_trip
' (on_date, !
suitable_trips of difficulty) .

need bike)

for each trip founcﬂ
F—

suitable_bicycle

' (trip_date,
moe la ' route type)
Customer

- - - - - == - == - - =

Figure 4.3 A simple sequence diagram. moe as class
Customer Bicycle

A

(on_date, ’D
+of_difficulty, P

=

Figure 4.4 Moe talks to trip and bicycle.

Portland State

UNIVERSITY

trip

regisiry
trip registry moe % o
Customer iCycle
moe lags
Customer % 'suitable_trip
' (on_date, !
suitable_trips of difficulty) .

need bike)

for each trip founcﬂ
F—

suitable_bicycle

' (trip_date,
moe la ' route type)
Customer

- - - - - == - == - - =

Figure 4.3 A simple sequence diagram. moe as class
Customer Bicycle

A

(on_date, ’D
+of_difficulty, P

=

Figure 4.4 Moe talks to trip and bicycle.

Portland State

UNIVERSITY

trip

regisiry
trip registry moe \ g 1/ ; i
Customer iCycle
moe I9£5
Customer % 'suitable_trip
' (on_date, !
suitable_trips of difficulty) .

need bike)

for each trip founcﬂ
F—

suitable_bicycle

' (trip_date,
moe la ' route type)
Customer

- - - - - == - == - - =

Figure 4.3 A simple sequence diagram. moe as class
Customer Bicycle

A

(on_date, ’D
+of_difficulty, P

=

Figure 4.4 Moe talks to trip and bicycle.

Portland State

UNIVERSITY

trip

regisiry
trip registry moe \ g 1/ ; i
Customer iCycle
moe I9£5
Customer % 'suitable_trip
' (on_date, !
suitable_trips of difficulty) .

need bike)

for each trip founcﬂ
F—

suitable_bicycle

' (trip_date,
moe la ' route type)
Customer

- - - - - == - == - - =

Figure 4.3 A simple sequence diagram. moe as cla
Customer Big{cle

A

(on_date, ’D
+of_difficulty, P

=

Figure 4.4 Moe talks to trip and bicycle.

Portland State

UNIVERSITY

trip

regisiry
trip registry moe \ g 1/ ; i
Customer iCycle
moe I9£5
Customer % 'suitable_trip
' (on_date, !
suitable_trips of difficulty) .

need bike)

for each trip founcﬂ
F—

suitable_bicycle

' (trip_date,
moe la | route type)
Customer

- - - - - == - == - - =

Figure 4.3 A simple sequence diagram. moe & >
Customer Bighgle

A

(on_date, ’D
+of_difficulty, P

=

Figure 4.4 Moe talks to trip and bicycle.

Portland State

UNIVERSITY

trip bicycle

registry regisiry
trip registry moe \ g 1/ ; i
Customer iCycle
moe I9£5
Customer % 'suitable_trip
' (on_date, !
suitable_trips of difficulty) .

need bike)

for each trip founcﬂ
F—

suitable_bicycle

' (trip_date,
moe la | route type)
Customer

- - - - - == - == - - =

Figure 4.3 A simple sequence diagram. moe & >
Customer Bighgle

A

(on_date, ’D
+of_difficulty, P

=

Figure 4.4 Moe talks to trip and bicycle.

Portland State

UNIVERSITY

a a

Trip Mechanic

bicycles :|

for each bicyclej

: clean bicycle(bike)

T
|
|
|
|
|
|
1
I
|
1
|
|
1
|
——

e nEEEEEEEEEP P TR -
. pump tires(bike) |
e i
lube chain(bike)
S I
check brakes(bike)‘i
E* “““““““““ T
a a
Trip Mechanic

Figure 4.5
A Trip tells a Mechanic how to prepare each Bicycle.

Portland State

UNIVERSITY

a a

Trip Mechanic
bicycles :|

for each bicycle

i clean bicycle(bike)

check brakes(bike) :

Trip Mechanic

Figure 4.5

Figure 4.5 is quite procedural. A Trip tells a Mechanic how to prepare a
Bicycle, almost as if Trip were the main program and Mechanic a bunch of callable
functions. In this design, Trip is the only object that knows exactly how to prepare a
bike; getting a bike prepared requires using a Trip or duplicating the code. Trip’s
context is large, as is Mechanic’s public interface. These two classes are not islands
with bridges between them, they are instead a single, woven cloth.

Many new object-oriented programmers start out working just this way, writing
procedural code. It’s inevitable; this style closely mirrors the best practices of their
former procedural languages. Unfortunately, coding in a procedural style defeats the
purpose of object orientation. It reintroduces the exact maintenance issues that OOP

is designed to avoid.

Portland State

UNIVERSITY

a a a a

Trip Mechanic Trip Mechanic

bicycles :| : : '
; ! bicycles :| |

for each bicyclej : |
. : for each bicycleh‘ !
: clean bicycle(bike) . !
: g 'prepare bicycle(bike) !
T N ; >
 pump tires(bike) . clean_bicycle(bike)
T : |
lube chain(bike) ! etc. ..
SU I ;
' check brakes(bike) IR
S ELRCCEETEEEEES | a a

Trip Mechanic
a a
Trip Mechanic
Figure 4.5 Figure 4.6 A Trip asks a Mechanic
A Trip tells a Mechanic how to prepare each Bicycle. to prepare each Bicycle.
Portland State 7

UNIVERSITY

Figure 4.6 is more object-oriented. Here, a Trip asks a Mechanic to prepare a
Bicycle. Trip’s context is reduced, and Mechanic’s public interface is smaller.
Additionally, Mechanic’s public interface is now something that any object may prof-
itably use; you don’t need a Trip to prepare a bike. These objects now communicate
in a few well-defined ways; they are less coupled and more easily reusable.

This style of coding places the responsibilities in the correct objects, a great im-
provement, but continues to require that Trip have more context than is necessary.
Trip still knows that it holds onto an object that can respond to prepare bicycle,

and it must #/ways have this object.

Portland State

UNIVERSITY

a a

bicycles :|
for each bicycle

 clean bicycle(bike) 1

>
>

Trip Mecﬁanic

a
Trip

a
Mechanic

a

Trip Mechanic

Trip

tells Mechanic how to prepare each Bicycle.

Portland State

UNIVERSITY

prepare_trip(self) |

bicycles

I

P

for each bicycleb‘

repare_bicycle(bike) :|

Mecﬁanic

Figure 4.7 A Trip asks a Mechanic to prepare the Trip.

a

Trip

a
Mechanic

bicycles :|

for each bicyclej

Eprepare bicycle(bike)

A -
>

clean_bicycle(bike) 2

etc.. IT

ot a
a a
Trip Mechanic

Figure 4.6 A Trip asks a Mechanic
to prepare each Bicycle.

a a

bicycles :|
for each bicycle

 clean bicycle(bike) 1

>
>

Trip Mecﬁanic

a

Trip Mechanic

Trip

tells Mechanic how to prepare each Bicycle.

Portland State

UNIVERSITY

a a
Trip Mechanic
Ep_r(prePM@FW(W :
: bicycles
————————————————— >

prepare_bicycle(bike) :|

for each bicycleb‘

Mecﬁanic

Figure 4.7 A Trip asks a Mechanic to prepare the Trip.

a

Trip

bicycles :|

for each bicyclej

Eprepare bicycle(bike)

a

Mecﬁanic

a

Trip

clean_bicycle(bike) 2

- - - - - - - - - — - - -~

A -
>

etc.. IT

L

a

Mecﬁanic

Figure 4.6 A Trip asks a Mechanic

to prepare each Bicycle.

Figure 4.7 is far more object-oriented. In this example, Trip doesn’t know or care
that it has a Mechanic and it doesn’t have any idea what the Mechanic will do. Trip
merely holds onto an object to which it will send prepare trip; it trusts the receiver

of this message to behave appropriately.

Portland State

UNIVERSITY

Figure 4.7 is far more object-oriented. In this example, Trip doesn’t know or care
that it has a Mechanic and it doesn’t have any idea what the Mechanic will do. Trip
merely holds onto an object to which it will send prepare trip; it trusts the receiver

of this message to behave appropriately.

This pattern allows you to add newly-introduced
preparers to Trip without changing any of its code.

You can extend Trip without modifying it.

Portland State

IIIIIIIIII

Figure 4.7 is far more object-oriented. In this example, Trip doesn’t know or care
that it has a Mechanic and it doesn’t have any idea what the Mechanic will do. Trip
merely holds onto an object to which it will send preparefor(sel); it trusts the receiver
of this message to behave appropriately.

This pattern allows you to add newly-introduced
preparers to Trip without changing any of its code.

You can extend Trip without modifying it.

Portland State

IIIIIIIIII

Figure 4.7 is far more object-oriented. In this example, Trip doesn’t know or care
that it has a Mechanic and it doesn’t have any idea what the Mechanic will do. Trip
merely holds onto an object to which it will send preparefor(sel); it trusts the receiver
of this message to behave appropriately.

This pattern allows you to add newly-introduced
preparers to Trip without changing any of its code.

You can extend Trip without modifying it.

The open/closed principle states that.

software entities should be open for extension, but closed for modification

Portland State

IIIIIIIIII

If objects were human and could describe their own relationships, in Figure 4.5
Trip would be telling Mechanic: “I know what [want and I know how you do it;” in
Figure 4.6: “I know what I want and I know what you do” and in Figure 4.7: “I know
what I want and 7 trust you to do your part.”

Portland State

IIIIIIIIII

If objects were human and could describe their own relationships, in Figure 4.5
Trip would be telling Mechanic: “I know what [want and I know how you do it;” in
Figure 4.6: “I know what I want and I know what you do” and in Figure 4.7: “I know
what I want and 7 trust you to do your part.”

This blind trust is a keystone of object-oriented design. It allows objects to collab-
orate without binding themselves to context and is necessary in any application that

CXpCCtS to grow and change.

Portland State

UNIVERSITY

Forwarding # Delegation

* Forwarding a request means asking some other
object assist to handle the request on your behalf

> assist answers to you, you answer to the original requestor

* Delegation means asking another object,
delegate, to act as If it were you

> delegate answers to the original requestor
> self-request by delegate are treated as if made by you

* Metz should be arguing to use forwarding to avoid train wrecks

Portland State

IIIIIIIIII

9/%06 node:

Portland State

IIIIIIIIII

In Grace, methods are by default public, and fields
are by default confidential

confidential means accessible to the object itself,
and to the objects that inherit from it.

you can change the defaults using annotations,
e.g..
- def extent is public = 200@200

var partner is readable := nobody

vars can be readable or writable, as well as fully
public

methods that are not in your interface should be
annotated as confidential

Types as Interfaces

IIIIIIIIII

Types as Interfaces

g/%o@ noide:

IIIIIIIIII

Types as Interfaces

g/%o@ noide:

* you can define a type as an interface

Portland State

IIIIIIIIII

Types as Interfaces

g/%o@ neide:
* you can define a type as an interface

type Preparer = interface {
prepareFor(aTrip) = Done

Portland State

IIIIIIIIII

Types as Interfaces
list of method

names (with optional
parameter & result

\pe Preparer = interface {
prepareFor(aTrip) = Done

Portland State

IIIIIIIIII

Types as Interfaces

g/%o@ neide:
* you can define a type as an interface

type Preparer = interface {
prepareFor(aTrip) = Done

}
 and use it to check your class:

Portland State

IIIIIIIIII

Types as Interfaces

g/%a@ neide:
* you can define a type as an interface

type Preparer = interface {
prepareFor(aTrip) = Done

}
 and use it to check your class:

class mechanic —Preparer{ ... }

Portland State

IIIIIIIIII

Types as Interfaces

g/%a@ neide:
* you can define a type as an interface

type Preparer = interface {
prepareFor(aTrip) = Done

}
e and use it to check Cyour class:

class mechanlc—> Prepare'{ .}

Portland State 4

IIIIIIIIII

Types as Interfaces

g/%o& neide:
* you can define a type as an interface

type Preparer = interface {
prepareFor(aTrip) = Done

will raise a type error (at
runtime) if the new object does not
} have the right methods

 and use it to check yourg

e

class mechanic(—

R

re par%e\l (..}

S

Portland State 4

IIIIIIIIII

Types as Interfaces

g/%a@ neide:
* you can define a type as an interface

type Preparer = interface {
prepareFor(aTrip) = Done

}
 and use it to check your class:

class mechanic —Preparer{ ... }

Portland State

IIIIIIIIII

The Law of Demeter

You should send requests only on:

4

4
4
4

an argument passed to you
your own instance variables
an object you create

self, outer

Avoid global variables

Avoid objects returned from messages sent to others

S.Ducasse

Correct Requests

method someMethod(aParameter) {
self.foo
field.foo

aParameter.foo
def myThing := aThing.createNewObject
my Thing.foo

Talk only to your immediate friends

e Friends of friends are suspect

S.Ducasse 16

In other words ...

S.Ducasse

® You can play with yourself. this.method()

® You can play with your own toys (but you can’t
take them apart). field.method()

® You can play with toys that were given to you.
parameter.method()

® And you can play with toys you’ve made
yourself.
myA = aFactory.makeA(); myA.method()

Halt!

class A {pub
class B {pub
class C {pub
class P {pub
C

void A::m() {

ic: void m(); P p(); Bb; },

ic:C¢C; };
ic: void foo(); }:
ic: Q q(); };

ass Q {public: void bar(); };

this.b.c.foo(); this.p().q().bar();}

S.Ducasse

Do not skip intermediaries!

Violations: Datatlow Diagram

foo()

bar()

S.Ducasse 19

Solution

e Follow the Law of Demeter

S.Ducasse

20

foo()

bar()

Transformation

Carburetor Engine Car
+fuelValveOpen + carburator - engine
+ increaseSpeed()

/

‘ engine.carburetor.fueIVaIveOper;=true |
Step 1

Carburetor Engine Car
+fuelValveOpen - carburator - engine
speedUp() + increaseSpeed()
T
carburetor.fuelValveOpen = true | engine.speedUp()

S.Ducasse 21

Transformation

Carburetor

Engine

+fuelValveOpen

Step 1

Carburetor

Car

+ carburator

- engine

/

+ increaseSpeed()

<
‘ engine.carburetor.fuelValveOpen = true |

Engine

Car

- carburator

+fuelValveOpen

speedUp()

Step 2

Carburetor

‘ carburetor.fuelValveOpen = true |

Engine

- carburator

- fuelValveOpen
+ openFuelValve

fuelValveOpen = true

S.Ducasse

- engine

+ increaseSpeed()

‘ engine.speedUp() |

Car

speedUp()

‘ carburetor.openFuelValve() |

21

- engine
+ increaseSpeed()

‘ engine.speedUp() \

The Dark side of the Law of Demeter

class bicycleFleet {
def bikes = set []
method do(aBlock) { bikes.do(aBlock) }
method isEmpty { bikes.isEmpty }
method map(aBlock) { bikes.map(aBlock) }
method filter(aBlock) { bikes.filter(aBlock) }

S.Ducasse 22

The Dark side of the Law of Demeter

class bicycleFleet {
def bikes = set []
method do(aBlock) { bikes.do(aBlock) }
method isEmpty { bikes.isEmpty }
method map(aBlock) { bikes.map(aBlock) }
method filter(aBlock) { bikes.filter(aBlock) }

S.Ducasse 22

About Accessor methods

In Grace, we don't have to worry about this.
Accessor methods are indistinguishable from direct field
access.
Other languages distinguish.
Some gurus say: “Access all instance variables using
accessor methods”. Why!?
| say:
Be consistent inside an object:
do not mix direct access and accessor methods
Initially, make accessors confidential or private
Make them more public as part of designing the interface.

S.Ducasse 23

Example

def scheduler = object {
def tasks = priorityQueue

method suspendedTasks { tasks }

J

But now everybody can tweak the task queue!

S.Ducasse 24

Accessors

Accessors are good for lazy initialization

def suspendedTasks = uninitialized
method tasks {
if (uninitialized == suspendedTasks) then {
suspendedTasks := priorityQueue

}

suspendedTasks

}

But: accessors methods should be confidential by
default, at least at the beginning

S.Ducasse 25

Provide a Complete Interface

class workstation {
method accept(aPacket) {
if (aPacket.addressee == self.address) then { ... } else { ... }

- It is the responsibility of an object to offer a complete interface that
protects that object from its clients’ intrusion.

- Shift the responsibility to the Packet object

class packet {
method isAddressedTo(aNode) { addressee == aNode.address }

}

class workstation {
method accept(aPacket) {
if (aPacket.isAddressedTo(self)) then { ... } else { ... }

S.Ducasse 26

Who is Demeter Anyway?

IIIIIIIIII

27

Who is Demeter Anyway?

Demeter,
Consort of Zeus,
mother of Persephone

Portland State

IIIIIIIIII

27

Who is Demeter Anyway?

.
Demeter,)
Consort of Zeus, 11&’
mother of Persephone .

) e

Karl Liebherr,
Professor of Computer
Science at Northeastern
University

Portland State 27

UNIVERSITY

