
Creating Flexible
Interfaces

Based on POODR Chapter 4

 1

Requests, not Objects
• Domain objects correspond to nouns —
‣ easy to find, but:
‣ not at the design center of your application.
‣ can be a trap for the unwary: important objects may be missing

• Sequence diagrams are a vehicle for exposing,
experimenting with, and ultimately defining [the
requests that pass between objects, that is,] ...
interfaces.

• “I need to send this message, who should respond to it?”
is the first step [towards more flexible applications].

• You don’t send messages because you have objects,
you have objects because you send messages.

 2

Objects Behave

Focus Not on the data in an object, but on
‣ the requests that are made on it (its interface)

‣ the requests that it makes of its collaborators

• Think about “co-data” rather than data

• Any object can be represented without data
‣ except for the stream of requests that has been

made of it (with their arguments)

 3

 4

ptg8315951

UML put a great deal of thought into how to communicate object-oriented design
and you can leverage off their efforts. There are UML diagrams that provide excellent,
transient ways to explore and communicate design possibilities. Use them; you do not
need to reinvent this wheel.

Sequence diagrams are quite handy. They provide a simple way to experiment with
different object arrangements and message passing schemes. They bring clarity to your
thoughts and provide a vehicle to collaborate and communicate with others. Think of
them as a lightweight way to acquire an intention about an interaction. Draw them on
a whiteboard, alter them as needed, and erase them when they’ve served their purpose.

Figure 4.3 shows a simple sequence diagram. This diagram represents an attempt
to implement the use case above. It shows Moe, a Customer and the Trip class,
where Moe sends the suitable_trips message to Trip and gets back a response.

Figure 4.3 illustrates the two main parts of a sequence diagram. As you can see,
they show two things: objects and the messages passing between them. The following
paragraphs describe the parts of this diagram but please note that the UML police will
not arrest you if you vary from the official style. Do what works for you.

In the example diagram each object is represented by two identically named boxes,
arranged one above the other and connected by a single vertical line. It contains two
objects, the Customer Moe and the class Trip. Messages are shown as horizontal lines.
When a message is sent, the line is labeled with the message name. Message lines end or
begin with an arrow; this arrow points to the receiver. When an object is busy process-
ing a received message, it is active and its vertical line is expanded to a vertical rectangle.

The diagram also contains a single message, suitable_trips, sent by Moe to
the Trip class. Therefore, this sequence diagram can be read as follows: Customer
Moe sends the suitable_trips message to the Trip class, which is activated to
process it and then, when finished, returns a response.

66 Chapter 4. Creating Flexible Interfaces

Figure 4.3 A simple sequence diagram.

moe
Customer

suitable_trips
(on_date,
of_difficulty,
need bike)

class
Trip

moe
Customer

class
Trip

From the Library of Avi Flombaum

ptg8315951

UML put a great deal of thought into how to communicate object-oriented design
and you can leverage off their efforts. There are UML diagrams that provide excellent,
transient ways to explore and communicate design possibilities. Use them; you do not
need to reinvent this wheel.

Sequence diagrams are quite handy. They provide a simple way to experiment with
different object arrangements and message passing schemes. They bring clarity to your
thoughts and provide a vehicle to collaborate and communicate with others. Think of
them as a lightweight way to acquire an intention about an interaction. Draw them on
a whiteboard, alter them as needed, and erase them when they’ve served their purpose.

Figure 4.3 shows a simple sequence diagram. This diagram represents an attempt
to implement the use case above. It shows Moe, a Customer and the Trip class,
where Moe sends the suitable_trips message to Trip and gets back a response.

Figure 4.3 illustrates the two main parts of a sequence diagram. As you can see,
they show two things: objects and the messages passing between them. The following
paragraphs describe the parts of this diagram but please note that the UML police will
not arrest you if you vary from the official style. Do what works for you.

In the example diagram each object is represented by two identically named boxes,
arranged one above the other and connected by a single vertical line. It contains two
objects, the Customer Moe and the class Trip. Messages are shown as horizontal lines.
When a message is sent, the line is labeled with the message name. Message lines end or
begin with an arrow; this arrow points to the receiver. When an object is busy process-
ing a received message, it is active and its vertical line is expanded to a vertical rectangle.

The diagram also contains a single message, suitable_trips, sent by Moe to
the Trip class. Therefore, this sequence diagram can be read as follows: Customer
Moe sends the suitable_trips message to the Trip class, which is activated to
process it and then, when finished, returns a response.

66 Chapter 4. Creating Flexible Interfaces

Figure 4.3 A simple sequence diagram.

moe
Customer

suitable_trips
(on_date,
of_difficulty,
need bike)

class
Trip

moe
Customer

class
Trip

From the Library of Avi Flombaum
ptg8315951Bicycle for suitable_bicycle. Moe can get the answer he needs if he talks to both of

them. That sequence diagram looks like Figure 4.4.
For each of these diagrams, consider what Moe has to know.
In Figure 4.3, he knows that:

• He wants a list of trips.

• There’s an object that implements the suitable_trips message.

In Figure 4.4, he knows that:

• He wants a list of trips.

• There’s an object that implements the suitable_trips message.

• Part of finding a suitable trip means finding a suitable bicycle.

• There’s another object that implements the suitable_bicycle message.

Sadly, Figure 4.4 is an improvement in some areas but a failure in others. This design
removes extraneous responsibilities from Trip but unfortunately, it merely transfers
them to Customer.

The problem in Figure 4.4 is that Moe not only knows what he wants, he also
knows how other objects should collaborate to provide it. The Customer class has
become the owner of the application rules that assess trip suitability.

68 Chapter 4. Creating Flexible Interfaces

moe
Customer

class
Trip

class
Bicycle

moe
Customer

class
Trip

class
Bicycle

for each trip found

suitable_trip
(on_date,
of difficulty)

suitable_bicycle
(trip_date,
route type)

Figure 4.4 Moe talks to trip and bicycle.

From the Library of Avi Flombaum

ptg8315951Bicycle for suitable_bicycle. Moe can get the answer he needs if he talks to both of
them. That sequence diagram looks like Figure 4.4.

For each of these diagrams, consider what Moe has to know.
In Figure 4.3, he knows that:

• He wants a list of trips.

• There’s an object that implements the suitable_trips message.

In Figure 4.4, he knows that:

• He wants a list of trips.

• There’s an object that implements the suitable_trips message.

• Part of finding a suitable trip means finding a suitable bicycle.

• There’s another object that implements the suitable_bicycle message.

Sadly, Figure 4.4 is an improvement in some areas but a failure in others. This design
removes extraneous responsibilities from Trip but unfortunately, it merely transfers
them to Customer.

The problem in Figure 4.4 is that Moe not only knows what he wants, he also
knows how other objects should collaborate to provide it. The Customer class has
become the owner of the application rules that assess trip suitability.

68 Chapter 4. Creating Flexible Interfaces

moe
Customer

class
Trip

class
Bicycle

moe
Customer

class
Trip

class
Bicycle

for each trip found

suitable_trip
(on_date,
of difficulty)

suitable_bicycle
(trip_date,
route type)

Figure 4.4 Moe talks to trip and bicycle.

From the Library of Avi Flombaum

 4

ptg8315951

UML put a great deal of thought into how to communicate object-oriented design
and you can leverage off their efforts. There are UML diagrams that provide excellent,
transient ways to explore and communicate design possibilities. Use them; you do not
need to reinvent this wheel.

Sequence diagrams are quite handy. They provide a simple way to experiment with
different object arrangements and message passing schemes. They bring clarity to your
thoughts and provide a vehicle to collaborate and communicate with others. Think of
them as a lightweight way to acquire an intention about an interaction. Draw them on
a whiteboard, alter them as needed, and erase them when they’ve served their purpose.

Figure 4.3 shows a simple sequence diagram. This diagram represents an attempt
to implement the use case above. It shows Moe, a Customer and the Trip class,
where Moe sends the suitable_trips message to Trip and gets back a response.

Figure 4.3 illustrates the two main parts of a sequence diagram. As you can see,
they show two things: objects and the messages passing between them. The following
paragraphs describe the parts of this diagram but please note that the UML police will
not arrest you if you vary from the official style. Do what works for you.

In the example diagram each object is represented by two identically named boxes,
arranged one above the other and connected by a single vertical line. It contains two
objects, the Customer Moe and the class Trip. Messages are shown as horizontal lines.
When a message is sent, the line is labeled with the message name. Message lines end or
begin with an arrow; this arrow points to the receiver. When an object is busy process-
ing a received message, it is active and its vertical line is expanded to a vertical rectangle.

The diagram also contains a single message, suitable_trips, sent by Moe to
the Trip class. Therefore, this sequence diagram can be read as follows: Customer
Moe sends the suitable_trips message to the Trip class, which is activated to
process it and then, when finished, returns a response.

66 Chapter 4. Creating Flexible Interfaces

Figure 4.3 A simple sequence diagram.

moe
Customer

suitable_trips
(on_date,
of_difficulty,
need bike)

class
Trip

moe
Customer

class
Trip

From the Library of Avi Flombaum

ptg8315951

UML put a great deal of thought into how to communicate object-oriented design
and you can leverage off their efforts. There are UML diagrams that provide excellent,
transient ways to explore and communicate design possibilities. Use them; you do not
need to reinvent this wheel.

Sequence diagrams are quite handy. They provide a simple way to experiment with
different object arrangements and message passing schemes. They bring clarity to your
thoughts and provide a vehicle to collaborate and communicate with others. Think of
them as a lightweight way to acquire an intention about an interaction. Draw them on
a whiteboard, alter them as needed, and erase them when they’ve served their purpose.

Figure 4.3 shows a simple sequence diagram. This diagram represents an attempt
to implement the use case above. It shows Moe, a Customer and the Trip class,
where Moe sends the suitable_trips message to Trip and gets back a response.

Figure 4.3 illustrates the two main parts of a sequence diagram. As you can see,
they show two things: objects and the messages passing between them. The following
paragraphs describe the parts of this diagram but please note that the UML police will
not arrest you if you vary from the official style. Do what works for you.

In the example diagram each object is represented by two identically named boxes,
arranged one above the other and connected by a single vertical line. It contains two
objects, the Customer Moe and the class Trip. Messages are shown as horizontal lines.
When a message is sent, the line is labeled with the message name. Message lines end or
begin with an arrow; this arrow points to the receiver. When an object is busy process-
ing a received message, it is active and its vertical line is expanded to a vertical rectangle.

The diagram also contains a single message, suitable_trips, sent by Moe to
the Trip class. Therefore, this sequence diagram can be read as follows: Customer
Moe sends the suitable_trips message to the Trip class, which is activated to
process it and then, when finished, returns a response.

66 Chapter 4. Creating Flexible Interfaces

Figure 4.3 A simple sequence diagram.

moe
Customer

suitable_trips
(on_date,
of_difficulty,
need bike)

class
Trip

moe
Customer

class
Trip

From the Library of Avi Flombaum
ptg8315951Bicycle for suitable_bicycle. Moe can get the answer he needs if he talks to both of

them. That sequence diagram looks like Figure 4.4.
For each of these diagrams, consider what Moe has to know.
In Figure 4.3, he knows that:

• He wants a list of trips.

• There’s an object that implements the suitable_trips message.

In Figure 4.4, he knows that:

• He wants a list of trips.

• There’s an object that implements the suitable_trips message.

• Part of finding a suitable trip means finding a suitable bicycle.

• There’s another object that implements the suitable_bicycle message.

Sadly, Figure 4.4 is an improvement in some areas but a failure in others. This design
removes extraneous responsibilities from Trip but unfortunately, it merely transfers
them to Customer.

The problem in Figure 4.4 is that Moe not only knows what he wants, he also
knows how other objects should collaborate to provide it. The Customer class has
become the owner of the application rules that assess trip suitability.

68 Chapter 4. Creating Flexible Interfaces

moe
Customer

class
Trip

class
Bicycle

moe
Customer

class
Trip

class
Bicycle

for each trip found

suitable_trip
(on_date,
of difficulty)

suitable_bicycle
(trip_date,
route type)

Figure 4.4 Moe talks to trip and bicycle.

From the Library of Avi Flombaum

ptg8315951Bicycle for suitable_bicycle. Moe can get the answer he needs if he talks to both of
them. That sequence diagram looks like Figure 4.4.

For each of these diagrams, consider what Moe has to know.
In Figure 4.3, he knows that:

• He wants a list of trips.

• There’s an object that implements the suitable_trips message.

In Figure 4.4, he knows that:

• He wants a list of trips.

• There’s an object that implements the suitable_trips message.

• Part of finding a suitable trip means finding a suitable bicycle.

• There’s another object that implements the suitable_bicycle message.

Sadly, Figure 4.4 is an improvement in some areas but a failure in others. This design
removes extraneous responsibilities from Trip but unfortunately, it merely transfers
them to Customer.

The problem in Figure 4.4 is that Moe not only knows what he wants, he also
knows how other objects should collaborate to provide it. The Customer class has
become the owner of the application rules that assess trip suitability.

68 Chapter 4. Creating Flexible Interfaces

moe
Customer

class
Trip

class
Bicycle

moe
Customer

class
Trip

class
Bicycle

for each trip found

suitable_trip
(on_date,
of difficulty)

suitable_bicycle
(trip_date,
route type)

Figure 4.4 Moe talks to trip and bicycle.

From the Library of Avi Flombaum

 4

ptg8315951

UML put a great deal of thought into how to communicate object-oriented design
and you can leverage off their efforts. There are UML diagrams that provide excellent,
transient ways to explore and communicate design possibilities. Use them; you do not
need to reinvent this wheel.

Sequence diagrams are quite handy. They provide a simple way to experiment with
different object arrangements and message passing schemes. They bring clarity to your
thoughts and provide a vehicle to collaborate and communicate with others. Think of
them as a lightweight way to acquire an intention about an interaction. Draw them on
a whiteboard, alter them as needed, and erase them when they’ve served their purpose.

Figure 4.3 shows a simple sequence diagram. This diagram represents an attempt
to implement the use case above. It shows Moe, a Customer and the Trip class,
where Moe sends the suitable_trips message to Trip and gets back a response.

Figure 4.3 illustrates the two main parts of a sequence diagram. As you can see,
they show two things: objects and the messages passing between them. The following
paragraphs describe the parts of this diagram but please note that the UML police will
not arrest you if you vary from the official style. Do what works for you.

In the example diagram each object is represented by two identically named boxes,
arranged one above the other and connected by a single vertical line. It contains two
objects, the Customer Moe and the class Trip. Messages are shown as horizontal lines.
When a message is sent, the line is labeled with the message name. Message lines end or
begin with an arrow; this arrow points to the receiver. When an object is busy process-
ing a received message, it is active and its vertical line is expanded to a vertical rectangle.

The diagram also contains a single message, suitable_trips, sent by Moe to
the Trip class. Therefore, this sequence diagram can be read as follows: Customer
Moe sends the suitable_trips message to the Trip class, which is activated to
process it and then, when finished, returns a response.

66 Chapter 4. Creating Flexible Interfaces

Figure 4.3 A simple sequence diagram.

moe
Customer

suitable_trips
(on_date,
of_difficulty,
need bike)

class
Trip

moe
Customer

class
Trip

From the Library of Avi Flombaum

ptg8315951

UML put a great deal of thought into how to communicate object-oriented design
and you can leverage off their efforts. There are UML diagrams that provide excellent,
transient ways to explore and communicate design possibilities. Use them; you do not
need to reinvent this wheel.

Sequence diagrams are quite handy. They provide a simple way to experiment with
different object arrangements and message passing schemes. They bring clarity to your
thoughts and provide a vehicle to collaborate and communicate with others. Think of
them as a lightweight way to acquire an intention about an interaction. Draw them on
a whiteboard, alter them as needed, and erase them when they’ve served their purpose.

Figure 4.3 shows a simple sequence diagram. This diagram represents an attempt
to implement the use case above. It shows Moe, a Customer and the Trip class,
where Moe sends the suitable_trips message to Trip and gets back a response.

Figure 4.3 illustrates the two main parts of a sequence diagram. As you can see,
they show two things: objects and the messages passing between them. The following
paragraphs describe the parts of this diagram but please note that the UML police will
not arrest you if you vary from the official style. Do what works for you.

In the example diagram each object is represented by two identically named boxes,
arranged one above the other and connected by a single vertical line. It contains two
objects, the Customer Moe and the class Trip. Messages are shown as horizontal lines.
When a message is sent, the line is labeled with the message name. Message lines end or
begin with an arrow; this arrow points to the receiver. When an object is busy process-
ing a received message, it is active and its vertical line is expanded to a vertical rectangle.

The diagram also contains a single message, suitable_trips, sent by Moe to
the Trip class. Therefore, this sequence diagram can be read as follows: Customer
Moe sends the suitable_trips message to the Trip class, which is activated to
process it and then, when finished, returns a response.

66 Chapter 4. Creating Flexible Interfaces

Figure 4.3 A simple sequence diagram.

moe
Customer

suitable_trips
(on_date,
of_difficulty,
need bike)

class
Trip

moe
Customer

class
Trip

From the Library of Avi Flombaum
ptg8315951Bicycle for suitable_bicycle. Moe can get the answer he needs if he talks to both of

them. That sequence diagram looks like Figure 4.4.
For each of these diagrams, consider what Moe has to know.
In Figure 4.3, he knows that:

• He wants a list of trips.

• There’s an object that implements the suitable_trips message.

In Figure 4.4, he knows that:

• He wants a list of trips.

• There’s an object that implements the suitable_trips message.

• Part of finding a suitable trip means finding a suitable bicycle.

• There’s another object that implements the suitable_bicycle message.

Sadly, Figure 4.4 is an improvement in some areas but a failure in others. This design
removes extraneous responsibilities from Trip but unfortunately, it merely transfers
them to Customer.

The problem in Figure 4.4 is that Moe not only knows what he wants, he also
knows how other objects should collaborate to provide it. The Customer class has
become the owner of the application rules that assess trip suitability.

68 Chapter 4. Creating Flexible Interfaces

moe
Customer

class
Trip

class
Bicycle

moe
Customer

class
Trip

class
Bicycle

for each trip found

suitable_trip
(on_date,
of difficulty)

suitable_bicycle
(trip_date,
route type)

Figure 4.4 Moe talks to trip and bicycle.

From the Library of Avi Flombaum

ptg8315951Bicycle for suitable_bicycle. Moe can get the answer he needs if he talks to both of
them. That sequence diagram looks like Figure 4.4.

For each of these diagrams, consider what Moe has to know.
In Figure 4.3, he knows that:

• He wants a list of trips.

• There’s an object that implements the suitable_trips message.

In Figure 4.4, he knows that:

• He wants a list of trips.

• There’s an object that implements the suitable_trips message.

• Part of finding a suitable trip means finding a suitable bicycle.

• There’s another object that implements the suitable_bicycle message.

Sadly, Figure 4.4 is an improvement in some areas but a failure in others. This design
removes extraneous responsibilities from Trip but unfortunately, it merely transfers
them to Customer.

The problem in Figure 4.4 is that Moe not only knows what he wants, he also
knows how other objects should collaborate to provide it. The Customer class has
become the owner of the application rules that assess trip suitability.

68 Chapter 4. Creating Flexible Interfaces

moe
Customer

class
Trip

class
Bicycle

moe
Customer

class
Trip

class
Bicycle

for each trip found

suitable_trip
(on_date,
of difficulty)

suitable_bicycle
(trip_date,
route type)

Figure 4.4 Moe talks to trip and bicycle.

From the Library of Avi Flombaum

 4

ptg8315951

UML put a great deal of thought into how to communicate object-oriented design
and you can leverage off their efforts. There are UML diagrams that provide excellent,
transient ways to explore and communicate design possibilities. Use them; you do not
need to reinvent this wheel.

Sequence diagrams are quite handy. They provide a simple way to experiment with
different object arrangements and message passing schemes. They bring clarity to your
thoughts and provide a vehicle to collaborate and communicate with others. Think of
them as a lightweight way to acquire an intention about an interaction. Draw them on
a whiteboard, alter them as needed, and erase them when they’ve served their purpose.

Figure 4.3 shows a simple sequence diagram. This diagram represents an attempt
to implement the use case above. It shows Moe, a Customer and the Trip class,
where Moe sends the suitable_trips message to Trip and gets back a response.

Figure 4.3 illustrates the two main parts of a sequence diagram. As you can see,
they show two things: objects and the messages passing between them. The following
paragraphs describe the parts of this diagram but please note that the UML police will
not arrest you if you vary from the official style. Do what works for you.

In the example diagram each object is represented by two identically named boxes,
arranged one above the other and connected by a single vertical line. It contains two
objects, the Customer Moe and the class Trip. Messages are shown as horizontal lines.
When a message is sent, the line is labeled with the message name. Message lines end or
begin with an arrow; this arrow points to the receiver. When an object is busy process-
ing a received message, it is active and its vertical line is expanded to a vertical rectangle.

The diagram also contains a single message, suitable_trips, sent by Moe to
the Trip class. Therefore, this sequence diagram can be read as follows: Customer
Moe sends the suitable_trips message to the Trip class, which is activated to
process it and then, when finished, returns a response.

66 Chapter 4. Creating Flexible Interfaces

Figure 4.3 A simple sequence diagram.

moe
Customer

suitable_trips
(on_date,
of_difficulty,
need bike)

class
Trip

moe
Customer

class
Trip

From the Library of Avi Flombaum

ptg8315951

UML put a great deal of thought into how to communicate object-oriented design
and you can leverage off their efforts. There are UML diagrams that provide excellent,
transient ways to explore and communicate design possibilities. Use them; you do not
need to reinvent this wheel.

Sequence diagrams are quite handy. They provide a simple way to experiment with
different object arrangements and message passing schemes. They bring clarity to your
thoughts and provide a vehicle to collaborate and communicate with others. Think of
them as a lightweight way to acquire an intention about an interaction. Draw them on
a whiteboard, alter them as needed, and erase them when they’ve served their purpose.

Figure 4.3 shows a simple sequence diagram. This diagram represents an attempt
to implement the use case above. It shows Moe, a Customer and the Trip class,
where Moe sends the suitable_trips message to Trip and gets back a response.

Figure 4.3 illustrates the two main parts of a sequence diagram. As you can see,
they show two things: objects and the messages passing between them. The following
paragraphs describe the parts of this diagram but please note that the UML police will
not arrest you if you vary from the official style. Do what works for you.

In the example diagram each object is represented by two identically named boxes,
arranged one above the other and connected by a single vertical line. It contains two
objects, the Customer Moe and the class Trip. Messages are shown as horizontal lines.
When a message is sent, the line is labeled with the message name. Message lines end or
begin with an arrow; this arrow points to the receiver. When an object is busy process-
ing a received message, it is active and its vertical line is expanded to a vertical rectangle.

The diagram also contains a single message, suitable_trips, sent by Moe to
the Trip class. Therefore, this sequence diagram can be read as follows: Customer
Moe sends the suitable_trips message to the Trip class, which is activated to
process it and then, when finished, returns a response.

66 Chapter 4. Creating Flexible Interfaces

Figure 4.3 A simple sequence diagram.

moe
Customer

suitable_trips
(on_date,
of_difficulty,
need bike)

class
Trip

moe
Customer

class
Trip

From the Library of Avi Flombaum
ptg8315951Bicycle for suitable_bicycle. Moe can get the answer he needs if he talks to both of

them. That sequence diagram looks like Figure 4.4.
For each of these diagrams, consider what Moe has to know.
In Figure 4.3, he knows that:

• He wants a list of trips.

• There’s an object that implements the suitable_trips message.

In Figure 4.4, he knows that:

• He wants a list of trips.

• There’s an object that implements the suitable_trips message.

• Part of finding a suitable trip means finding a suitable bicycle.

• There’s another object that implements the suitable_bicycle message.

Sadly, Figure 4.4 is an improvement in some areas but a failure in others. This design
removes extraneous responsibilities from Trip but unfortunately, it merely transfers
them to Customer.

The problem in Figure 4.4 is that Moe not only knows what he wants, he also
knows how other objects should collaborate to provide it. The Customer class has
become the owner of the application rules that assess trip suitability.

68 Chapter 4. Creating Flexible Interfaces

moe
Customer

class
Trip

class
Bicycle

moe
Customer

class
Trip

class
Bicycle

for each trip found

suitable_trip
(on_date,
of difficulty)

suitable_bicycle
(trip_date,
route type)

Figure 4.4 Moe talks to trip and bicycle.

From the Library of Avi Flombaum

ptg8315951Bicycle for suitable_bicycle. Moe can get the answer he needs if he talks to both of
them. That sequence diagram looks like Figure 4.4.

For each of these diagrams, consider what Moe has to know.
In Figure 4.3, he knows that:

• He wants a list of trips.

• There’s an object that implements the suitable_trips message.

In Figure 4.4, he knows that:

• He wants a list of trips.

• There’s an object that implements the suitable_trips message.

• Part of finding a suitable trip means finding a suitable bicycle.

• There’s another object that implements the suitable_bicycle message.

Sadly, Figure 4.4 is an improvement in some areas but a failure in others. This design
removes extraneous responsibilities from Trip but unfortunately, it merely transfers
them to Customer.

The problem in Figure 4.4 is that Moe not only knows what he wants, he also
knows how other objects should collaborate to provide it. The Customer class has
become the owner of the application rules that assess trip suitability.

68 Chapter 4. Creating Flexible Interfaces

moe
Customer

class
Trip

class
Bicycle

moe
Customer

class
Trip

class
Bicycle

for each trip found

suitable_trip
(on_date,
of difficulty)

suitable_bicycle
(trip_date,
route type)

Figure 4.4 Moe talks to trip and bicycle.

From the Library of Avi Flombaum

 4

ptg8315951

UML put a great deal of thought into how to communicate object-oriented design
and you can leverage off their efforts. There are UML diagrams that provide excellent,
transient ways to explore and communicate design possibilities. Use them; you do not
need to reinvent this wheel.

Sequence diagrams are quite handy. They provide a simple way to experiment with
different object arrangements and message passing schemes. They bring clarity to your
thoughts and provide a vehicle to collaborate and communicate with others. Think of
them as a lightweight way to acquire an intention about an interaction. Draw them on
a whiteboard, alter them as needed, and erase them when they’ve served their purpose.

Figure 4.3 shows a simple sequence diagram. This diagram represents an attempt
to implement the use case above. It shows Moe, a Customer and the Trip class,
where Moe sends the suitable_trips message to Trip and gets back a response.

Figure 4.3 illustrates the two main parts of a sequence diagram. As you can see,
they show two things: objects and the messages passing between them. The following
paragraphs describe the parts of this diagram but please note that the UML police will
not arrest you if you vary from the official style. Do what works for you.

In the example diagram each object is represented by two identically named boxes,
arranged one above the other and connected by a single vertical line. It contains two
objects, the Customer Moe and the class Trip. Messages are shown as horizontal lines.
When a message is sent, the line is labeled with the message name. Message lines end or
begin with an arrow; this arrow points to the receiver. When an object is busy process-
ing a received message, it is active and its vertical line is expanded to a vertical rectangle.

The diagram also contains a single message, suitable_trips, sent by Moe to
the Trip class. Therefore, this sequence diagram can be read as follows: Customer
Moe sends the suitable_trips message to the Trip class, which is activated to
process it and then, when finished, returns a response.

66 Chapter 4. Creating Flexible Interfaces

Figure 4.3 A simple sequence diagram.

moe
Customer

suitable_trips
(on_date,
of_difficulty,
need bike)

class
Trip

moe
Customer

class
Trip

From the Library of Avi Flombaum

ptg8315951

UML put a great deal of thought into how to communicate object-oriented design
and you can leverage off their efforts. There are UML diagrams that provide excellent,
transient ways to explore and communicate design possibilities. Use them; you do not
need to reinvent this wheel.

Sequence diagrams are quite handy. They provide a simple way to experiment with
different object arrangements and message passing schemes. They bring clarity to your
thoughts and provide a vehicle to collaborate and communicate with others. Think of
them as a lightweight way to acquire an intention about an interaction. Draw them on
a whiteboard, alter them as needed, and erase them when they’ve served their purpose.

Figure 4.3 shows a simple sequence diagram. This diagram represents an attempt
to implement the use case above. It shows Moe, a Customer and the Trip class,
where Moe sends the suitable_trips message to Trip and gets back a response.

Figure 4.3 illustrates the two main parts of a sequence diagram. As you can see,
they show two things: objects and the messages passing between them. The following
paragraphs describe the parts of this diagram but please note that the UML police will
not arrest you if you vary from the official style. Do what works for you.

In the example diagram each object is represented by two identically named boxes,
arranged one above the other and connected by a single vertical line. It contains two
objects, the Customer Moe and the class Trip. Messages are shown as horizontal lines.
When a message is sent, the line is labeled with the message name. Message lines end or
begin with an arrow; this arrow points to the receiver. When an object is busy process-
ing a received message, it is active and its vertical line is expanded to a vertical rectangle.

The diagram also contains a single message, suitable_trips, sent by Moe to
the Trip class. Therefore, this sequence diagram can be read as follows: Customer
Moe sends the suitable_trips message to the Trip class, which is activated to
process it and then, when finished, returns a response.

66 Chapter 4. Creating Flexible Interfaces

Figure 4.3 A simple sequence diagram.

moe
Customer

suitable_trips
(on_date,
of_difficulty,
need bike)

class
Trip

moe
Customer

class
Trip

From the Library of Avi Flombaum
ptg8315951Bicycle for suitable_bicycle. Moe can get the answer he needs if he talks to both of

them. That sequence diagram looks like Figure 4.4.
For each of these diagrams, consider what Moe has to know.
In Figure 4.3, he knows that:

• He wants a list of trips.

• There’s an object that implements the suitable_trips message.

In Figure 4.4, he knows that:

• He wants a list of trips.

• There’s an object that implements the suitable_trips message.

• Part of finding a suitable trip means finding a suitable bicycle.

• There’s another object that implements the suitable_bicycle message.

Sadly, Figure 4.4 is an improvement in some areas but a failure in others. This design
removes extraneous responsibilities from Trip but unfortunately, it merely transfers
them to Customer.

The problem in Figure 4.4 is that Moe not only knows what he wants, he also
knows how other objects should collaborate to provide it. The Customer class has
become the owner of the application rules that assess trip suitability.

68 Chapter 4. Creating Flexible Interfaces

moe
Customer

class
Trip

class
Bicycle

moe
Customer

class
Trip

class
Bicycle

for each trip found

suitable_trip
(on_date,
of difficulty)

suitable_bicycle
(trip_date,
route type)

Figure 4.4 Moe talks to trip and bicycle.

From the Library of Avi Flombaum

ptg8315951Bicycle for suitable_bicycle. Moe can get the answer he needs if he talks to both of
them. That sequence diagram looks like Figure 4.4.

For each of these diagrams, consider what Moe has to know.
In Figure 4.3, he knows that:

• He wants a list of trips.

• There’s an object that implements the suitable_trips message.

In Figure 4.4, he knows that:

• He wants a list of trips.

• There’s an object that implements the suitable_trips message.

• Part of finding a suitable trip means finding a suitable bicycle.

• There’s another object that implements the suitable_bicycle message.

Sadly, Figure 4.4 is an improvement in some areas but a failure in others. This design
removes extraneous responsibilities from Trip but unfortunately, it merely transfers
them to Customer.

The problem in Figure 4.4 is that Moe not only knows what he wants, he also
knows how other objects should collaborate to provide it. The Customer class has
become the owner of the application rules that assess trip suitability.

68 Chapter 4. Creating Flexible Interfaces

moe
Customer

class
Trip

class
Bicycle

moe
Customer

class
Trip

class
Bicycle

for each trip found

suitable_trip
(on_date,
of difficulty)

suitable_bicycle
(trip_date,
route type)

Figure 4.4 Moe talks to trip and bicycle.

From the Library of Avi Flombaum

 4

ptg8315951

UML put a great deal of thought into how to communicate object-oriented design
and you can leverage off their efforts. There are UML diagrams that provide excellent,
transient ways to explore and communicate design possibilities. Use them; you do not
need to reinvent this wheel.

Sequence diagrams are quite handy. They provide a simple way to experiment with
different object arrangements and message passing schemes. They bring clarity to your
thoughts and provide a vehicle to collaborate and communicate with others. Think of
them as a lightweight way to acquire an intention about an interaction. Draw them on
a whiteboard, alter them as needed, and erase them when they’ve served their purpose.

Figure 4.3 shows a simple sequence diagram. This diagram represents an attempt
to implement the use case above. It shows Moe, a Customer and the Trip class,
where Moe sends the suitable_trips message to Trip and gets back a response.

Figure 4.3 illustrates the two main parts of a sequence diagram. As you can see,
they show two things: objects and the messages passing between them. The following
paragraphs describe the parts of this diagram but please note that the UML police will
not arrest you if you vary from the official style. Do what works for you.

In the example diagram each object is represented by two identically named boxes,
arranged one above the other and connected by a single vertical line. It contains two
objects, the Customer Moe and the class Trip. Messages are shown as horizontal lines.
When a message is sent, the line is labeled with the message name. Message lines end or
begin with an arrow; this arrow points to the receiver. When an object is busy process-
ing a received message, it is active and its vertical line is expanded to a vertical rectangle.

The diagram also contains a single message, suitable_trips, sent by Moe to
the Trip class. Therefore, this sequence diagram can be read as follows: Customer
Moe sends the suitable_trips message to the Trip class, which is activated to
process it and then, when finished, returns a response.

66 Chapter 4. Creating Flexible Interfaces

Figure 4.3 A simple sequence diagram.

moe
Customer

suitable_trips
(on_date,
of_difficulty,
need bike)

class
Trip

moe
Customer

class
Trip

From the Library of Avi Flombaum

ptg8315951

UML put a great deal of thought into how to communicate object-oriented design
and you can leverage off their efforts. There are UML diagrams that provide excellent,
transient ways to explore and communicate design possibilities. Use them; you do not
need to reinvent this wheel.

Sequence diagrams are quite handy. They provide a simple way to experiment with
different object arrangements and message passing schemes. They bring clarity to your
thoughts and provide a vehicle to collaborate and communicate with others. Think of
them as a lightweight way to acquire an intention about an interaction. Draw them on
a whiteboard, alter them as needed, and erase them when they’ve served their purpose.

Figure 4.3 shows a simple sequence diagram. This diagram represents an attempt
to implement the use case above. It shows Moe, a Customer and the Trip class,
where Moe sends the suitable_trips message to Trip and gets back a response.

Figure 4.3 illustrates the two main parts of a sequence diagram. As you can see,
they show two things: objects and the messages passing between them. The following
paragraphs describe the parts of this diagram but please note that the UML police will
not arrest you if you vary from the official style. Do what works for you.

In the example diagram each object is represented by two identically named boxes,
arranged one above the other and connected by a single vertical line. It contains two
objects, the Customer Moe and the class Trip. Messages are shown as horizontal lines.
When a message is sent, the line is labeled with the message name. Message lines end or
begin with an arrow; this arrow points to the receiver. When an object is busy process-
ing a received message, it is active and its vertical line is expanded to a vertical rectangle.

The diagram also contains a single message, suitable_trips, sent by Moe to
the Trip class. Therefore, this sequence diagram can be read as follows: Customer
Moe sends the suitable_trips message to the Trip class, which is activated to
process it and then, when finished, returns a response.

66 Chapter 4. Creating Flexible Interfaces

Figure 4.3 A simple sequence diagram.

moe
Customer

suitable_trips
(on_date,
of_difficulty,
need bike)

class
Trip

moe
Customer

class
Trip

From the Library of Avi Flombaum
ptg8315951Bicycle for suitable_bicycle. Moe can get the answer he needs if he talks to both of

them. That sequence diagram looks like Figure 4.4.
For each of these diagrams, consider what Moe has to know.
In Figure 4.3, he knows that:

• He wants a list of trips.

• There’s an object that implements the suitable_trips message.

In Figure 4.4, he knows that:

• He wants a list of trips.

• There’s an object that implements the suitable_trips message.

• Part of finding a suitable trip means finding a suitable bicycle.

• There’s another object that implements the suitable_bicycle message.

Sadly, Figure 4.4 is an improvement in some areas but a failure in others. This design
removes extraneous responsibilities from Trip but unfortunately, it merely transfers
them to Customer.

The problem in Figure 4.4 is that Moe not only knows what he wants, he also
knows how other objects should collaborate to provide it. The Customer class has
become the owner of the application rules that assess trip suitability.

68 Chapter 4. Creating Flexible Interfaces

moe
Customer

class
Trip

class
Bicycle

moe
Customer

class
Trip

class
Bicycle

for each trip found

suitable_trip
(on_date,
of difficulty)

suitable_bicycle
(trip_date,
route type)

Figure 4.4 Moe talks to trip and bicycle.

From the Library of Avi Flombaum

ptg8315951Bicycle for suitable_bicycle. Moe can get the answer he needs if he talks to both of
them. That sequence diagram looks like Figure 4.4.

For each of these diagrams, consider what Moe has to know.
In Figure 4.3, he knows that:

• He wants a list of trips.

• There’s an object that implements the suitable_trips message.

In Figure 4.4, he knows that:

• He wants a list of trips.

• There’s an object that implements the suitable_trips message.

• Part of finding a suitable trip means finding a suitable bicycle.

• There’s another object that implements the suitable_bicycle message.

Sadly, Figure 4.4 is an improvement in some areas but a failure in others. This design
removes extraneous responsibilities from Trip but unfortunately, it merely transfers
them to Customer.

The problem in Figure 4.4 is that Moe not only knows what he wants, he also
knows how other objects should collaborate to provide it. The Customer class has
become the owner of the application rules that assess trip suitability.

68 Chapter 4. Creating Flexible Interfaces

moe
Customer

class
Trip

class
Bicycle

moe
Customer

class
Trip

class
Bicycle

for each trip found

suitable_trip
(on_date,
of difficulty)

suitable_bicycle
(trip_date,
route type)

Figure 4.4 Moe talks to trip and bicycle.

From the Library of Avi Flombaum

trip registry

 4

ptg8315951

UML put a great deal of thought into how to communicate object-oriented design
and you can leverage off their efforts. There are UML diagrams that provide excellent,
transient ways to explore and communicate design possibilities. Use them; you do not
need to reinvent this wheel.

Sequence diagrams are quite handy. They provide a simple way to experiment with
different object arrangements and message passing schemes. They bring clarity to your
thoughts and provide a vehicle to collaborate and communicate with others. Think of
them as a lightweight way to acquire an intention about an interaction. Draw them on
a whiteboard, alter them as needed, and erase them when they’ve served their purpose.

Figure 4.3 shows a simple sequence diagram. This diagram represents an attempt
to implement the use case above. It shows Moe, a Customer and the Trip class,
where Moe sends the suitable_trips message to Trip and gets back a response.

Figure 4.3 illustrates the two main parts of a sequence diagram. As you can see,
they show two things: objects and the messages passing between them. The following
paragraphs describe the parts of this diagram but please note that the UML police will
not arrest you if you vary from the official style. Do what works for you.

In the example diagram each object is represented by two identically named boxes,
arranged one above the other and connected by a single vertical line. It contains two
objects, the Customer Moe and the class Trip. Messages are shown as horizontal lines.
When a message is sent, the line is labeled with the message name. Message lines end or
begin with an arrow; this arrow points to the receiver. When an object is busy process-
ing a received message, it is active and its vertical line is expanded to a vertical rectangle.

The diagram also contains a single message, suitable_trips, sent by Moe to
the Trip class. Therefore, this sequence diagram can be read as follows: Customer
Moe sends the suitable_trips message to the Trip class, which is activated to
process it and then, when finished, returns a response.

66 Chapter 4. Creating Flexible Interfaces

Figure 4.3 A simple sequence diagram.

moe
Customer

suitable_trips
(on_date,
of_difficulty,
need bike)

class
Trip

moe
Customer

class
Trip

From the Library of Avi Flombaum

ptg8315951

UML put a great deal of thought into how to communicate object-oriented design
and you can leverage off their efforts. There are UML diagrams that provide excellent,
transient ways to explore and communicate design possibilities. Use them; you do not
need to reinvent this wheel.

Sequence diagrams are quite handy. They provide a simple way to experiment with
different object arrangements and message passing schemes. They bring clarity to your
thoughts and provide a vehicle to collaborate and communicate with others. Think of
them as a lightweight way to acquire an intention about an interaction. Draw them on
a whiteboard, alter them as needed, and erase them when they’ve served their purpose.

Figure 4.3 shows a simple sequence diagram. This diagram represents an attempt
to implement the use case above. It shows Moe, a Customer and the Trip class,
where Moe sends the suitable_trips message to Trip and gets back a response.

Figure 4.3 illustrates the two main parts of a sequence diagram. As you can see,
they show two things: objects and the messages passing between them. The following
paragraphs describe the parts of this diagram but please note that the UML police will
not arrest you if you vary from the official style. Do what works for you.

In the example diagram each object is represented by two identically named boxes,
arranged one above the other and connected by a single vertical line. It contains two
objects, the Customer Moe and the class Trip. Messages are shown as horizontal lines.
When a message is sent, the line is labeled with the message name. Message lines end or
begin with an arrow; this arrow points to the receiver. When an object is busy process-
ing a received message, it is active and its vertical line is expanded to a vertical rectangle.

The diagram also contains a single message, suitable_trips, sent by Moe to
the Trip class. Therefore, this sequence diagram can be read as follows: Customer
Moe sends the suitable_trips message to the Trip class, which is activated to
process it and then, when finished, returns a response.

66 Chapter 4. Creating Flexible Interfaces

Figure 4.3 A simple sequence diagram.

moe
Customer

suitable_trips
(on_date,
of_difficulty,
need bike)

class
Trip

moe
Customer

class
Trip

From the Library of Avi Flombaum
ptg8315951Bicycle for suitable_bicycle. Moe can get the answer he needs if he talks to both of

them. That sequence diagram looks like Figure 4.4.
For each of these diagrams, consider what Moe has to know.
In Figure 4.3, he knows that:

• He wants a list of trips.

• There’s an object that implements the suitable_trips message.

In Figure 4.4, he knows that:

• He wants a list of trips.

• There’s an object that implements the suitable_trips message.

• Part of finding a suitable trip means finding a suitable bicycle.

• There’s another object that implements the suitable_bicycle message.

Sadly, Figure 4.4 is an improvement in some areas but a failure in others. This design
removes extraneous responsibilities from Trip but unfortunately, it merely transfers
them to Customer.

The problem in Figure 4.4 is that Moe not only knows what he wants, he also
knows how other objects should collaborate to provide it. The Customer class has
become the owner of the application rules that assess trip suitability.

68 Chapter 4. Creating Flexible Interfaces

moe
Customer

class
Trip

class
Bicycle

moe
Customer

class
Trip

class
Bicycle

for each trip found

suitable_trip
(on_date,
of difficulty)

suitable_bicycle
(trip_date,
route type)

Figure 4.4 Moe talks to trip and bicycle.

From the Library of Avi Flombaum

ptg8315951Bicycle for suitable_bicycle. Moe can get the answer he needs if he talks to both of
them. That sequence diagram looks like Figure 4.4.

For each of these diagrams, consider what Moe has to know.
In Figure 4.3, he knows that:

• He wants a list of trips.

• There’s an object that implements the suitable_trips message.

In Figure 4.4, he knows that:

• He wants a list of trips.

• There’s an object that implements the suitable_trips message.

• Part of finding a suitable trip means finding a suitable bicycle.

• There’s another object that implements the suitable_bicycle message.

Sadly, Figure 4.4 is an improvement in some areas but a failure in others. This design
removes extraneous responsibilities from Trip but unfortunately, it merely transfers
them to Customer.

The problem in Figure 4.4 is that Moe not only knows what he wants, he also
knows how other objects should collaborate to provide it. The Customer class has
become the owner of the application rules that assess trip suitability.

68 Chapter 4. Creating Flexible Interfaces

moe
Customer

class
Trip

class
Bicycle

moe
Customer

class
Trip

class
Bicycle

for each trip found

suitable_trip
(on_date,
of difficulty)

suitable_bicycle
(trip_date,
route type)

Figure 4.4 Moe talks to trip and bicycle.

From the Library of Avi Flombaum

trip registry

 4

ptg8315951

UML put a great deal of thought into how to communicate object-oriented design
and you can leverage off their efforts. There are UML diagrams that provide excellent,
transient ways to explore and communicate design possibilities. Use them; you do not
need to reinvent this wheel.

Sequence diagrams are quite handy. They provide a simple way to experiment with
different object arrangements and message passing schemes. They bring clarity to your
thoughts and provide a vehicle to collaborate and communicate with others. Think of
them as a lightweight way to acquire an intention about an interaction. Draw them on
a whiteboard, alter them as needed, and erase them when they’ve served their purpose.

Figure 4.3 shows a simple sequence diagram. This diagram represents an attempt
to implement the use case above. It shows Moe, a Customer and the Trip class,
where Moe sends the suitable_trips message to Trip and gets back a response.

Figure 4.3 illustrates the two main parts of a sequence diagram. As you can see,
they show two things: objects and the messages passing between them. The following
paragraphs describe the parts of this diagram but please note that the UML police will
not arrest you if you vary from the official style. Do what works for you.

In the example diagram each object is represented by two identically named boxes,
arranged one above the other and connected by a single vertical line. It contains two
objects, the Customer Moe and the class Trip. Messages are shown as horizontal lines.
When a message is sent, the line is labeled with the message name. Message lines end or
begin with an arrow; this arrow points to the receiver. When an object is busy process-
ing a received message, it is active and its vertical line is expanded to a vertical rectangle.

The diagram also contains a single message, suitable_trips, sent by Moe to
the Trip class. Therefore, this sequence diagram can be read as follows: Customer
Moe sends the suitable_trips message to the Trip class, which is activated to
process it and then, when finished, returns a response.

66 Chapter 4. Creating Flexible Interfaces

Figure 4.3 A simple sequence diagram.

moe
Customer

suitable_trips
(on_date,
of_difficulty,
need bike)

class
Trip

moe
Customer

class
Trip

From the Library of Avi Flombaum

ptg8315951

UML put a great deal of thought into how to communicate object-oriented design
and you can leverage off their efforts. There are UML diagrams that provide excellent,
transient ways to explore and communicate design possibilities. Use them; you do not
need to reinvent this wheel.

Sequence diagrams are quite handy. They provide a simple way to experiment with
different object arrangements and message passing schemes. They bring clarity to your
thoughts and provide a vehicle to collaborate and communicate with others. Think of
them as a lightweight way to acquire an intention about an interaction. Draw them on
a whiteboard, alter them as needed, and erase them when they’ve served their purpose.

Figure 4.3 shows a simple sequence diagram. This diagram represents an attempt
to implement the use case above. It shows Moe, a Customer and the Trip class,
where Moe sends the suitable_trips message to Trip and gets back a response.

Figure 4.3 illustrates the two main parts of a sequence diagram. As you can see,
they show two things: objects and the messages passing between them. The following
paragraphs describe the parts of this diagram but please note that the UML police will
not arrest you if you vary from the official style. Do what works for you.

In the example diagram each object is represented by two identically named boxes,
arranged one above the other and connected by a single vertical line. It contains two
objects, the Customer Moe and the class Trip. Messages are shown as horizontal lines.
When a message is sent, the line is labeled with the message name. Message lines end or
begin with an arrow; this arrow points to the receiver. When an object is busy process-
ing a received message, it is active and its vertical line is expanded to a vertical rectangle.

The diagram also contains a single message, suitable_trips, sent by Moe to
the Trip class. Therefore, this sequence diagram can be read as follows: Customer
Moe sends the suitable_trips message to the Trip class, which is activated to
process it and then, when finished, returns a response.

66 Chapter 4. Creating Flexible Interfaces

Figure 4.3 A simple sequence diagram.

moe
Customer

suitable_trips
(on_date,
of_difficulty,
need bike)

class
Trip

moe
Customer

class
Trip

From the Library of Avi Flombaum
ptg8315951Bicycle for suitable_bicycle. Moe can get the answer he needs if he talks to both of

them. That sequence diagram looks like Figure 4.4.
For each of these diagrams, consider what Moe has to know.
In Figure 4.3, he knows that:

• He wants a list of trips.

• There’s an object that implements the suitable_trips message.

In Figure 4.4, he knows that:

• He wants a list of trips.

• There’s an object that implements the suitable_trips message.

• Part of finding a suitable trip means finding a suitable bicycle.

• There’s another object that implements the suitable_bicycle message.

Sadly, Figure 4.4 is an improvement in some areas but a failure in others. This design
removes extraneous responsibilities from Trip but unfortunately, it merely transfers
them to Customer.

The problem in Figure 4.4 is that Moe not only knows what he wants, he also
knows how other objects should collaborate to provide it. The Customer class has
become the owner of the application rules that assess trip suitability.

68 Chapter 4. Creating Flexible Interfaces

moe
Customer

class
Trip

class
Bicycle

moe
Customer

class
Trip

class
Bicycle

for each trip found

suitable_trip
(on_date,
of difficulty)

suitable_bicycle
(trip_date,
route type)

Figure 4.4 Moe talks to trip and bicycle.

From the Library of Avi Flombaum

ptg8315951Bicycle for suitable_bicycle. Moe can get the answer he needs if he talks to both of
them. That sequence diagram looks like Figure 4.4.

For each of these diagrams, consider what Moe has to know.
In Figure 4.3, he knows that:

• He wants a list of trips.

• There’s an object that implements the suitable_trips message.

In Figure 4.4, he knows that:

• He wants a list of trips.

• There’s an object that implements the suitable_trips message.

• Part of finding a suitable trip means finding a suitable bicycle.

• There’s another object that implements the suitable_bicycle message.

Sadly, Figure 4.4 is an improvement in some areas but a failure in others. This design
removes extraneous responsibilities from Trip but unfortunately, it merely transfers
them to Customer.

The problem in Figure 4.4 is that Moe not only knows what he wants, he also
knows how other objects should collaborate to provide it. The Customer class has
become the owner of the application rules that assess trip suitability.

68 Chapter 4. Creating Flexible Interfaces

moe
Customer

class
Trip

class
Bicycle

moe
Customer

class
Trip

class
Bicycle

for each trip found

suitable_trip
(on_date,
of difficulty)

suitable_bicycle
(trip_date,
route type)

Figure 4.4 Moe talks to trip and bicycle.

From the Library of Avi Flombaum

trip registry

 4

ptg8315951

UML put a great deal of thought into how to communicate object-oriented design
and you can leverage off their efforts. There are UML diagrams that provide excellent,
transient ways to explore and communicate design possibilities. Use them; you do not
need to reinvent this wheel.

Sequence diagrams are quite handy. They provide a simple way to experiment with
different object arrangements and message passing schemes. They bring clarity to your
thoughts and provide a vehicle to collaborate and communicate with others. Think of
them as a lightweight way to acquire an intention about an interaction. Draw them on
a whiteboard, alter them as needed, and erase them when they’ve served their purpose.

Figure 4.3 shows a simple sequence diagram. This diagram represents an attempt
to implement the use case above. It shows Moe, a Customer and the Trip class,
where Moe sends the suitable_trips message to Trip and gets back a response.

Figure 4.3 illustrates the two main parts of a sequence diagram. As you can see,
they show two things: objects and the messages passing between them. The following
paragraphs describe the parts of this diagram but please note that the UML police will
not arrest you if you vary from the official style. Do what works for you.

In the example diagram each object is represented by two identically named boxes,
arranged one above the other and connected by a single vertical line. It contains two
objects, the Customer Moe and the class Trip. Messages are shown as horizontal lines.
When a message is sent, the line is labeled with the message name. Message lines end or
begin with an arrow; this arrow points to the receiver. When an object is busy process-
ing a received message, it is active and its vertical line is expanded to a vertical rectangle.

The diagram also contains a single message, suitable_trips, sent by Moe to
the Trip class. Therefore, this sequence diagram can be read as follows: Customer
Moe sends the suitable_trips message to the Trip class, which is activated to
process it and then, when finished, returns a response.

66 Chapter 4. Creating Flexible Interfaces

Figure 4.3 A simple sequence diagram.

moe
Customer

suitable_trips
(on_date,
of_difficulty,
need bike)

class
Trip

moe
Customer

class
Trip

From the Library of Avi Flombaum

ptg8315951

UML put a great deal of thought into how to communicate object-oriented design
and you can leverage off their efforts. There are UML diagrams that provide excellent,
transient ways to explore and communicate design possibilities. Use them; you do not
need to reinvent this wheel.

Sequence diagrams are quite handy. They provide a simple way to experiment with
different object arrangements and message passing schemes. They bring clarity to your
thoughts and provide a vehicle to collaborate and communicate with others. Think of
them as a lightweight way to acquire an intention about an interaction. Draw them on
a whiteboard, alter them as needed, and erase them when they’ve served their purpose.

Figure 4.3 shows a simple sequence diagram. This diagram represents an attempt
to implement the use case above. It shows Moe, a Customer and the Trip class,
where Moe sends the suitable_trips message to Trip and gets back a response.

Figure 4.3 illustrates the two main parts of a sequence diagram. As you can see,
they show two things: objects and the messages passing between them. The following
paragraphs describe the parts of this diagram but please note that the UML police will
not arrest you if you vary from the official style. Do what works for you.

In the example diagram each object is represented by two identically named boxes,
arranged one above the other and connected by a single vertical line. It contains two
objects, the Customer Moe and the class Trip. Messages are shown as horizontal lines.
When a message is sent, the line is labeled with the message name. Message lines end or
begin with an arrow; this arrow points to the receiver. When an object is busy process-
ing a received message, it is active and its vertical line is expanded to a vertical rectangle.

The diagram also contains a single message, suitable_trips, sent by Moe to
the Trip class. Therefore, this sequence diagram can be read as follows: Customer
Moe sends the suitable_trips message to the Trip class, which is activated to
process it and then, when finished, returns a response.

66 Chapter 4. Creating Flexible Interfaces

Figure 4.3 A simple sequence diagram.

moe
Customer

suitable_trips
(on_date,
of_difficulty,
need bike)

class
Trip

moe
Customer

class
Trip

From the Library of Avi Flombaum
ptg8315951Bicycle for suitable_bicycle. Moe can get the answer he needs if he talks to both of

them. That sequence diagram looks like Figure 4.4.
For each of these diagrams, consider what Moe has to know.
In Figure 4.3, he knows that:

• He wants a list of trips.

• There’s an object that implements the suitable_trips message.

In Figure 4.4, he knows that:

• He wants a list of trips.

• There’s an object that implements the suitable_trips message.

• Part of finding a suitable trip means finding a suitable bicycle.

• There’s another object that implements the suitable_bicycle message.

Sadly, Figure 4.4 is an improvement in some areas but a failure in others. This design
removes extraneous responsibilities from Trip but unfortunately, it merely transfers
them to Customer.

The problem in Figure 4.4 is that Moe not only knows what he wants, he also
knows how other objects should collaborate to provide it. The Customer class has
become the owner of the application rules that assess trip suitability.

68 Chapter 4. Creating Flexible Interfaces

moe
Customer

class
Trip

class
Bicycle

moe
Customer

class
Trip

class
Bicycle

for each trip found

suitable_trip
(on_date,
of difficulty)

suitable_bicycle
(trip_date,
route type)

Figure 4.4 Moe talks to trip and bicycle.

From the Library of Avi Flombaum

ptg8315951Bicycle for suitable_bicycle. Moe can get the answer he needs if he talks to both of
them. That sequence diagram looks like Figure 4.4.

For each of these diagrams, consider what Moe has to know.
In Figure 4.3, he knows that:

• He wants a list of trips.

• There’s an object that implements the suitable_trips message.

In Figure 4.4, he knows that:

• He wants a list of trips.

• There’s an object that implements the suitable_trips message.

• Part of finding a suitable trip means finding a suitable bicycle.

• There’s another object that implements the suitable_bicycle message.

Sadly, Figure 4.4 is an improvement in some areas but a failure in others. This design
removes extraneous responsibilities from Trip but unfortunately, it merely transfers
them to Customer.

The problem in Figure 4.4 is that Moe not only knows what he wants, he also
knows how other objects should collaborate to provide it. The Customer class has
become the owner of the application rules that assess trip suitability.

68 Chapter 4. Creating Flexible Interfaces

moe
Customer

class
Trip

class
Bicycle

moe
Customer

class
Trip

class
Bicycle

for each trip found

suitable_trip
(on_date,
of difficulty)

suitable_bicycle
(trip_date,
route type)

Figure 4.4 Moe talks to trip and bicycle.

From the Library of Avi Flombaum

trip registry

 4

ptg8315951

UML put a great deal of thought into how to communicate object-oriented design
and you can leverage off their efforts. There are UML diagrams that provide excellent,
transient ways to explore and communicate design possibilities. Use them; you do not
need to reinvent this wheel.

Sequence diagrams are quite handy. They provide a simple way to experiment with
different object arrangements and message passing schemes. They bring clarity to your
thoughts and provide a vehicle to collaborate and communicate with others. Think of
them as a lightweight way to acquire an intention about an interaction. Draw them on
a whiteboard, alter them as needed, and erase them when they’ve served their purpose.

Figure 4.3 shows a simple sequence diagram. This diagram represents an attempt
to implement the use case above. It shows Moe, a Customer and the Trip class,
where Moe sends the suitable_trips message to Trip and gets back a response.

Figure 4.3 illustrates the two main parts of a sequence diagram. As you can see,
they show two things: objects and the messages passing between them. The following
paragraphs describe the parts of this diagram but please note that the UML police will
not arrest you if you vary from the official style. Do what works for you.

In the example diagram each object is represented by two identically named boxes,
arranged one above the other and connected by a single vertical line. It contains two
objects, the Customer Moe and the class Trip. Messages are shown as horizontal lines.
When a message is sent, the line is labeled with the message name. Message lines end or
begin with an arrow; this arrow points to the receiver. When an object is busy process-
ing a received message, it is active and its vertical line is expanded to a vertical rectangle.

The diagram also contains a single message, suitable_trips, sent by Moe to
the Trip class. Therefore, this sequence diagram can be read as follows: Customer
Moe sends the suitable_trips message to the Trip class, which is activated to
process it and then, when finished, returns a response.

66 Chapter 4. Creating Flexible Interfaces

Figure 4.3 A simple sequence diagram.

moe
Customer

suitable_trips
(on_date,
of_difficulty,
need bike)

class
Trip

moe
Customer

class
Trip

From the Library of Avi Flombaum

ptg8315951

UML put a great deal of thought into how to communicate object-oriented design
and you can leverage off their efforts. There are UML diagrams that provide excellent,
transient ways to explore and communicate design possibilities. Use them; you do not
need to reinvent this wheel.

Sequence diagrams are quite handy. They provide a simple way to experiment with
different object arrangements and message passing schemes. They bring clarity to your
thoughts and provide a vehicle to collaborate and communicate with others. Think of
them as a lightweight way to acquire an intention about an interaction. Draw them on
a whiteboard, alter them as needed, and erase them when they’ve served their purpose.

Figure 4.3 shows a simple sequence diagram. This diagram represents an attempt
to implement the use case above. It shows Moe, a Customer and the Trip class,
where Moe sends the suitable_trips message to Trip and gets back a response.

Figure 4.3 illustrates the two main parts of a sequence diagram. As you can see,
they show two things: objects and the messages passing between them. The following
paragraphs describe the parts of this diagram but please note that the UML police will
not arrest you if you vary from the official style. Do what works for you.

In the example diagram each object is represented by two identically named boxes,
arranged one above the other and connected by a single vertical line. It contains two
objects, the Customer Moe and the class Trip. Messages are shown as horizontal lines.
When a message is sent, the line is labeled with the message name. Message lines end or
begin with an arrow; this arrow points to the receiver. When an object is busy process-
ing a received message, it is active and its vertical line is expanded to a vertical rectangle.

The diagram also contains a single message, suitable_trips, sent by Moe to
the Trip class. Therefore, this sequence diagram can be read as follows: Customer
Moe sends the suitable_trips message to the Trip class, which is activated to
process it and then, when finished, returns a response.

66 Chapter 4. Creating Flexible Interfaces

Figure 4.3 A simple sequence diagram.

moe
Customer

suitable_trips
(on_date,
of_difficulty,
need bike)

class
Trip

moe
Customer

class
Trip

From the Library of Avi Flombaum
ptg8315951Bicycle for suitable_bicycle. Moe can get the answer he needs if he talks to both of

them. That sequence diagram looks like Figure 4.4.
For each of these diagrams, consider what Moe has to know.
In Figure 4.3, he knows that:

• He wants a list of trips.

• There’s an object that implements the suitable_trips message.

In Figure 4.4, he knows that:

• He wants a list of trips.

• There’s an object that implements the suitable_trips message.

• Part of finding a suitable trip means finding a suitable bicycle.

• There’s another object that implements the suitable_bicycle message.

Sadly, Figure 4.4 is an improvement in some areas but a failure in others. This design
removes extraneous responsibilities from Trip but unfortunately, it merely transfers
them to Customer.

The problem in Figure 4.4 is that Moe not only knows what he wants, he also
knows how other objects should collaborate to provide it. The Customer class has
become the owner of the application rules that assess trip suitability.

68 Chapter 4. Creating Flexible Interfaces

moe
Customer

class
Trip

class
Bicycle

moe
Customer

class
Trip

class
Bicycle

for each trip found

suitable_trip
(on_date,
of difficulty)

suitable_bicycle
(trip_date,
route type)

Figure 4.4 Moe talks to trip and bicycle.

From the Library of Avi Flombaum

ptg8315951Bicycle for suitable_bicycle. Moe can get the answer he needs if he talks to both of
them. That sequence diagram looks like Figure 4.4.

For each of these diagrams, consider what Moe has to know.
In Figure 4.3, he knows that:

• He wants a list of trips.

• There’s an object that implements the suitable_trips message.

In Figure 4.4, he knows that:

• He wants a list of trips.

• There’s an object that implements the suitable_trips message.

• Part of finding a suitable trip means finding a suitable bicycle.

• There’s another object that implements the suitable_bicycle message.

Sadly, Figure 4.4 is an improvement in some areas but a failure in others. This design
removes extraneous responsibilities from Trip but unfortunately, it merely transfers
them to Customer.

The problem in Figure 4.4 is that Moe not only knows what he wants, he also
knows how other objects should collaborate to provide it. The Customer class has
become the owner of the application rules that assess trip suitability.

68 Chapter 4. Creating Flexible Interfaces

moe
Customer

class
Trip

class
Bicycle

moe
Customer

class
Trip

class
Bicycle

for each trip found

suitable_trip
(on_date,
of difficulty)

suitable_bicycle
(trip_date,
route type)

Figure 4.4 Moe talks to trip and bicycle.

From the Library of Avi Flombaum

trip registry

 4

ptg8315951

UML put a great deal of thought into how to communicate object-oriented design
and you can leverage off their efforts. There are UML diagrams that provide excellent,
transient ways to explore and communicate design possibilities. Use them; you do not
need to reinvent this wheel.

Sequence diagrams are quite handy. They provide a simple way to experiment with
different object arrangements and message passing schemes. They bring clarity to your
thoughts and provide a vehicle to collaborate and communicate with others. Think of
them as a lightweight way to acquire an intention about an interaction. Draw them on
a whiteboard, alter them as needed, and erase them when they’ve served their purpose.

Figure 4.3 shows a simple sequence diagram. This diagram represents an attempt
to implement the use case above. It shows Moe, a Customer and the Trip class,
where Moe sends the suitable_trips message to Trip and gets back a response.

Figure 4.3 illustrates the two main parts of a sequence diagram. As you can see,
they show two things: objects and the messages passing between them. The following
paragraphs describe the parts of this diagram but please note that the UML police will
not arrest you if you vary from the official style. Do what works for you.

In the example diagram each object is represented by two identically named boxes,
arranged one above the other and connected by a single vertical line. It contains two
objects, the Customer Moe and the class Trip. Messages are shown as horizontal lines.
When a message is sent, the line is labeled with the message name. Message lines end or
begin with an arrow; this arrow points to the receiver. When an object is busy process-
ing a received message, it is active and its vertical line is expanded to a vertical rectangle.

The diagram also contains a single message, suitable_trips, sent by Moe to
the Trip class. Therefore, this sequence diagram can be read as follows: Customer
Moe sends the suitable_trips message to the Trip class, which is activated to
process it and then, when finished, returns a response.

66 Chapter 4. Creating Flexible Interfaces

Figure 4.3 A simple sequence diagram.

moe
Customer

suitable_trips
(on_date,
of_difficulty,
need bike)

class
Trip

moe
Customer

class
Trip

From the Library of Avi Flombaum

ptg8315951

UML put a great deal of thought into how to communicate object-oriented design
and you can leverage off their efforts. There are UML diagrams that provide excellent,
transient ways to explore and communicate design possibilities. Use them; you do not
need to reinvent this wheel.

Sequence diagrams are quite handy. They provide a simple way to experiment with
different object arrangements and message passing schemes. They bring clarity to your
thoughts and provide a vehicle to collaborate and communicate with others. Think of
them as a lightweight way to acquire an intention about an interaction. Draw them on
a whiteboard, alter them as needed, and erase them when they’ve served their purpose.

Figure 4.3 shows a simple sequence diagram. This diagram represents an attempt
to implement the use case above. It shows Moe, a Customer and the Trip class,
where Moe sends the suitable_trips message to Trip and gets back a response.

Figure 4.3 illustrates the two main parts of a sequence diagram. As you can see,
they show two things: objects and the messages passing between them. The following
paragraphs describe the parts of this diagram but please note that the UML police will
not arrest you if you vary from the official style. Do what works for you.

In the example diagram each object is represented by two identically named boxes,
arranged one above the other and connected by a single vertical line. It contains two
objects, the Customer Moe and the class Trip. Messages are shown as horizontal lines.
When a message is sent, the line is labeled with the message name. Message lines end or
begin with an arrow; this arrow points to the receiver. When an object is busy process-
ing a received message, it is active and its vertical line is expanded to a vertical rectangle.

The diagram also contains a single message, suitable_trips, sent by Moe to
the Trip class. Therefore, this sequence diagram can be read as follows: Customer
Moe sends the suitable_trips message to the Trip class, which is activated to
process it and then, when finished, returns a response.

66 Chapter 4. Creating Flexible Interfaces

Figure 4.3 A simple sequence diagram.

moe
Customer

suitable_trips
(on_date,
of_difficulty,
need bike)

class
Trip

moe
Customer

class
Trip

From the Library of Avi Flombaum
ptg8315951Bicycle for suitable_bicycle. Moe can get the answer he needs if he talks to both of

them. That sequence diagram looks like Figure 4.4.
For each of these diagrams, consider what Moe has to know.
In Figure 4.3, he knows that:

• He wants a list of trips.

• There’s an object that implements the suitable_trips message.

In Figure 4.4, he knows that:

• He wants a list of trips.

• There’s an object that implements the suitable_trips message.

• Part of finding a suitable trip means finding a suitable bicycle.

• There’s another object that implements the suitable_bicycle message.

Sadly, Figure 4.4 is an improvement in some areas but a failure in others. This design
removes extraneous responsibilities from Trip but unfortunately, it merely transfers
them to Customer.

The problem in Figure 4.4 is that Moe not only knows what he wants, he also
knows how other objects should collaborate to provide it. The Customer class has
become the owner of the application rules that assess trip suitability.

68 Chapter 4. Creating Flexible Interfaces

moe
Customer

class
Trip

class
Bicycle

moe
Customer

class
Trip

class
Bicycle

for each trip found

suitable_trip
(on_date,
of difficulty)

suitable_bicycle
(trip_date,
route type)

Figure 4.4 Moe talks to trip and bicycle.

From the Library of Avi Flombaum

ptg8315951Bicycle for suitable_bicycle. Moe can get the answer he needs if he talks to both of
them. That sequence diagram looks like Figure 4.4.

For each of these diagrams, consider what Moe has to know.
In Figure 4.3, he knows that:

• He wants a list of trips.

• There’s an object that implements the suitable_trips message.

In Figure 4.4, he knows that:

• He wants a list of trips.

• There’s an object that implements the suitable_trips message.

• Part of finding a suitable trip means finding a suitable bicycle.

• There’s another object that implements the suitable_bicycle message.

Sadly, Figure 4.4 is an improvement in some areas but a failure in others. This design
removes extraneous responsibilities from Trip but unfortunately, it merely transfers
them to Customer.

The problem in Figure 4.4 is that Moe not only knows what he wants, he also
knows how other objects should collaborate to provide it. The Customer class has
become the owner of the application rules that assess trip suitability.

68 Chapter 4. Creating Flexible Interfaces

moe
Customer

class
Trip

class
Bicycle

moe
Customer

class
Trip

class
Bicycle

for each trip found

suitable_trip
(on_date,
of difficulty)

suitable_bicycle
(trip_date,
route type)

Figure 4.4 Moe talks to trip and bicycle.

From the Library of Avi Flombaum

trip registry

trip  
registry

 4

ptg8315951

UML put a great deal of thought into how to communicate object-oriented design
and you can leverage off their efforts. There are UML diagrams that provide excellent,
transient ways to explore and communicate design possibilities. Use them; you do not
need to reinvent this wheel.

Sequence diagrams are quite handy. They provide a simple way to experiment with
different object arrangements and message passing schemes. They bring clarity to your
thoughts and provide a vehicle to collaborate and communicate with others. Think of
them as a lightweight way to acquire an intention about an interaction. Draw them on
a whiteboard, alter them as needed, and erase them when they’ve served their purpose.

Figure 4.3 shows a simple sequence diagram. This diagram represents an attempt
to implement the use case above. It shows Moe, a Customer and the Trip class,
where Moe sends the suitable_trips message to Trip and gets back a response.

Figure 4.3 illustrates the two main parts of a sequence diagram. As you can see,
they show two things: objects and the messages passing between them. The following
paragraphs describe the parts of this diagram but please note that the UML police will
not arrest you if you vary from the official style. Do what works for you.

In the example diagram each object is represented by two identically named boxes,
arranged one above the other and connected by a single vertical line. It contains two
objects, the Customer Moe and the class Trip. Messages are shown as horizontal lines.
When a message is sent, the line is labeled with the message name. Message lines end or
begin with an arrow; this arrow points to the receiver. When an object is busy process-
ing a received message, it is active and its vertical line is expanded to a vertical rectangle.

The diagram also contains a single message, suitable_trips, sent by Moe to
the Trip class. Therefore, this sequence diagram can be read as follows: Customer
Moe sends the suitable_trips message to the Trip class, which is activated to
process it and then, when finished, returns a response.

66 Chapter 4. Creating Flexible Interfaces

Figure 4.3 A simple sequence diagram.

moe
Customer

suitable_trips
(on_date,
of_difficulty,
need bike)

class
Trip

moe
Customer

class
Trip

From the Library of Avi Flombaum

ptg8315951

UML put a great deal of thought into how to communicate object-oriented design
and you can leverage off their efforts. There are UML diagrams that provide excellent,
transient ways to explore and communicate design possibilities. Use them; you do not
need to reinvent this wheel.

Sequence diagrams are quite handy. They provide a simple way to experiment with
different object arrangements and message passing schemes. They bring clarity to your
thoughts and provide a vehicle to collaborate and communicate with others. Think of
them as a lightweight way to acquire an intention about an interaction. Draw them on
a whiteboard, alter them as needed, and erase them when they’ve served their purpose.

Figure 4.3 shows a simple sequence diagram. This diagram represents an attempt
to implement the use case above. It shows Moe, a Customer and the Trip class,
where Moe sends the suitable_trips message to Trip and gets back a response.

Figure 4.3 illustrates the two main parts of a sequence diagram. As you can see,
they show two things: objects and the messages passing between them. The following
paragraphs describe the parts of this diagram but please note that the UML police will
not arrest you if you vary from the official style. Do what works for you.

In the example diagram each object is represented by two identically named boxes,
arranged one above the other and connected by a single vertical line. It contains two
objects, the Customer Moe and the class Trip. Messages are shown as horizontal lines.
When a message is sent, the line is labeled with the message name. Message lines end or
begin with an arrow; this arrow points to the receiver. When an object is busy process-
ing a received message, it is active and its vertical line is expanded to a vertical rectangle.

The diagram also contains a single message, suitable_trips, sent by Moe to
the Trip class. Therefore, this sequence diagram can be read as follows: Customer
Moe sends the suitable_trips message to the Trip class, which is activated to
process it and then, when finished, returns a response.

66 Chapter 4. Creating Flexible Interfaces

Figure 4.3 A simple sequence diagram.

moe
Customer

suitable_trips
(on_date,
of_difficulty,
need bike)

class
Trip

moe
Customer

class
Trip

From the Library of Avi Flombaum
ptg8315951Bicycle for suitable_bicycle. Moe can get the answer he needs if he talks to both of

them. That sequence diagram looks like Figure 4.4.
For each of these diagrams, consider what Moe has to know.
In Figure 4.3, he knows that:

• He wants a list of trips.

• There’s an object that implements the suitable_trips message.

In Figure 4.4, he knows that:

• He wants a list of trips.

• There’s an object that implements the suitable_trips message.

• Part of finding a suitable trip means finding a suitable bicycle.

• There’s another object that implements the suitable_bicycle message.

Sadly, Figure 4.4 is an improvement in some areas but a failure in others. This design
removes extraneous responsibilities from Trip but unfortunately, it merely transfers
them to Customer.

The problem in Figure 4.4 is that Moe not only knows what he wants, he also
knows how other objects should collaborate to provide it. The Customer class has
become the owner of the application rules that assess trip suitability.

68 Chapter 4. Creating Flexible Interfaces

moe
Customer

class
Trip

class
Bicycle

moe
Customer

class
Trip

class
Bicycle

for each trip found

suitable_trip
(on_date,
of difficulty)

suitable_bicycle
(trip_date,
route type)

Figure 4.4 Moe talks to trip and bicycle.

From the Library of Avi Flombaum

ptg8315951Bicycle for suitable_bicycle. Moe can get the answer he needs if he talks to both of
them. That sequence diagram looks like Figure 4.4.

For each of these diagrams, consider what Moe has to know.
In Figure 4.3, he knows that:

• He wants a list of trips.

• There’s an object that implements the suitable_trips message.

In Figure 4.4, he knows that:

• He wants a list of trips.

• There’s an object that implements the suitable_trips message.

• Part of finding a suitable trip means finding a suitable bicycle.

• There’s another object that implements the suitable_bicycle message.

Sadly, Figure 4.4 is an improvement in some areas but a failure in others. This design
removes extraneous responsibilities from Trip but unfortunately, it merely transfers
them to Customer.

The problem in Figure 4.4 is that Moe not only knows what he wants, he also
knows how other objects should collaborate to provide it. The Customer class has
become the owner of the application rules that assess trip suitability.

68 Chapter 4. Creating Flexible Interfaces

moe
Customer

class
Trip

class
Bicycle

moe
Customer

class
Trip

class
Bicycle

for each trip found

suitable_trip
(on_date,
of difficulty)

suitable_bicycle
(trip_date,
route type)

Figure 4.4 Moe talks to trip and bicycle.

From the Library of Avi Flombaum

trip registry

trip  
registry

 4

ptg8315951

UML put a great deal of thought into how to communicate object-oriented design
and you can leverage off their efforts. There are UML diagrams that provide excellent,
transient ways to explore and communicate design possibilities. Use them; you do not
need to reinvent this wheel.

Sequence diagrams are quite handy. They provide a simple way to experiment with
different object arrangements and message passing schemes. They bring clarity to your
thoughts and provide a vehicle to collaborate and communicate with others. Think of
them as a lightweight way to acquire an intention about an interaction. Draw them on
a whiteboard, alter them as needed, and erase them when they’ve served their purpose.

Figure 4.3 shows a simple sequence diagram. This diagram represents an attempt
to implement the use case above. It shows Moe, a Customer and the Trip class,
where Moe sends the suitable_trips message to Trip and gets back a response.

Figure 4.3 illustrates the two main parts of a sequence diagram. As you can see,
they show two things: objects and the messages passing between them. The following
paragraphs describe the parts of this diagram but please note that the UML police will
not arrest you if you vary from the official style. Do what works for you.

In the example diagram each object is represented by two identically named boxes,
arranged one above the other and connected by a single vertical line. It contains two
objects, the Customer Moe and the class Trip. Messages are shown as horizontal lines.
When a message is sent, the line is labeled with the message name. Message lines end or
begin with an arrow; this arrow points to the receiver. When an object is busy process-
ing a received message, it is active and its vertical line is expanded to a vertical rectangle.

The diagram also contains a single message, suitable_trips, sent by Moe to
the Trip class. Therefore, this sequence diagram can be read as follows: Customer
Moe sends the suitable_trips message to the Trip class, which is activated to
process it and then, when finished, returns a response.

66 Chapter 4. Creating Flexible Interfaces

Figure 4.3 A simple sequence diagram.

moe
Customer

suitable_trips
(on_date,
of_difficulty,
need bike)

class
Trip

moe
Customer

class
Trip

From the Library of Avi Flombaum

ptg8315951

UML put a great deal of thought into how to communicate object-oriented design
and you can leverage off their efforts. There are UML diagrams that provide excellent,
transient ways to explore and communicate design possibilities. Use them; you do not
need to reinvent this wheel.

Sequence diagrams are quite handy. They provide a simple way to experiment with
different object arrangements and message passing schemes. They bring clarity to your
thoughts and provide a vehicle to collaborate and communicate with others. Think of
them as a lightweight way to acquire an intention about an interaction. Draw them on
a whiteboard, alter them as needed, and erase them when they’ve served their purpose.

Figure 4.3 shows a simple sequence diagram. This diagram represents an attempt
to implement the use case above. It shows Moe, a Customer and the Trip class,
where Moe sends the suitable_trips message to Trip and gets back a response.

Figure 4.3 illustrates the two main parts of a sequence diagram. As you can see,
they show two things: objects and the messages passing between them. The following
paragraphs describe the parts of this diagram but please note that the UML police will
not arrest you if you vary from the official style. Do what works for you.

In the example diagram each object is represented by two identically named boxes,
arranged one above the other and connected by a single vertical line. It contains two
objects, the Customer Moe and the class Trip. Messages are shown as horizontal lines.
When a message is sent, the line is labeled with the message name. Message lines end or
begin with an arrow; this arrow points to the receiver. When an object is busy process-
ing a received message, it is active and its vertical line is expanded to a vertical rectangle.

The diagram also contains a single message, suitable_trips, sent by Moe to
the Trip class. Therefore, this sequence diagram can be read as follows: Customer
Moe sends the suitable_trips message to the Trip class, which is activated to
process it and then, when finished, returns a response.

66 Chapter 4. Creating Flexible Interfaces

Figure 4.3 A simple sequence diagram.

moe
Customer

suitable_trips
(on_date,
of_difficulty,
need bike)

class
Trip

moe
Customer

class
Trip

From the Library of Avi Flombaum
ptg8315951Bicycle for suitable_bicycle. Moe can get the answer he needs if he talks to both of

them. That sequence diagram looks like Figure 4.4.
For each of these diagrams, consider what Moe has to know.
In Figure 4.3, he knows that:

• He wants a list of trips.

• There’s an object that implements the suitable_trips message.

In Figure 4.4, he knows that:

• He wants a list of trips.

• There’s an object that implements the suitable_trips message.

• Part of finding a suitable trip means finding a suitable bicycle.

• There’s another object that implements the suitable_bicycle message.

Sadly, Figure 4.4 is an improvement in some areas but a failure in others. This design
removes extraneous responsibilities from Trip but unfortunately, it merely transfers
them to Customer.

The problem in Figure 4.4 is that Moe not only knows what he wants, he also
knows how other objects should collaborate to provide it. The Customer class has
become the owner of the application rules that assess trip suitability.

68 Chapter 4. Creating Flexible Interfaces

moe
Customer

class
Trip

class
Bicycle

moe
Customer

class
Trip

class
Bicycle

for each trip found

suitable_trip
(on_date,
of difficulty)

suitable_bicycle
(trip_date,
route type)

Figure 4.4 Moe talks to trip and bicycle.

From the Library of Avi Flombaum

ptg8315951Bicycle for suitable_bicycle. Moe can get the answer he needs if he talks to both of
them. That sequence diagram looks like Figure 4.4.

For each of these diagrams, consider what Moe has to know.
In Figure 4.3, he knows that:

• He wants a list of trips.

• There’s an object that implements the suitable_trips message.

In Figure 4.4, he knows that:

• He wants a list of trips.

• There’s an object that implements the suitable_trips message.

• Part of finding a suitable trip means finding a suitable bicycle.

• There’s another object that implements the suitable_bicycle message.

Sadly, Figure 4.4 is an improvement in some areas but a failure in others. This design
removes extraneous responsibilities from Trip but unfortunately, it merely transfers
them to Customer.

The problem in Figure 4.4 is that Moe not only knows what he wants, he also
knows how other objects should collaborate to provide it. The Customer class has
become the owner of the application rules that assess trip suitability.

68 Chapter 4. Creating Flexible Interfaces

moe
Customer

class
Trip

class
Bicycle

moe
Customer

class
Trip

class
Bicycle

for each trip found

suitable_trip
(on_date,
of difficulty)

suitable_bicycle
(trip_date,
route type)

Figure 4.4 Moe talks to trip and bicycle.

From the Library of Avi Flombaum

trip registry

trip  
registry

 4

ptg8315951

UML put a great deal of thought into how to communicate object-oriented design
and you can leverage off their efforts. There are UML diagrams that provide excellent,
transient ways to explore and communicate design possibilities. Use them; you do not
need to reinvent this wheel.

Sequence diagrams are quite handy. They provide a simple way to experiment with
different object arrangements and message passing schemes. They bring clarity to your
thoughts and provide a vehicle to collaborate and communicate with others. Think of
them as a lightweight way to acquire an intention about an interaction. Draw them on
a whiteboard, alter them as needed, and erase them when they’ve served their purpose.

Figure 4.3 shows a simple sequence diagram. This diagram represents an attempt
to implement the use case above. It shows Moe, a Customer and the Trip class,
where Moe sends the suitable_trips message to Trip and gets back a response.

Figure 4.3 illustrates the two main parts of a sequence diagram. As you can see,
they show two things: objects and the messages passing between them. The following
paragraphs describe the parts of this diagram but please note that the UML police will
not arrest you if you vary from the official style. Do what works for you.

In the example diagram each object is represented by two identically named boxes,
arranged one above the other and connected by a single vertical line. It contains two
objects, the Customer Moe and the class Trip. Messages are shown as horizontal lines.
When a message is sent, the line is labeled with the message name. Message lines end or
begin with an arrow; this arrow points to the receiver. When an object is busy process-
ing a received message, it is active and its vertical line is expanded to a vertical rectangle.

The diagram also contains a single message, suitable_trips, sent by Moe to
the Trip class. Therefore, this sequence diagram can be read as follows: Customer
Moe sends the suitable_trips message to the Trip class, which is activated to
process it and then, when finished, returns a response.

66 Chapter 4. Creating Flexible Interfaces

Figure 4.3 A simple sequence diagram.

moe
Customer

suitable_trips
(on_date,
of_difficulty,
need bike)

class
Trip

moe
Customer

class
Trip

From the Library of Avi Flombaum

ptg8315951

UML put a great deal of thought into how to communicate object-oriented design
and you can leverage off their efforts. There are UML diagrams that provide excellent,
transient ways to explore and communicate design possibilities. Use them; you do not
need to reinvent this wheel.

Sequence diagrams are quite handy. They provide a simple way to experiment with
different object arrangements and message passing schemes. They bring clarity to your
thoughts and provide a vehicle to collaborate and communicate with others. Think of
them as a lightweight way to acquire an intention about an interaction. Draw them on
a whiteboard, alter them as needed, and erase them when they’ve served their purpose.

Figure 4.3 shows a simple sequence diagram. This diagram represents an attempt
to implement the use case above. It shows Moe, a Customer and the Trip class,
where Moe sends the suitable_trips message to Trip and gets back a response.

Figure 4.3 illustrates the two main parts of a sequence diagram. As you can see,
they show two things: objects and the messages passing between them. The following
paragraphs describe the parts of this diagram but please note that the UML police will
not arrest you if you vary from the official style. Do what works for you.

In the example diagram each object is represented by two identically named boxes,
arranged one above the other and connected by a single vertical line. It contains two
objects, the Customer Moe and the class Trip. Messages are shown as horizontal lines.
When a message is sent, the line is labeled with the message name. Message lines end or
begin with an arrow; this arrow points to the receiver. When an object is busy process-
ing a received message, it is active and its vertical line is expanded to a vertical rectangle.

The diagram also contains a single message, suitable_trips, sent by Moe to
the Trip class. Therefore, this sequence diagram can be read as follows: Customer
Moe sends the suitable_trips message to the Trip class, which is activated to
process it and then, when finished, returns a response.

66 Chapter 4. Creating Flexible Interfaces

Figure 4.3 A simple sequence diagram.

moe
Customer

suitable_trips
(on_date,
of_difficulty,
need bike)

class
Trip

moe
Customer

class
Trip

From the Library of Avi Flombaum
ptg8315951Bicycle for suitable_bicycle. Moe can get the answer he needs if he talks to both of

them. That sequence diagram looks like Figure 4.4.
For each of these diagrams, consider what Moe has to know.
In Figure 4.3, he knows that:

• He wants a list of trips.

• There’s an object that implements the suitable_trips message.

In Figure 4.4, he knows that:

• He wants a list of trips.

• There’s an object that implements the suitable_trips message.

• Part of finding a suitable trip means finding a suitable bicycle.

• There’s another object that implements the suitable_bicycle message.

Sadly, Figure 4.4 is an improvement in some areas but a failure in others. This design
removes extraneous responsibilities from Trip but unfortunately, it merely transfers
them to Customer.

The problem in Figure 4.4 is that Moe not only knows what he wants, he also
knows how other objects should collaborate to provide it. The Customer class has
become the owner of the application rules that assess trip suitability.

68 Chapter 4. Creating Flexible Interfaces

moe
Customer

class
Trip

class
Bicycle

moe
Customer

class
Trip

class
Bicycle

for each trip found

suitable_trip
(on_date,
of difficulty)

suitable_bicycle
(trip_date,
route type)

Figure 4.4 Moe talks to trip and bicycle.

From the Library of Avi Flombaum

ptg8315951Bicycle for suitable_bicycle. Moe can get the answer he needs if he talks to both of
them. That sequence diagram looks like Figure 4.4.

For each of these diagrams, consider what Moe has to know.
In Figure 4.3, he knows that:

• He wants a list of trips.

• There’s an object that implements the suitable_trips message.

In Figure 4.4, he knows that:

• He wants a list of trips.

• There’s an object that implements the suitable_trips message.

• Part of finding a suitable trip means finding a suitable bicycle.

• There’s another object that implements the suitable_bicycle message.

Sadly, Figure 4.4 is an improvement in some areas but a failure in others. This design
removes extraneous responsibilities from Trip but unfortunately, it merely transfers
them to Customer.

The problem in Figure 4.4 is that Moe not only knows what he wants, he also
knows how other objects should collaborate to provide it. The Customer class has
become the owner of the application rules that assess trip suitability.

68 Chapter 4. Creating Flexible Interfaces

moe
Customer

class
Trip

class
Bicycle

moe
Customer

class
Trip

class
Bicycle

for each trip found

suitable_trip
(on_date,
of difficulty)

suitable_bicycle
(trip_date,
route type)

Figure 4.4 Moe talks to trip and bicycle.

From the Library of Avi Flombaum

trip registry

trip  
registry

 4

ptg8315951

UML put a great deal of thought into how to communicate object-oriented design
and you can leverage off their efforts. There are UML diagrams that provide excellent,
transient ways to explore and communicate design possibilities. Use them; you do not
need to reinvent this wheel.

Sequence diagrams are quite handy. They provide a simple way to experiment with
different object arrangements and message passing schemes. They bring clarity to your
thoughts and provide a vehicle to collaborate and communicate with others. Think of
them as a lightweight way to acquire an intention about an interaction. Draw them on
a whiteboard, alter them as needed, and erase them when they’ve served their purpose.

Figure 4.3 shows a simple sequence diagram. This diagram represents an attempt
to implement the use case above. It shows Moe, a Customer and the Trip class,
where Moe sends the suitable_trips message to Trip and gets back a response.

Figure 4.3 illustrates the two main parts of a sequence diagram. As you can see,
they show two things: objects and the messages passing between them. The following
paragraphs describe the parts of this diagram but please note that the UML police will
not arrest you if you vary from the official style. Do what works for you.

In the example diagram each object is represented by two identically named boxes,
arranged one above the other and connected by a single vertical line. It contains two
objects, the Customer Moe and the class Trip. Messages are shown as horizontal lines.
When a message is sent, the line is labeled with the message name. Message lines end or
begin with an arrow; this arrow points to the receiver. When an object is busy process-
ing a received message, it is active and its vertical line is expanded to a vertical rectangle.

The diagram also contains a single message, suitable_trips, sent by Moe to
the Trip class. Therefore, this sequence diagram can be read as follows: Customer
Moe sends the suitable_trips message to the Trip class, which is activated to
process it and then, when finished, returns a response.

66 Chapter 4. Creating Flexible Interfaces

Figure 4.3 A simple sequence diagram.

moe
Customer

suitable_trips
(on_date,
of_difficulty,
need bike)

class
Trip

moe
Customer

class
Trip

From the Library of Avi Flombaum

ptg8315951

UML put a great deal of thought into how to communicate object-oriented design
and you can leverage off their efforts. There are UML diagrams that provide excellent,
transient ways to explore and communicate design possibilities. Use them; you do not
need to reinvent this wheel.

Sequence diagrams are quite handy. They provide a simple way to experiment with
different object arrangements and message passing schemes. They bring clarity to your
thoughts and provide a vehicle to collaborate and communicate with others. Think of
them as a lightweight way to acquire an intention about an interaction. Draw them on
a whiteboard, alter them as needed, and erase them when they’ve served their purpose.

Figure 4.3 shows a simple sequence diagram. This diagram represents an attempt
to implement the use case above. It shows Moe, a Customer and the Trip class,
where Moe sends the suitable_trips message to Trip and gets back a response.

Figure 4.3 illustrates the two main parts of a sequence diagram. As you can see,
they show two things: objects and the messages passing between them. The following
paragraphs describe the parts of this diagram but please note that the UML police will
not arrest you if you vary from the official style. Do what works for you.

In the example diagram each object is represented by two identically named boxes,
arranged one above the other and connected by a single vertical line. It contains two
objects, the Customer Moe and the class Trip. Messages are shown as horizontal lines.
When a message is sent, the line is labeled with the message name. Message lines end or
begin with an arrow; this arrow points to the receiver. When an object is busy process-
ing a received message, it is active and its vertical line is expanded to a vertical rectangle.

The diagram also contains a single message, suitable_trips, sent by Moe to
the Trip class. Therefore, this sequence diagram can be read as follows: Customer
Moe sends the suitable_trips message to the Trip class, which is activated to
process it and then, when finished, returns a response.

66 Chapter 4. Creating Flexible Interfaces

Figure 4.3 A simple sequence diagram.

moe
Customer

suitable_trips
(on_date,
of_difficulty,
need bike)

class
Trip

moe
Customer

class
Trip

From the Library of Avi Flombaum
ptg8315951Bicycle for suitable_bicycle. Moe can get the answer he needs if he talks to both of

them. That sequence diagram looks like Figure 4.4.
For each of these diagrams, consider what Moe has to know.
In Figure 4.3, he knows that:

• He wants a list of trips.

• There’s an object that implements the suitable_trips message.

In Figure 4.4, he knows that:

• He wants a list of trips.

• There’s an object that implements the suitable_trips message.

• Part of finding a suitable trip means finding a suitable bicycle.

• There’s another object that implements the suitable_bicycle message.

Sadly, Figure 4.4 is an improvement in some areas but a failure in others. This design
removes extraneous responsibilities from Trip but unfortunately, it merely transfers
them to Customer.

The problem in Figure 4.4 is that Moe not only knows what he wants, he also
knows how other objects should collaborate to provide it. The Customer class has
become the owner of the application rules that assess trip suitability.

68 Chapter 4. Creating Flexible Interfaces

moe
Customer

class
Trip

class
Bicycle

moe
Customer

class
Trip

class
Bicycle

for each trip found

suitable_trip
(on_date,
of difficulty)

suitable_bicycle
(trip_date,
route type)

Figure 4.4 Moe talks to trip and bicycle.

From the Library of Avi Flombaum

ptg8315951Bicycle for suitable_bicycle. Moe can get the answer he needs if he talks to both of
them. That sequence diagram looks like Figure 4.4.

For each of these diagrams, consider what Moe has to know.
In Figure 4.3, he knows that:

• He wants a list of trips.

• There’s an object that implements the suitable_trips message.

In Figure 4.4, he knows that:

• He wants a list of trips.

• There’s an object that implements the suitable_trips message.

• Part of finding a suitable trip means finding a suitable bicycle.

• There’s another object that implements the suitable_bicycle message.

Sadly, Figure 4.4 is an improvement in some areas but a failure in others. This design
removes extraneous responsibilities from Trip but unfortunately, it merely transfers
them to Customer.

The problem in Figure 4.4 is that Moe not only knows what he wants, he also
knows how other objects should collaborate to provide it. The Customer class has
become the owner of the application rules that assess trip suitability.

68 Chapter 4. Creating Flexible Interfaces

moe
Customer

class
Trip

class
Bicycle

moe
Customer

class
Trip

class
Bicycle

for each trip found

suitable_trip
(on_date,
of difficulty)

suitable_bicycle
(trip_date,
route type)

Figure 4.4 Moe talks to trip and bicycle.

From the Library of Avi Flombaum

trip registry

trip  
registry

 4

ptg8315951

UML put a great deal of thought into how to communicate object-oriented design
and you can leverage off their efforts. There are UML diagrams that provide excellent,
transient ways to explore and communicate design possibilities. Use them; you do not
need to reinvent this wheel.

Sequence diagrams are quite handy. They provide a simple way to experiment with
different object arrangements and message passing schemes. They bring clarity to your
thoughts and provide a vehicle to collaborate and communicate with others. Think of
them as a lightweight way to acquire an intention about an interaction. Draw them on
a whiteboard, alter them as needed, and erase them when they’ve served their purpose.

Figure 4.3 shows a simple sequence diagram. This diagram represents an attempt
to implement the use case above. It shows Moe, a Customer and the Trip class,
where Moe sends the suitable_trips message to Trip and gets back a response.

Figure 4.3 illustrates the two main parts of a sequence diagram. As you can see,
they show two things: objects and the messages passing between them. The following
paragraphs describe the parts of this diagram but please note that the UML police will
not arrest you if you vary from the official style. Do what works for you.

In the example diagram each object is represented by two identically named boxes,
arranged one above the other and connected by a single vertical line. It contains two
objects, the Customer Moe and the class Trip. Messages are shown as horizontal lines.
When a message is sent, the line is labeled with the message name. Message lines end or
begin with an arrow; this arrow points to the receiver. When an object is busy process-
ing a received message, it is active and its vertical line is expanded to a vertical rectangle.

The diagram also contains a single message, suitable_trips, sent by Moe to
the Trip class. Therefore, this sequence diagram can be read as follows: Customer
Moe sends the suitable_trips message to the Trip class, which is activated to
process it and then, when finished, returns a response.

66 Chapter 4. Creating Flexible Interfaces

Figure 4.3 A simple sequence diagram.

moe
Customer

suitable_trips
(on_date,
of_difficulty,
need bike)

class
Trip

moe
Customer

class
Trip

From the Library of Avi Flombaum

ptg8315951

UML put a great deal of thought into how to communicate object-oriented design
and you can leverage off their efforts. There are UML diagrams that provide excellent,
transient ways to explore and communicate design possibilities. Use them; you do not
need to reinvent this wheel.

Sequence diagrams are quite handy. They provide a simple way to experiment with
different object arrangements and message passing schemes. They bring clarity to your
thoughts and provide a vehicle to collaborate and communicate with others. Think of
them as a lightweight way to acquire an intention about an interaction. Draw them on
a whiteboard, alter them as needed, and erase them when they’ve served their purpose.

Figure 4.3 shows a simple sequence diagram. This diagram represents an attempt
to implement the use case above. It shows Moe, a Customer and the Trip class,
where Moe sends the suitable_trips message to Trip and gets back a response.

Figure 4.3 illustrates the two main parts of a sequence diagram. As you can see,
they show two things: objects and the messages passing between them. The following
paragraphs describe the parts of this diagram but please note that the UML police will
not arrest you if you vary from the official style. Do what works for you.

In the example diagram each object is represented by two identically named boxes,
arranged one above the other and connected by a single vertical line. It contains two
objects, the Customer Moe and the class Trip. Messages are shown as horizontal lines.
When a message is sent, the line is labeled with the message name. Message lines end or
begin with an arrow; this arrow points to the receiver. When an object is busy process-
ing a received message, it is active and its vertical line is expanded to a vertical rectangle.

The diagram also contains a single message, suitable_trips, sent by Moe to
the Trip class. Therefore, this sequence diagram can be read as follows: Customer
Moe sends the suitable_trips message to the Trip class, which is activated to
process it and then, when finished, returns a response.

66 Chapter 4. Creating Flexible Interfaces

Figure 4.3 A simple sequence diagram.

moe
Customer

suitable_trips
(on_date,
of_difficulty,
need bike)

class
Trip

moe
Customer

class
Trip

From the Library of Avi Flombaum
ptg8315951Bicycle for suitable_bicycle. Moe can get the answer he needs if he talks to both of

them. That sequence diagram looks like Figure 4.4.
For each of these diagrams, consider what Moe has to know.
In Figure 4.3, he knows that:

• He wants a list of trips.

• There’s an object that implements the suitable_trips message.

In Figure 4.4, he knows that:

• He wants a list of trips.

• There’s an object that implements the suitable_trips message.

• Part of finding a suitable trip means finding a suitable bicycle.

• There’s another object that implements the suitable_bicycle message.

Sadly, Figure 4.4 is an improvement in some areas but a failure in others. This design
removes extraneous responsibilities from Trip but unfortunately, it merely transfers
them to Customer.

The problem in Figure 4.4 is that Moe not only knows what he wants, he also
knows how other objects should collaborate to provide it. The Customer class has
become the owner of the application rules that assess trip suitability.

68 Chapter 4. Creating Flexible Interfaces

moe
Customer

class
Trip

class
Bicycle

moe
Customer

class
Trip

class
Bicycle

for each trip found

suitable_trip
(on_date,
of difficulty)

suitable_bicycle
(trip_date,
route type)

Figure 4.4 Moe talks to trip and bicycle.

From the Library of Avi Flombaum

ptg8315951Bicycle for suitable_bicycle. Moe can get the answer he needs if he talks to both of
them. That sequence diagram looks like Figure 4.4.

For each of these diagrams, consider what Moe has to know.
In Figure 4.3, he knows that:

• He wants a list of trips.

• There’s an object that implements the suitable_trips message.

In Figure 4.4, he knows that:

• He wants a list of trips.

• There’s an object that implements the suitable_trips message.

• Part of finding a suitable trip means finding a suitable bicycle.

• There’s another object that implements the suitable_bicycle message.

Sadly, Figure 4.4 is an improvement in some areas but a failure in others. This design
removes extraneous responsibilities from Trip but unfortunately, it merely transfers
them to Customer.

The problem in Figure 4.4 is that Moe not only knows what he wants, he also
knows how other objects should collaborate to provide it. The Customer class has
become the owner of the application rules that assess trip suitability.

68 Chapter 4. Creating Flexible Interfaces

moe
Customer

class
Trip

class
Bicycle

moe
Customer

class
Trip

class
Bicycle

for each trip found

suitable_trip
(on_date,
of difficulty)

suitable_bicycle
(trip_date,
route type)

Figure 4.4 Moe talks to trip and bicycle.

From the Library of Avi Flombaum

trip registry

trip  
registry

bicycle  
registry

 5

ptg8315951

When Moe knows how to decide if a trip is suitable, he isn’t ordering behavior off
of a menu, he’s going into the kitchen and cooking. The Customer class is co-opting
responsibilities that belong somewhere else and binding itself to an implementation
that might change.

Asking for “What” Instead of Telling “How”
The distinction between a message that asks for what the sender wants and a message
that tells the receiver how to behave may seem subtle but the consequences are
significant. Understanding this difference is a key part of creating reusable classes with
well-defined public interfaces.

To illustrate the importance of what versus how, it’s time for a more detailed
example. Put the customer/trip design problem aside for a bit; it will return soon.
Switch your attention to a new example involving trips, bicycles, and mechanics.

In Figure 4.5, a trip is about to depart and it needs to make sure all the bicycles
scheduled to be used are in good shape. The use case for this requirement is: A trip, in
order to start, needs to ensure that all its bicycles are mechanically sound. Trip could
know exactly how to make a bike ready for a trip and could ask a Mechanic to do
each of those things:

69Finding the Public Interface

a
Trip

bicycles

clean bicycle(bike)

pump tires(bike)

lube chain(bike)

check brakes(bike)

a
Mechanic

a
Trip

a
Mechanic

for each bicycle

Figure 4.5 A Trip tells a Mechanic how to prepare each Bicycle.

From the Library of Avi Flombaum

ptg8315951

When Moe knows how to decide if a trip is suitable, he isn’t ordering behavior off
of a menu, he’s going into the kitchen and cooking. The Customer class is co-opting
responsibilities that belong somewhere else and binding itself to an implementation
that might change.

Asking for “What” Instead of Telling “How”
The distinction between a message that asks for what the sender wants and a message
that tells the receiver how to behave may seem subtle but the consequences are
significant. Understanding this difference is a key part of creating reusable classes with
well-defined public interfaces.

To illustrate the importance of what versus how, it’s time for a more detailed
example. Put the customer/trip design problem aside for a bit; it will return soon.
Switch your attention to a new example involving trips, bicycles, and mechanics.

In Figure 4.5, a trip is about to depart and it needs to make sure all the bicycles
scheduled to be used are in good shape. The use case for this requirement is: A trip, in
order to start, needs to ensure that all its bicycles are mechanically sound. Trip could
know exactly how to make a bike ready for a trip and could ask a Mechanic to do
each of those things:

69Finding the Public Interface

a
Trip

bicycles

clean bicycle(bike)

pump tires(bike)

lube chain(bike)

check brakes(bike)

a
Mechanic

a
Trip

a
Mechanic

for each bicycle

Figure 4.5 A Trip tells a Mechanic how to prepare each Bicycle.

From the Library of Avi Flombaum

 6

ptg8315951

When Moe knows how to decide if a trip is suitable, he isn’t ordering behavior off
of a menu, he’s going into the kitchen and cooking. The Customer class is co-opting
responsibilities that belong somewhere else and binding itself to an implementation
that might change.

Asking for “What” Instead of Telling “How”
The distinction between a message that asks for what the sender wants and a message
that tells the receiver how to behave may seem subtle but the consequences are
significant. Understanding this difference is a key part of creating reusable classes with
well-defined public interfaces.

To illustrate the importance of what versus how, it’s time for a more detailed
example. Put the customer/trip design problem aside for a bit; it will return soon.
Switch your attention to a new example involving trips, bicycles, and mechanics.

In Figure 4.5, a trip is about to depart and it needs to make sure all the bicycles
scheduled to be used are in good shape. The use case for this requirement is: A trip, in
order to start, needs to ensure that all its bicycles are mechanically sound. Trip could
know exactly how to make a bike ready for a trip and could ask a Mechanic to do
each of those things:

69Finding the Public Interface

a
Trip

bicycles

clean bicycle(bike)

pump tires(bike)

lube chain(bike)

check brakes(bike)

a
Mechanic

a
Trip

a
Mechanic

for each bicycle

Figure 4.5 A Trip tells a Mechanic how to prepare each Bicycle.

From the Library of Avi Flombaum

ptg8315951

When Moe knows how to decide if a trip is suitable, he isn’t ordering behavior off
of a menu, he’s going into the kitchen and cooking. The Customer class is co-opting
responsibilities that belong somewhere else and binding itself to an implementation
that might change.

Asking for “What” Instead of Telling “How”
The distinction between a message that asks for what the sender wants and a message
that tells the receiver how to behave may seem subtle but the consequences are
significant. Understanding this difference is a key part of creating reusable classes with
well-defined public interfaces.

To illustrate the importance of what versus how, it’s time for a more detailed
example. Put the customer/trip design problem aside for a bit; it will return soon.
Switch your attention to a new example involving trips, bicycles, and mechanics.

In Figure 4.5, a trip is about to depart and it needs to make sure all the bicycles
scheduled to be used are in good shape. The use case for this requirement is: A trip, in
order to start, needs to ensure that all its bicycles are mechanically sound. Trip could
know exactly how to make a bike ready for a trip and could ask a Mechanic to do
each of those things:

69Finding the Public Interface

a
Trip

bicycles

clean bicycle(bike)

pump tires(bike)

lube chain(bike)

check brakes(bike)

a
Mechanic

a
Trip

a
Mechanic

for each bicycle

Figure 4.5 A Trip tells a Mechanic how to prepare each Bicycle.

From the Library of Avi Flombaum

ptg8315951

• Trip expects to be holding onto an object that can respond to prepare_trip.

• Mechanic expects the argument passed along with prepare_trip to respond to
bicycles.

All of the knowledge about how mechanics prepare trips is now isolated inside of
Mechanic and the context of Trip has been reduced. Both of the objects are now easier
to change, to test, and to reuse.

Trusting Other Objects
The designs illustrated by Figures 4.5 through 4.7 represent a movement towards
increasingly object-oriented code and as such they mirror the stages of development of
the novice designer.

Figure 4.5 is quite procedural. A Trip tells a Mechanic how to prepare a
Bicycle, almost as if Trip were the main program and Mechanic a bunch of callable
functions. In this design, Trip is the only object that knows exactly how to prepare a
bike; getting a bike prepared requires using a Trip or duplicating the code. Trip’s
context is large, as is Mechanic’s public interface. These two classes are not islands
with bridges between them, they are instead a single, woven cloth.

Many new object-oriented programmers start out working just this way, writing
procedural code. It’s inevitable; this style closely mirrors the best practices of their
former procedural languages. Unfortunately, coding in a procedural style defeats the
purpose of object orientation. It reintroduces the exact maintenance issues that OOP
is designed to avoid.

Figure 4.6 is more object-oriented. Here, a Trip asks a Mechanic to prepare a
Bicycle. Trip’s context is reduced, and Mechanic’s public interface is smaller.
Additionally, Mechanic’s public interface is now something that any object may prof-
itably use; you don’t need a Trip to prepare a bike. These objects now communicate
in a few well-defined ways; they are less coupled and more easily reusable.

This style of coding places the responsibilities in the correct objects, a great im-
provement, but continues to require that Trip have more context than is necessary.
Trip still knows that it holds onto an object that can respond to prepare_bicycle,
and it must always have this object.

Figure 4.7 is far more object-oriented. In this example, Trip doesn’t know or care
that it has a Mechanic and it doesn’t have any idea what the Mechanic will do. Trip
merely holds onto an object to which it will send prepare_trip; it trusts the receiver
of this message to behave appropriately.

73Finding the Public Interface

From the Library of Avi Flombaum

 7

ptg8315951

When Moe knows how to decide if a trip is suitable, he isn’t ordering behavior off
of a menu, he’s going into the kitchen and cooking. The Customer class is co-opting
responsibilities that belong somewhere else and binding itself to an implementation
that might change.

Asking for “What” Instead of Telling “How”
The distinction between a message that asks for what the sender wants and a message
that tells the receiver how to behave may seem subtle but the consequences are
significant. Understanding this difference is a key part of creating reusable classes with
well-defined public interfaces.

To illustrate the importance of what versus how, it’s time for a more detailed
example. Put the customer/trip design problem aside for a bit; it will return soon.
Switch your attention to a new example involving trips, bicycles, and mechanics.

In Figure 4.5, a trip is about to depart and it needs to make sure all the bicycles
scheduled to be used are in good shape. The use case for this requirement is: A trip, in
order to start, needs to ensure that all its bicycles are mechanically sound. Trip could
know exactly how to make a bike ready for a trip and could ask a Mechanic to do
each of those things:

69Finding the Public Interface

a
Trip

bicycles

clean bicycle(bike)

pump tires(bike)

lube chain(bike)

check brakes(bike)

a
Mechanic

a
Trip

a
Mechanic

for each bicycle

Figure 4.5 A Trip tells a Mechanic how to prepare each Bicycle.

From the Library of Avi Flombaum

ptg8315951

When Moe knows how to decide if a trip is suitable, he isn’t ordering behavior off
of a menu, he’s going into the kitchen and cooking. The Customer class is co-opting
responsibilities that belong somewhere else and binding itself to an implementation
that might change.

Asking for “What” Instead of Telling “How”
The distinction between a message that asks for what the sender wants and a message
that tells the receiver how to behave may seem subtle but the consequences are
significant. Understanding this difference is a key part of creating reusable classes with
well-defined public interfaces.

To illustrate the importance of what versus how, it’s time for a more detailed
example. Put the customer/trip design problem aside for a bit; it will return soon.
Switch your attention to a new example involving trips, bicycles, and mechanics.

In Figure 4.5, a trip is about to depart and it needs to make sure all the bicycles
scheduled to be used are in good shape. The use case for this requirement is: A trip, in
order to start, needs to ensure that all its bicycles are mechanically sound. Trip could
know exactly how to make a bike ready for a trip and could ask a Mechanic to do
each of those things:

69Finding the Public Interface

a
Trip

bicycles

clean bicycle(bike)

pump tires(bike)

lube chain(bike)

check brakes(bike)

a
Mechanic

a
Trip

a
Mechanic

for each bicycle

Figure 4.5 A Trip tells a Mechanic how to prepare each Bicycle.

From the Library of Avi Flombaum

ptg8315951

In Figure 4.5:

• The public interface for Trip includes the method bicycles.

• The public interface for Mechanic includes methods clean_bicycle,
pump_tires, lube_chain, and check_brakes.

• Trip expects to be holding onto an object that can respond to clean_bicycle,
pump_tires, lube_chain, and check_brakes.

In this design, Trip knows many details about what Mechanic does. Because Trip
contains this knowledge and uses it to direct Mechanic, Trip must change if Mechanic
adds new procedures to the bike preparation process. For example, if Mechanic
implements a method to check the bike repair kit as part of Trip preparation, Trip
must change to invoke this new method.

Figure 4.6 depicts an alternative where Trip asks Mechanic to prepare each
Bicycle, leaving the implementation details to Mechanic.

In Figure 4.6:

• The public interface for Trip includes the method bicycles.

• The public interface for Mechanic includes method prepare_bicycle.

• Trip expects to be holding onto an object that can respond to prepare_bicycle.

70 Chapter 4. Creating Flexible Interfaces

a
Trip

a
Mechanic

a
Trip

a
Mechanic

clean_bicycle(bike)

prepare bicycle(bike)

bicycles

etc...

for each bicycle

Figure 4.6 A Trip asks a Mechanic to prepare each Bicycle.

From the Library of Avi Flombaum

ptg8315951

In Figure 4.5:

• The public interface for Trip includes the method bicycles.

• The public interface for Mechanic includes methods clean_bicycle,
pump_tires, lube_chain, and check_brakes.

• Trip expects to be holding onto an object that can respond to clean_bicycle,
pump_tires, lube_chain, and check_brakes.

In this design, Trip knows many details about what Mechanic does. Because Trip
contains this knowledge and uses it to direct Mechanic, Trip must change if Mechanic
adds new procedures to the bike preparation process. For example, if Mechanic
implements a method to check the bike repair kit as part of Trip preparation, Trip
must change to invoke this new method.

Figure 4.6 depicts an alternative where Trip asks Mechanic to prepare each
Bicycle, leaving the implementation details to Mechanic.

In Figure 4.6:

• The public interface for Trip includes the method bicycles.

• The public interface for Mechanic includes method prepare_bicycle.

• Trip expects to be holding onto an object that can respond to prepare_bicycle.

70 Chapter 4. Creating Flexible Interfaces

a
Trip

a
Mechanic

a
Trip

a
Mechanic

clean_bicycle(bike)

prepare bicycle(bike)

bicycles

etc...

for each bicycle

Figure 4.6 A Trip asks a Mechanic to prepare each Bicycle.

From the Library of Avi Flombaum

ptg8315951

In Figure 4.5:

• The public interface for Trip includes the method bicycles.

• The public interface for Mechanic includes methods clean_bicycle,
pump_tires, lube_chain, and check_brakes.

• Trip expects to be holding onto an object that can respond to clean_bicycle,
pump_tires, lube_chain, and check_brakes.

In this design, Trip knows many details about what Mechanic does. Because Trip
contains this knowledge and uses it to direct Mechanic, Trip must change if Mechanic
adds new procedures to the bike preparation process. For example, if Mechanic
implements a method to check the bike repair kit as part of Trip preparation, Trip
must change to invoke this new method.

Figure 4.6 depicts an alternative where Trip asks Mechanic to prepare each
Bicycle, leaving the implementation details to Mechanic.

In Figure 4.6:

• The public interface for Trip includes the method bicycles.

• The public interface for Mechanic includes method prepare_bicycle.

• Trip expects to be holding onto an object that can respond to prepare_bicycle.

70 Chapter 4. Creating Flexible Interfaces

a
Trip

a
Mechanic

a
Trip

a
Mechanic

clean_bicycle(bike)

prepare bicycle(bike)

bicycles

etc...

for each bicycle

Figure 4.6 A Trip asks a Mechanic to prepare each Bicycle.

From the Library of Avi Flombaum

 8

ptg8315951

• Trip expects to be holding onto an object that can respond to prepare_trip.

• Mechanic expects the argument passed along with prepare_trip to respond to
bicycles.

All of the knowledge about how mechanics prepare trips is now isolated inside of
Mechanic and the context of Trip has been reduced. Both of the objects are now easier
to change, to test, and to reuse.

Trusting Other Objects
The designs illustrated by Figures 4.5 through 4.7 represent a movement towards
increasingly object-oriented code and as such they mirror the stages of development of
the novice designer.

Figure 4.5 is quite procedural. A Trip tells a Mechanic how to prepare a
Bicycle, almost as if Trip were the main program and Mechanic a bunch of callable
functions. In this design, Trip is the only object that knows exactly how to prepare a
bike; getting a bike prepared requires using a Trip or duplicating the code. Trip’s
context is large, as is Mechanic’s public interface. These two classes are not islands
with bridges between them, they are instead a single, woven cloth.

Many new object-oriented programmers start out working just this way, writing
procedural code. It’s inevitable; this style closely mirrors the best practices of their
former procedural languages. Unfortunately, coding in a procedural style defeats the
purpose of object orientation. It reintroduces the exact maintenance issues that OOP
is designed to avoid.

Figure 4.6 is more object-oriented. Here, a Trip asks a Mechanic to prepare a
Bicycle. Trip’s context is reduced, and Mechanic’s public interface is smaller.
Additionally, Mechanic’s public interface is now something that any object may prof-
itably use; you don’t need a Trip to prepare a bike. These objects now communicate
in a few well-defined ways; they are less coupled and more easily reusable.

This style of coding places the responsibilities in the correct objects, a great im-
provement, but continues to require that Trip have more context than is necessary.
Trip still knows that it holds onto an object that can respond to prepare_bicycle,
and it must always have this object.

Figure 4.7 is far more object-oriented. In this example, Trip doesn’t know or care
that it has a Mechanic and it doesn’t have any idea what the Mechanic will do. Trip
merely holds onto an object to which it will send prepare_trip; it trusts the receiver
of this message to behave appropriately.

73Finding the Public Interface

From the Library of Avi Flombaum

 9

ptg8315951

In Figure 4.5:

• The public interface for Trip includes the method bicycles.

• The public interface for Mechanic includes methods clean_bicycle,
pump_tires, lube_chain, and check_brakes.

• Trip expects to be holding onto an object that can respond to clean_bicycle,
pump_tires, lube_chain, and check_brakes.

In this design, Trip knows many details about what Mechanic does. Because Trip
contains this knowledge and uses it to direct Mechanic, Trip must change if Mechanic
adds new procedures to the bike preparation process. For example, if Mechanic
implements a method to check the bike repair kit as part of Trip preparation, Trip
must change to invoke this new method.

Figure 4.6 depicts an alternative where Trip asks Mechanic to prepare each
Bicycle, leaving the implementation details to Mechanic.

In Figure 4.6:

• The public interface for Trip includes the method bicycles.

• The public interface for Mechanic includes method prepare_bicycle.

• Trip expects to be holding onto an object that can respond to prepare_bicycle.

70 Chapter 4. Creating Flexible Interfaces

a
Trip

a
Mechanic

a
Trip

a
Mechanic

clean_bicycle(bike)

prepare bicycle(bike)

bicycles

etc...

for each bicycle

Figure 4.6 A Trip asks a Mechanic to prepare each Bicycle.

From the Library of Avi Flombaum

ptg8315951

In Figure 4.5:

• The public interface for Trip includes the method bicycles.

• The public interface for Mechanic includes methods clean_bicycle,
pump_tires, lube_chain, and check_brakes.

• Trip expects to be holding onto an object that can respond to clean_bicycle,
pump_tires, lube_chain, and check_brakes.

In this design, Trip knows many details about what Mechanic does. Because Trip
contains this knowledge and uses it to direct Mechanic, Trip must change if Mechanic
adds new procedures to the bike preparation process. For example, if Mechanic
implements a method to check the bike repair kit as part of Trip preparation, Trip
must change to invoke this new method.

Figure 4.6 depicts an alternative where Trip asks Mechanic to prepare each
Bicycle, leaving the implementation details to Mechanic.

In Figure 4.6:

• The public interface for Trip includes the method bicycles.

• The public interface for Mechanic includes method prepare_bicycle.

• Trip expects to be holding onto an object that can respond to prepare_bicycle.

70 Chapter 4. Creating Flexible Interfaces

a
Trip

a
Mechanic

a
Trip

a
Mechanic

clean_bicycle(bike)

prepare bicycle(bike)

bicycles

etc...

for each bicycle

Figure 4.6 A Trip asks a Mechanic to prepare each Bicycle.

From the Library of Avi Flombaum

ptg8315951

In Figure 4.5:

• The public interface for Trip includes the method bicycles.

• The public interface for Mechanic includes methods clean_bicycle,
pump_tires, lube_chain, and check_brakes.

• Trip expects to be holding onto an object that can respond to clean_bicycle,
pump_tires, lube_chain, and check_brakes.

In this design, Trip knows many details about what Mechanic does. Because Trip
contains this knowledge and uses it to direct Mechanic, Trip must change if Mechanic
adds new procedures to the bike preparation process. For example, if Mechanic
implements a method to check the bike repair kit as part of Trip preparation, Trip
must change to invoke this new method.

Figure 4.6 depicts an alternative where Trip asks Mechanic to prepare each
Bicycle, leaving the implementation details to Mechanic.

In Figure 4.6:

• The public interface for Trip includes the method bicycles.

• The public interface for Mechanic includes method prepare_bicycle.

• Trip expects to be holding onto an object that can respond to prepare_bicycle.

70 Chapter 4. Creating Flexible Interfaces

a
Trip

a
Mechanic

a
Trip

a
Mechanic

clean_bicycle(bike)

prepare bicycle(bike)

bicycles

etc...

for each bicycle

Figure 4.6 A Trip asks a Mechanic to prepare each Bicycle.

From the Library of Avi Flombaum

ptg8315951

At first glance this seems impossible. Trips have bicycles, bicycles must be prepared,
and mechanics prepare bicycles. Having Trip ask Mechanic to prepare a Bicycle
seems inevitable.

However, it is not. The solution to this problem lies in the distinction between
what and how, and arriving at a solution requires concentrating on what Trip wants.

What Trip wants is to be prepared. The knowledge that it must be prepared is
completely and legitimately within the realm of Trip’s responsibilities. However,
the fact that bicycles need to be prepared may belong to the province of Mechanic.
The need for bicycle preparation is more how a Trip gets prepared than what a
Trip wants.

Figure 4.7 illustrates a third alternative sequence diagram for Trip preparation.
In this example, Trip merely tells Mechanic what it wants, that is, to be prepared,
and passes itself along as an argument.

In this sequence diagram, Trip knows nothing about Mechanic but still manages
to collaborate with it to get bicycles ready. Trip tells Mechanic what it wants, passes
self along as an argument, and Mechanic immediately calls back to Trip to get the
list of the Bicycles that need preparing.

In Figure 4.7:

• The public interface for Trip includes bicycles.

• The public interface for Mechanic includes prepare_trip and perhaps
prepare_bicycle.

72 Chapter 4. Creating Flexible Interfaces

Figure 4.7 A Trip asks a Mechanic to prepare the Trip.

a
Trip

a
Mechanic

prepare_bicycle(bike)

prepare_trip(self)

bicycles

for each bicycle

a
Trip

a
Mechanic

From the Library of Avi Flombaum

ptg8315951

At first glance this seems impossible. Trips have bicycles, bicycles must be prepared,
and mechanics prepare bicycles. Having Trip ask Mechanic to prepare a Bicycle
seems inevitable.

However, it is not. The solution to this problem lies in the distinction between
what and how, and arriving at a solution requires concentrating on what Trip wants.

What Trip wants is to be prepared. The knowledge that it must be prepared is
completely and legitimately within the realm of Trip’s responsibilities. However,
the fact that bicycles need to be prepared may belong to the province of Mechanic.
The need for bicycle preparation is more how a Trip gets prepared than what a
Trip wants.

Figure 4.7 illustrates a third alternative sequence diagram for Trip preparation.
In this example, Trip merely tells Mechanic what it wants, that is, to be prepared,
and passes itself along as an argument.

In this sequence diagram, Trip knows nothing about Mechanic but still manages
to collaborate with it to get bicycles ready. Trip tells Mechanic what it wants, passes
self along as an argument, and Mechanic immediately calls back to Trip to get the
list of the Bicycles that need preparing.

In Figure 4.7:

• The public interface for Trip includes bicycles.

• The public interface for Mechanic includes prepare_trip and perhaps
prepare_bicycle.

72 Chapter 4. Creating Flexible Interfaces

Figure 4.7 A Trip asks a Mechanic to prepare the Trip.

a
Trip

a
Mechanic

prepare_bicycle(bike)

prepare_trip(self)

bicycles

for each bicycle

a
Trip

a
Mechanic

From the Library of Avi Flombaum

ptg8315951

When Moe knows how to decide if a trip is suitable, he isn’t ordering behavior off
of a menu, he’s going into the kitchen and cooking. The Customer class is co-opting
responsibilities that belong somewhere else and binding itself to an implementation
that might change.

Asking for “What” Instead of Telling “How”
The distinction between a message that asks for what the sender wants and a message
that tells the receiver how to behave may seem subtle but the consequences are
significant. Understanding this difference is a key part of creating reusable classes with
well-defined public interfaces.

To illustrate the importance of what versus how, it’s time for a more detailed
example. Put the customer/trip design problem aside for a bit; it will return soon.
Switch your attention to a new example involving trips, bicycles, and mechanics.

In Figure 4.5, a trip is about to depart and it needs to make sure all the bicycles
scheduled to be used are in good shape. The use case for this requirement is: A trip, in
order to start, needs to ensure that all its bicycles are mechanically sound. Trip could
know exactly how to make a bike ready for a trip and could ask a Mechanic to do
each of those things:

69Finding the Public Interface

a
Trip

bicycles

clean bicycle(bike)

pump tires(bike)

lube chain(bike)

check brakes(bike)

a
Mechanic

a
Trip

a
Mechanic

for each bicycle

Figure 4.5 A Trip tells a Mechanic how to prepare each Bicycle.

From the Library of Avi Flombaum

ptg8315951

When Moe knows how to decide if a trip is suitable, he isn’t ordering behavior off
of a menu, he’s going into the kitchen and cooking. The Customer class is co-opting
responsibilities that belong somewhere else and binding itself to an implementation
that might change.

Asking for “What” Instead of Telling “How”
The distinction between a message that asks for what the sender wants and a message
that tells the receiver how to behave may seem subtle but the consequences are
significant. Understanding this difference is a key part of creating reusable classes with
well-defined public interfaces.

To illustrate the importance of what versus how, it’s time for a more detailed
example. Put the customer/trip design problem aside for a bit; it will return soon.
Switch your attention to a new example involving trips, bicycles, and mechanics.

In Figure 4.5, a trip is about to depart and it needs to make sure all the bicycles
scheduled to be used are in good shape. The use case for this requirement is: A trip, in
order to start, needs to ensure that all its bicycles are mechanically sound. Trip could
know exactly how to make a bike ready for a trip and could ask a Mechanic to do
each of those things:

69Finding the Public Interface

a
Trip

bicycles

clean bicycle(bike)

pump tires(bike)

lube chain(bike)

check brakes(bike)

a
Mechanic

a
Trip

a
Mechanic

for each bicycle

Figure 4.5 A Trip tells a Mechanic how to prepare each Bicycle.

From the Library of Avi Flombaum

Trip  
tells

 9

ptg8315951

In Figure 4.5:

• The public interface for Trip includes the method bicycles.

• The public interface for Mechanic includes methods clean_bicycle,
pump_tires, lube_chain, and check_brakes.

• Trip expects to be holding onto an object that can respond to clean_bicycle,
pump_tires, lube_chain, and check_brakes.

In this design, Trip knows many details about what Mechanic does. Because Trip
contains this knowledge and uses it to direct Mechanic, Trip must change if Mechanic
adds new procedures to the bike preparation process. For example, if Mechanic
implements a method to check the bike repair kit as part of Trip preparation, Trip
must change to invoke this new method.

Figure 4.6 depicts an alternative where Trip asks Mechanic to prepare each
Bicycle, leaving the implementation details to Mechanic.

In Figure 4.6:

• The public interface for Trip includes the method bicycles.

• The public interface for Mechanic includes method prepare_bicycle.

• Trip expects to be holding onto an object that can respond to prepare_bicycle.

70 Chapter 4. Creating Flexible Interfaces

a
Trip

a
Mechanic

a
Trip

a
Mechanic

clean_bicycle(bike)

prepare bicycle(bike)

bicycles

etc...

for each bicycle

Figure 4.6 A Trip asks a Mechanic to prepare each Bicycle.

From the Library of Avi Flombaum

ptg8315951

In Figure 4.5:

• The public interface for Trip includes the method bicycles.

• The public interface for Mechanic includes methods clean_bicycle,
pump_tires, lube_chain, and check_brakes.

• Trip expects to be holding onto an object that can respond to clean_bicycle,
pump_tires, lube_chain, and check_brakes.

In this design, Trip knows many details about what Mechanic does. Because Trip
contains this knowledge and uses it to direct Mechanic, Trip must change if Mechanic
adds new procedures to the bike preparation process. For example, if Mechanic
implements a method to check the bike repair kit as part of Trip preparation, Trip
must change to invoke this new method.

Figure 4.6 depicts an alternative where Trip asks Mechanic to prepare each
Bicycle, leaving the implementation details to Mechanic.

In Figure 4.6:

• The public interface for Trip includes the method bicycles.

• The public interface for Mechanic includes method prepare_bicycle.

• Trip expects to be holding onto an object that can respond to prepare_bicycle.

70 Chapter 4. Creating Flexible Interfaces

a
Trip

a
Mechanic

a
Trip

a
Mechanic

clean_bicycle(bike)

prepare bicycle(bike)

bicycles

etc...

for each bicycle

Figure 4.6 A Trip asks a Mechanic to prepare each Bicycle.

From the Library of Avi Flombaum

ptg8315951

In Figure 4.5:

• The public interface for Trip includes the method bicycles.

• The public interface for Mechanic includes methods clean_bicycle,
pump_tires, lube_chain, and check_brakes.

• Trip expects to be holding onto an object that can respond to clean_bicycle,
pump_tires, lube_chain, and check_brakes.

In this design, Trip knows many details about what Mechanic does. Because Trip
contains this knowledge and uses it to direct Mechanic, Trip must change if Mechanic
adds new procedures to the bike preparation process. For example, if Mechanic
implements a method to check the bike repair kit as part of Trip preparation, Trip
must change to invoke this new method.

Figure 4.6 depicts an alternative where Trip asks Mechanic to prepare each
Bicycle, leaving the implementation details to Mechanic.

In Figure 4.6:

• The public interface for Trip includes the method bicycles.

• The public interface for Mechanic includes method prepare_bicycle.

• Trip expects to be holding onto an object that can respond to prepare_bicycle.

70 Chapter 4. Creating Flexible Interfaces

a
Trip

a
Mechanic

a
Trip

a
Mechanic

clean_bicycle(bike)

prepare bicycle(bike)

bicycles

etc...

for each bicycle

Figure 4.6 A Trip asks a Mechanic to prepare each Bicycle.

From the Library of Avi Flombaum

ptg8315951

At first glance this seems impossible. Trips have bicycles, bicycles must be prepared,
and mechanics prepare bicycles. Having Trip ask Mechanic to prepare a Bicycle
seems inevitable.

However, it is not. The solution to this problem lies in the distinction between
what and how, and arriving at a solution requires concentrating on what Trip wants.

What Trip wants is to be prepared. The knowledge that it must be prepared is
completely and legitimately within the realm of Trip’s responsibilities. However,
the fact that bicycles need to be prepared may belong to the province of Mechanic.
The need for bicycle preparation is more how a Trip gets prepared than what a
Trip wants.

Figure 4.7 illustrates a third alternative sequence diagram for Trip preparation.
In this example, Trip merely tells Mechanic what it wants, that is, to be prepared,
and passes itself along as an argument.

In this sequence diagram, Trip knows nothing about Mechanic but still manages
to collaborate with it to get bicycles ready. Trip tells Mechanic what it wants, passes
self along as an argument, and Mechanic immediately calls back to Trip to get the
list of the Bicycles that need preparing.

In Figure 4.7:

• The public interface for Trip includes bicycles.

• The public interface for Mechanic includes prepare_trip and perhaps
prepare_bicycle.

72 Chapter 4. Creating Flexible Interfaces

Figure 4.7 A Trip asks a Mechanic to prepare the Trip.

a
Trip

a
Mechanic

prepare_bicycle(bike)

prepare_trip(self)

bicycles

for each bicycle

a
Trip

a
Mechanic

From the Library of Avi Flombaum

ptg8315951

At first glance this seems impossible. Trips have bicycles, bicycles must be prepared,
and mechanics prepare bicycles. Having Trip ask Mechanic to prepare a Bicycle
seems inevitable.

However, it is not. The solution to this problem lies in the distinction between
what and how, and arriving at a solution requires concentrating on what Trip wants.

What Trip wants is to be prepared. The knowledge that it must be prepared is
completely and legitimately within the realm of Trip’s responsibilities. However,
the fact that bicycles need to be prepared may belong to the province of Mechanic.
The need for bicycle preparation is more how a Trip gets prepared than what a
Trip wants.

Figure 4.7 illustrates a third alternative sequence diagram for Trip preparation.
In this example, Trip merely tells Mechanic what it wants, that is, to be prepared,
and passes itself along as an argument.

In this sequence diagram, Trip knows nothing about Mechanic but still manages
to collaborate with it to get bicycles ready. Trip tells Mechanic what it wants, passes
self along as an argument, and Mechanic immediately calls back to Trip to get the
list of the Bicycles that need preparing.

In Figure 4.7:

• The public interface for Trip includes bicycles.

• The public interface for Mechanic includes prepare_trip and perhaps
prepare_bicycle.

72 Chapter 4. Creating Flexible Interfaces

Figure 4.7 A Trip asks a Mechanic to prepare the Trip.

a
Trip

a
Mechanic

prepare_bicycle(bike)

prepare_trip(self)

bicycles

for each bicycle

a
Trip

a
Mechanic

From the Library of Avi Flombaum

prepareFor(self)

ptg8315951

When Moe knows how to decide if a trip is suitable, he isn’t ordering behavior off
of a menu, he’s going into the kitchen and cooking. The Customer class is co-opting
responsibilities that belong somewhere else and binding itself to an implementation
that might change.

Asking for “What” Instead of Telling “How”
The distinction between a message that asks for what the sender wants and a message
that tells the receiver how to behave may seem subtle but the consequences are
significant. Understanding this difference is a key part of creating reusable classes with
well-defined public interfaces.

To illustrate the importance of what versus how, it’s time for a more detailed
example. Put the customer/trip design problem aside for a bit; it will return soon.
Switch your attention to a new example involving trips, bicycles, and mechanics.

In Figure 4.5, a trip is about to depart and it needs to make sure all the bicycles
scheduled to be used are in good shape. The use case for this requirement is: A trip, in
order to start, needs to ensure that all its bicycles are mechanically sound. Trip could
know exactly how to make a bike ready for a trip and could ask a Mechanic to do
each of those things:

69Finding the Public Interface

a
Trip

bicycles

clean bicycle(bike)

pump tires(bike)

lube chain(bike)

check brakes(bike)

a
Mechanic

a
Trip

a
Mechanic

for each bicycle

Figure 4.5 A Trip tells a Mechanic how to prepare each Bicycle.

From the Library of Avi Flombaum

ptg8315951

When Moe knows how to decide if a trip is suitable, he isn’t ordering behavior off
of a menu, he’s going into the kitchen and cooking. The Customer class is co-opting
responsibilities that belong somewhere else and binding itself to an implementation
that might change.

Asking for “What” Instead of Telling “How”
The distinction between a message that asks for what the sender wants and a message
that tells the receiver how to behave may seem subtle but the consequences are
significant. Understanding this difference is a key part of creating reusable classes with
well-defined public interfaces.

To illustrate the importance of what versus how, it’s time for a more detailed
example. Put the customer/trip design problem aside for a bit; it will return soon.
Switch your attention to a new example involving trips, bicycles, and mechanics.

In Figure 4.5, a trip is about to depart and it needs to make sure all the bicycles
scheduled to be used are in good shape. The use case for this requirement is: A trip, in
order to start, needs to ensure that all its bicycles are mechanically sound. Trip could
know exactly how to make a bike ready for a trip and could ask a Mechanic to do
each of those things:

69Finding the Public Interface

a
Trip

bicycles

clean bicycle(bike)

pump tires(bike)

lube chain(bike)

check brakes(bike)

a
Mechanic

a
Trip

a
Mechanic

for each bicycle

Figure 4.5 A Trip tells a Mechanic how to prepare each Bicycle.

From the Library of Avi Flombaum

Trip  
tells

 10

ptg8315951

• Trip expects to be holding onto an object that can respond to prepare_trip.

• Mechanic expects the argument passed along with prepare_trip to respond to
bicycles.

All of the knowledge about how mechanics prepare trips is now isolated inside of
Mechanic and the context of Trip has been reduced. Both of the objects are now easier
to change, to test, and to reuse.

Trusting Other Objects
The designs illustrated by Figures 4.5 through 4.7 represent a movement towards
increasingly object-oriented code and as such they mirror the stages of development of
the novice designer.

Figure 4.5 is quite procedural. A Trip tells a Mechanic how to prepare a
Bicycle, almost as if Trip were the main program and Mechanic a bunch of callable
functions. In this design, Trip is the only object that knows exactly how to prepare a
bike; getting a bike prepared requires using a Trip or duplicating the code. Trip’s
context is large, as is Mechanic’s public interface. These two classes are not islands
with bridges between them, they are instead a single, woven cloth.

Many new object-oriented programmers start out working just this way, writing
procedural code. It’s inevitable; this style closely mirrors the best practices of their
former procedural languages. Unfortunately, coding in a procedural style defeats the
purpose of object orientation. It reintroduces the exact maintenance issues that OOP
is designed to avoid.

Figure 4.6 is more object-oriented. Here, a Trip asks a Mechanic to prepare a
Bicycle. Trip’s context is reduced, and Mechanic’s public interface is smaller.
Additionally, Mechanic’s public interface is now something that any object may prof-
itably use; you don’t need a Trip to prepare a bike. These objects now communicate
in a few well-defined ways; they are less coupled and more easily reusable.

This style of coding places the responsibilities in the correct objects, a great im-
provement, but continues to require that Trip have more context than is necessary.
Trip still knows that it holds onto an object that can respond to prepare_bicycle,
and it must always have this object.

Figure 4.7 is far more object-oriented. In this example, Trip doesn’t know or care
that it has a Mechanic and it doesn’t have any idea what the Mechanic will do. Trip
merely holds onto an object to which it will send prepare_trip; it trusts the receiver
of this message to behave appropriately.

73Finding the Public Interface

From the Library of Avi Flombaum

 10

ptg8315951

• Trip expects to be holding onto an object that can respond to prepare_trip.

• Mechanic expects the argument passed along with prepare_trip to respond to
bicycles.

All of the knowledge about how mechanics prepare trips is now isolated inside of
Mechanic and the context of Trip has been reduced. Both of the objects are now easier
to change, to test, and to reuse.

Trusting Other Objects
The designs illustrated by Figures 4.5 through 4.7 represent a movement towards
increasingly object-oriented code and as such they mirror the stages of development of
the novice designer.

Figure 4.5 is quite procedural. A Trip tells a Mechanic how to prepare a
Bicycle, almost as if Trip were the main program and Mechanic a bunch of callable
functions. In this design, Trip is the only object that knows exactly how to prepare a
bike; getting a bike prepared requires using a Trip or duplicating the code. Trip’s
context is large, as is Mechanic’s public interface. These two classes are not islands
with bridges between them, they are instead a single, woven cloth.

Many new object-oriented programmers start out working just this way, writing
procedural code. It’s inevitable; this style closely mirrors the best practices of their
former procedural languages. Unfortunately, coding in a procedural style defeats the
purpose of object orientation. It reintroduces the exact maintenance issues that OOP
is designed to avoid.

Figure 4.6 is more object-oriented. Here, a Trip asks a Mechanic to prepare a
Bicycle. Trip’s context is reduced, and Mechanic’s public interface is smaller.
Additionally, Mechanic’s public interface is now something that any object may prof-
itably use; you don’t need a Trip to prepare a bike. These objects now communicate
in a few well-defined ways; they are less coupled and more easily reusable.

This style of coding places the responsibilities in the correct objects, a great im-
provement, but continues to require that Trip have more context than is necessary.
Trip still knows that it holds onto an object that can respond to prepare_bicycle,
and it must always have this object.

Figure 4.7 is far more object-oriented. In this example, Trip doesn’t know or care
that it has a Mechanic and it doesn’t have any idea what the Mechanic will do. Trip
merely holds onto an object to which it will send prepare_trip; it trusts the receiver
of this message to behave appropriately.

73Finding the Public Interface

From the Library of Avi FlombaumThis pattern allows you to add newly-introduced
preparers to Trip without changing any of its code.
You can extend Trip without modifying it.

 10

ptg8315951

• Trip expects to be holding onto an object that can respond to prepare_trip.

• Mechanic expects the argument passed along with prepare_trip to respond to
bicycles.

All of the knowledge about how mechanics prepare trips is now isolated inside of
Mechanic and the context of Trip has been reduced. Both of the objects are now easier
to change, to test, and to reuse.

Trusting Other Objects
The designs illustrated by Figures 4.5 through 4.7 represent a movement towards
increasingly object-oriented code and as such they mirror the stages of development of
the novice designer.

Figure 4.5 is quite procedural. A Trip tells a Mechanic how to prepare a
Bicycle, almost as if Trip were the main program and Mechanic a bunch of callable
functions. In this design, Trip is the only object that knows exactly how to prepare a
bike; getting a bike prepared requires using a Trip or duplicating the code. Trip’s
context is large, as is Mechanic’s public interface. These two classes are not islands
with bridges between them, they are instead a single, woven cloth.

Many new object-oriented programmers start out working just this way, writing
procedural code. It’s inevitable; this style closely mirrors the best practices of their
former procedural languages. Unfortunately, coding in a procedural style defeats the
purpose of object orientation. It reintroduces the exact maintenance issues that OOP
is designed to avoid.

Figure 4.6 is more object-oriented. Here, a Trip asks a Mechanic to prepare a
Bicycle. Trip’s context is reduced, and Mechanic’s public interface is smaller.
Additionally, Mechanic’s public interface is now something that any object may prof-
itably use; you don’t need a Trip to prepare a bike. These objects now communicate
in a few well-defined ways; they are less coupled and more easily reusable.

This style of coding places the responsibilities in the correct objects, a great im-
provement, but continues to require that Trip have more context than is necessary.
Trip still knows that it holds onto an object that can respond to prepare_bicycle,
and it must always have this object.

Figure 4.7 is far more object-oriented. In this example, Trip doesn’t know or care
that it has a Mechanic and it doesn’t have any idea what the Mechanic will do. Trip
merely holds onto an object to which it will send prepare_trip; it trusts the receiver
of this message to behave appropriately.

73Finding the Public Interface

From the Library of Avi FlombaumThis pattern allows you to add newly-introduced
preparers to Trip without changing any of its code.
You can extend Trip without modifying it.

prepareFor(self)

 10

ptg8315951

• Trip expects to be holding onto an object that can respond to prepare_trip.

• Mechanic expects the argument passed along with prepare_trip to respond to
bicycles.

All of the knowledge about how mechanics prepare trips is now isolated inside of
Mechanic and the context of Trip has been reduced. Both of the objects are now easier
to change, to test, and to reuse.

Trusting Other Objects
The designs illustrated by Figures 4.5 through 4.7 represent a movement towards
increasingly object-oriented code and as such they mirror the stages of development of
the novice designer.

Figure 4.5 is quite procedural. A Trip tells a Mechanic how to prepare a
Bicycle, almost as if Trip were the main program and Mechanic a bunch of callable
functions. In this design, Trip is the only object that knows exactly how to prepare a
bike; getting a bike prepared requires using a Trip or duplicating the code. Trip’s
context is large, as is Mechanic’s public interface. These two classes are not islands
with bridges between them, they are instead a single, woven cloth.

Many new object-oriented programmers start out working just this way, writing
procedural code. It’s inevitable; this style closely mirrors the best practices of their
former procedural languages. Unfortunately, coding in a procedural style defeats the
purpose of object orientation. It reintroduces the exact maintenance issues that OOP
is designed to avoid.

Figure 4.6 is more object-oriented. Here, a Trip asks a Mechanic to prepare a
Bicycle. Trip’s context is reduced, and Mechanic’s public interface is smaller.
Additionally, Mechanic’s public interface is now something that any object may prof-
itably use; you don’t need a Trip to prepare a bike. These objects now communicate
in a few well-defined ways; they are less coupled and more easily reusable.

This style of coding places the responsibilities in the correct objects, a great im-
provement, but continues to require that Trip have more context than is necessary.
Trip still knows that it holds onto an object that can respond to prepare_bicycle,
and it must always have this object.

Figure 4.7 is far more object-oriented. In this example, Trip doesn’t know or care
that it has a Mechanic and it doesn’t have any idea what the Mechanic will do. Trip
merely holds onto an object to which it will send prepare_trip; it trusts the receiver
of this message to behave appropriately.

73Finding the Public Interface

From the Library of Avi FlombaumThis pattern allows you to add newly-introduced
preparers to Trip without changing any of its code.
You can extend Trip without modifying it.

prepareFor(self)

The open/closed principle states that  
software entities should be open for extension, but closed for modification

 11

ptg8315951

Expanding on this idea, Trip could place a number of such objects into an array
and send each the prepare_trip message, trusting every preparer to do whatever it
does because of the kind of thing that it is. Depending on how Trip was being used,
it might have many preparers or it might have few. This pattern allows you to add
newly introduced preparers to Trip without changing any of its code, that is, you can
extend Trip without modifying it.

If objects were human and could describe their own relationships, in Figure 4.5
Trip would be telling Mechanic: “I know what I want and I know how you do it;” in
Figure 4.6: “I know what I want and I know what you do” and in Figure 4.7: “I know
what I want and I trust you to do your part.”

This blind trust is a keystone of object-oriented design. It allows objects to collab-
orate without binding themselves to context and is necessary in any application that
expects to grow and change.

Using Messages to Discover Objects
Armed with knowledge about the distinction between what and how, and the impor-
tance of context and trust, it’s time to return to the original design problem from
Figures 4.3 and 4.4.

Remember that the use case for that problem stated: A customer, in order to
choose a trip, would like to see a list of available trips of appropriate difficulty, on a
specific date, where rental bicycles are available.

Figure 4.3 was a literal translation of this use case, one in which Trip had too
much responsibility. Figure 4.4 was an attempt to move the responsibility for finding
available bicycles from Trip to Bicycle, but in doing so it placed an obligation on
Customer to know far too much about what makes a trip “suitable.”

Neither of these designs is very reusable or tolerant of change. These problems are
revealed, inescapably, in the sequence diagrams. Both designs contain a violation of
the single responsibility principle. In Figure 4.3, Trip knows too much. In Figure
4.4, Customer knows too much, tells other objects how to behave, and requires too
much context.

It is completely reasonable that Customer would send the suitable_trips
message. That message repeats in both sequence diagrams because it feels innately cor-
rect. It is exactly what Customer wants. The problem is not with the sender, it is with
the receiver. You have not yet identified an object whose responsibility it is to imple-
ment this method.

74 Chapter 4. Creating Flexible Interfaces

From the Library of Avi Flombaum

 11

ptg8315951

Expanding on this idea, Trip could place a number of such objects into an array
and send each the prepare_trip message, trusting every preparer to do whatever it
does because of the kind of thing that it is. Depending on how Trip was being used,
it might have many preparers or it might have few. This pattern allows you to add
newly introduced preparers to Trip without changing any of its code, that is, you can
extend Trip without modifying it.

If objects were human and could describe their own relationships, in Figure 4.5
Trip would be telling Mechanic: “I know what I want and I know how you do it;” in
Figure 4.6: “I know what I want and I know what you do” and in Figure 4.7: “I know
what I want and I trust you to do your part.”

This blind trust is a keystone of object-oriented design. It allows objects to collab-
orate without binding themselves to context and is necessary in any application that
expects to grow and change.

Using Messages to Discover Objects
Armed with knowledge about the distinction between what and how, and the impor-
tance of context and trust, it’s time to return to the original design problem from
Figures 4.3 and 4.4.

Remember that the use case for that problem stated: A customer, in order to
choose a trip, would like to see a list of available trips of appropriate difficulty, on a
specific date, where rental bicycles are available.

Figure 4.3 was a literal translation of this use case, one in which Trip had too
much responsibility. Figure 4.4 was an attempt to move the responsibility for finding
available bicycles from Trip to Bicycle, but in doing so it placed an obligation on
Customer to know far too much about what makes a trip “suitable.”

Neither of these designs is very reusable or tolerant of change. These problems are
revealed, inescapably, in the sequence diagrams. Both designs contain a violation of
the single responsibility principle. In Figure 4.3, Trip knows too much. In Figure
4.4, Customer knows too much, tells other objects how to behave, and requires too
much context.

It is completely reasonable that Customer would send the suitable_trips
message. That message repeats in both sequence diagrams because it feels innately cor-
rect. It is exactly what Customer wants. The problem is not with the sender, it is with
the receiver. You have not yet identified an object whose responsibility it is to imple-
ment this method.

74 Chapter 4. Creating Flexible Interfaces

From the Library of Avi Flombaum

ptg8315951

Expanding on this idea, Trip could place a number of such objects into an array
and send each the prepare_trip message, trusting every preparer to do whatever it
does because of the kind of thing that it is. Depending on how Trip was being used,
it might have many preparers or it might have few. This pattern allows you to add
newly introduced preparers to Trip without changing any of its code, that is, you can
extend Trip without modifying it.

If objects were human and could describe their own relationships, in Figure 4.5
Trip would be telling Mechanic: “I know what I want and I know how you do it;” in
Figure 4.6: “I know what I want and I know what you do” and in Figure 4.7: “I know
what I want and I trust you to do your part.”

This blind trust is a keystone of object-oriented design. It allows objects to collab-
orate without binding themselves to context and is necessary in any application that
expects to grow and change.

Using Messages to Discover Objects
Armed with knowledge about the distinction between what and how, and the impor-
tance of context and trust, it’s time to return to the original design problem from
Figures 4.3 and 4.4.

Remember that the use case for that problem stated: A customer, in order to
choose a trip, would like to see a list of available trips of appropriate difficulty, on a
specific date, where rental bicycles are available.

Figure 4.3 was a literal translation of this use case, one in which Trip had too
much responsibility. Figure 4.4 was an attempt to move the responsibility for finding
available bicycles from Trip to Bicycle, but in doing so it placed an obligation on
Customer to know far too much about what makes a trip “suitable.”

Neither of these designs is very reusable or tolerant of change. These problems are
revealed, inescapably, in the sequence diagrams. Both designs contain a violation of
the single responsibility principle. In Figure 4.3, Trip knows too much. In Figure
4.4, Customer knows too much, tells other objects how to behave, and requires too
much context.

It is completely reasonable that Customer would send the suitable_trips
message. That message repeats in both sequence diagrams because it feels innately cor-
rect. It is exactly what Customer wants. The problem is not with the sender, it is with
the receiver. You have not yet identified an object whose responsibility it is to imple-
ment this method.

74 Chapter 4. Creating Flexible Interfaces

From the Library of Avi Flombaum

Forwarding ≠ Delegation

• Forwarding a request means asking some other
object assist to handle the request on your behalf
‣ assist answers to you, you answer to the original requestor

• Delegation means asking another object,
delegate, to act as if it were you
‣ delegate answers to the original requestor

‣ self-request by delegate are treated as if made by you

• Metz should be arguing to use forwarding to avoid train wrecks

 12

Grace note:

• In Grace, methods are by default public, and fields
are by default confidential

• confidential means accessible to the object itself,
and to the objects that inherit from it.

• you can change the defaults using annotations,
e.g.:
• def extent is public = 200@200  
var partner is readable := nobody

• vars can be readable or writable, as well as fully
public

• methods that are not in your interface should be
annotated as confidential

 13

Types as Interfaces

 14

Types as Interfaces

Grace note:

 14

Types as Interfaces

Grace note:
• you can define a type as an interface

 14

Types as Interfaces

Grace note:
• you can define a type as an interface

type Preparer = interface { 
prepareFor(aTrip) → Done 
... 

}

 14

Types as Interfaces

Grace note:
• you can define a type as an interface

type Preparer = interface { 
prepareFor(aTrip) → Done 
... 

}

 14

list of method
names (with optional
parameter & result

types)

Types as Interfaces

Grace note:
• you can define a type as an interface

type Preparer = interface { 
prepareFor(aTrip) → Done 
... 

}
• and use it to check your class:

 14

Types as Interfaces

Grace note:
• you can define a type as an interface

type Preparer = interface { 
prepareFor(aTrip) → Done 
... 

}
• and use it to check your class:

class mechanic →Preparer { ... } 
 

 14

Types as Interfaces

Grace note:
• you can define a type as an interface

type Preparer = interface { 
prepareFor(aTrip) → Done 
... 

}
• and use it to check your class:

class mechanic →Preparer { ... } 
 

 14

Types as Interfaces

Grace note:
• you can define a type as an interface

type Preparer = interface { 
prepareFor(aTrip) → Done 
... 

}
• and use it to check your class:

class mechanic →Preparer { ... } 
 

 14

will raise a type error (at
runtime) if the new object does not

have the right methods

Types as Interfaces

Grace note:
• you can define a type as an interface

type Preparer = interface { 
prepareFor(aTrip) → Done 
... 

}
• and use it to check your class:

class mechanic →Preparer { ... } 
 

 14

S.Ducasse

����

The Law of Demeter

You should send requests only on:
‣ an argument passed to you

‣ your own instance variables

‣ an object you create

‣ self, outer  

Avoid global variables
Avoid objects returned from messages sent to others

 15

S.Ducasse

����

Correct Requests

method someMethod(aParameter) {
self.foo
field.foo
aParameter.foo
def myThing := aThing.createNewObject
myThing.foo

}

Talk only to your immediate friends
• Friends of friends are suspect

 16

S.Ducasse

����

In other words …

• You can play with yourself. this.method(_)

• You can play with your own toys (but you can’t
take them apart). field.method(_)

• You can play with toys that were given to you.
parameter.method(_)

• And you can play with toys you’ve made
yourself.  

myA = aFactory.makeA(_); myA.method()

 17

S.Ducasse

����

Halt!

 18

S.Ducasse

����

Do not skip intermediaries!

 19

S.Ducasse

����

Solution
• Follow the Law of Demeter

 20

S.Ducasse

����

Transformation
Engine

+ carburator

engine.carburetor.fuelValveOpen = true

Car
- engine
+ increaseSpeed()

Carburetor
+fuelValveOpen

Engine
- carburator
speedUp()

engine.speedUp()

Car
- engine
+ increaseSpeed()

Carburetor
+fuelValveOpen

carburetor.fuelValveOpen = true

Engine
- carburator
speedUp()

engine.speedUp()

Car
- engine
+ increaseSpeed()

Carburetor
- fuelValveOpen

+ openFuelValve

carburetor.openFuelValve() fuelValveOpen = true

Step 1

Step 2

 21

S.Ducasse

����

Transformation
Engine

+ carburator

engine.carburetor.fuelValveOpen = true

Car
- engine
+ increaseSpeed()

Carburetor
+fuelValveOpen

Engine
- carburator
speedUp()

engine.speedUp()

Car
- engine
+ increaseSpeed()

Carburetor
+fuelValveOpen

carburetor.fuelValveOpen = true

Engine
- carburator
speedUp()

engine.speedUp()

Car
- engine
+ increaseSpeed()

Carburetor
- fuelValveOpen

+ openFuelValve

carburetor.openFuelValve() fuelValveOpen = true

Step 1

Step 2

 21

S.Ducasse

����

The Dark side of the Law of Demeter

class bicycleFleet {
def bikes = set []  
method do(aBlock) { bikes.do(aBlock) }
method isEmpty { bikes.isEmpty }  
method map(aBlock) { bikes.map(aBlock) }  
method filter(aBlock) { bikes.filter(aBlock) }

… 
}

 22

S.Ducasse

����

The Dark side of the Law of Demeter

class bicycleFleet {
def bikes = set []  
method do(aBlock) { bikes.do(aBlock) }
method isEmpty { bikes.isEmpty }  
method map(aBlock) { bikes.map(aBlock) }  
method filter(aBlock) { bikes.filter(aBlock) }

… 
}

 22

Each object itself
has to provide a

complete
interface

S.Ducasse

����

About Accessor methods

In Grace, we don't have to worry about this.
Accessor methods are indistinguishable from direct field
access.

Other languages distinguish.
Some gurus say: “Access all instance variables using
accessor methods”. Why?
I say:

Be consistent inside an object:
do not mix direct access and accessor methods

Initially, make accessors confidential or private
Make them more public as part of designing the interface.

 23

S.Ducasse

����

Example

def scheduler = object {  
def tasks = priorityQueue  
method suspendedTasks { tasks } 
… 

}

But now everybody can tweak the task queue!

 24

S.Ducasse

����

Accessors

Accessors are good for lazy initialization

def suspendedTasks = uninitialized  
method tasks {

if (uninitialized == suspendedTasks) then {  
suspendedTasks := priorityQueue 

}  
suspendedTasks 

 }
But: accessors methods should be confidential by
default, at least at the beginning

 25

S.Ducasse

����

Provide a Complete Interface

class workstation { 
 method accept(aPacket) { 
 if (aPacket.addressee == self.address) then { … } else { … }  
 …

- It is the responsibility of an object to offer a complete interface that
protects that object from its clients’ intrusion.

-Shift the responsibility to the Packet object

class packet {  
 method isAddressedTo(aNode) { addressee == aNode.address } 
 …  
}
class workstation { 
 method accept(aPacket) { 
 if (aPacket.isAddressedTo(self)) then { … } else { … }  
 …

 26

Who is Demeter Anyway?

 27

Who is Demeter Anyway?

Demeter, 
Consort of Zeus,  
mother of Persephone

 27

Who is Demeter Anyway?

Demeter, 
Consort of Zeus,  
mother of Persephone

 27

Karl Liebherr,
Professor of Computer

Science at Northeastern
University

