
Cost-effective testing
Andrew P. Black

based on Chapter 9 of POODR

 1



Reasons for testing
• document the interface
‣ documents the non-interface methods too!

• design a good interface
‣ shift from implementor to client

• finding bugs

• supports the abstractions

• expose design flaws
‣ bad design => hard to test

 2



What to test?

 3

ptg8315951

Removing duplication from testing lowers the cost of changing tests in reaction
to application changes, and putting tests in the right place guarantees they’ll be forced
to change only when absolutely necessary. Distilling your tests to their essence requires
having a very clear idea about what you intend to test, one that can be derived from
design principles you already know.

Think of an object-oriented application as a series of messages passing between a
set of black boxes. Dealing with every object as a black box puts constraints on what
others are permitted to know and limits the public knowledge about any object to the
messages that pierce its boundaries.

Well-designed objects have boundaries that are very strong. Each is like the
space capsule shown in Figure 9.1. Nothing on the outside can see in, nothing on
the inside can see out and only a few explicitly agreed upon messages can pass through
the predefined airlocks.

This willful ignorance of the internals of every other object is at the core of design.
Dealing with objects as if they are only and exactly the messages to which they respond
lets you design a changeable application, and it is your understanding of the impor-
tance of this perspective that allows you to create tests that provide maximum benefit
at minimum cost.

The design principles you are enforcing in your application apply to your tests as
well. Each test is merely another application object that needs to use an existing class.
The more the test gets coupled to that class, the more entangled the two become and
the more vulnerable the test is to unnecessarily being forced to change.

Not only should you limit couplings, but the few you allow should be to stable
things. The most stable thing about any object is its public interface; it logically follows
that the tests you write should be for messages that are defined in public interfaces. The

195Intentional Testing

A) Received
from others

C) Sent
to others

B) Sent to self

Object under
Test

Origins of Messages

depended upon by others no dependents

Figure 9.1 Objects under test are like space capsules, messages breach their boundaries.

From the Library of Avi Flombaum



What to test?

 4

Some advice on testing 161

A test is not a unit test if:
• it talks to the database,
• it communicates across the network,
• it touches the file system,
• it can’t run at the same time as any of your other unit tests, or
• you have to do special things to your environment (such as

editing config files) to run it.
Tests that do these things aren’t bad. Often they are worth writing,
and they can be written in a unit test harness. However, it is im-
portant to be able to separate them from true unit tests so that we
can keep a set of tests that we can run fast whenever we make our
changes.

Never get yourself into a situation where you don’t want to run your
unit test suite because it takes too long.

Unit Tests vs. Acceptance Tests. Unit tests capture one piece of functional-
ity, and as such make it easier to identify bugs in that functionality. As
far as possible try to have unit tests for each method that could possibly
fail, and group them per class. However, for certain deeply recursive
or complex setup situations, it is easier to write tests that represent a
scenario in the larger application; these are called acceptance tests or
functional tests. Tests that break Feathers’ rules may make good ac-
ceptance tests. Group acceptance tests according to the functionality
that they test. For example, if you are writing a compiler, you might
write acceptance tests that make assertions about the code generated
for each possible source language statement. Such tests might exercise
many classes, and might take a long time to run because they touch the
file system. You can write them using SUnit, but you won’t want to run
them each time you make a small change, so they should be separated
from the true unit tests.

Black’s Rule of Testing. For every test in the system, you should be able
to identify some property for which the test increases your confidence.
It’s obvious that there should be no important property that you are not
testing. This rule states the less obvious fact that there should be no test
that does not add value to the system by increasing your confidence
that a useful property holds. For example, several tests of the same
property do no good. In fact, they do harm in two ways. First, they
make it harder to infer the behaviour of the class by reading the tests.
Second, because one bug in the code might then break many tests, they
make it harder to estimate how many bugs remain in the code. So,
have a property in mind when you write a test.

From: Pharo By Example, volume 1



Delete Unused Interfaces

Why?

 5



Testing Private Methods
• The rules-of-thumb for testing private 

methods are: 
‣ Never write them, and 

‣ if you do, never ever test them, 

‣ unless of course it makes sense to do so.

• Therefore, be biased against writing these 
tests, but 
‣ do not fear to do so if this would improve your lot

 6



How to test a private method

• Grace prohibits other objects from 
requesting confidential methods

• Java prohibits other objects from 
requesting private methods 
‣ unless the requesting object happens to have 

the same class as the target, which it won’t if 
the requesting object is a testCase.

• What do you do?

 7



Testing Outgoing Queries

• when the object under test makes a 
request of an observer method, e.g.,
‣ gear requests diameter on wheel 

• don’t test it

‣ but suppose that wheel.diameter 
answers incorrectly?

 8



Testing Outgoing Commands

• when the object under test makes a 
request of a command method, e.g.,
‣ gear requests update on observer 

• demonstrate that the request is made

‣ but don’t make any assertions about 
the answer!

‣ That’s responsibility of observer’s tests

 9



Mock Objects

• Mock objects test behaviour, rather than 
state:
‣ rather than checking the result of a request,

‣ they check that the request was made

• Mature languages will have a mocking 
framework
‣ but you can also just code-up your own mock

 10



A Mock Observer

• Customized for this task

 11



Using the 
observer

 12



Why use a Mock?

• Why not just test that observable gear 
gets the correct answer from its update 
request to the observer?

 13



Testing Interfaces

• Metz calls this 
“Testing Duck 
Types”

• Recall from 
Chapter 4:

 14

ptg8315951

At first glance this seems impossible. Trips have bicycles, bicycles must be prepared,
and mechanics prepare bicycles. Having Trip ask Mechanic to prepare a Bicycle
seems inevitable.

However, it is not. The solution to this problem lies in the distinction between
what and how, and arriving at a solution requires concentrating on what Trip wants.

What Trip wants is to be prepared. The knowledge that it must be prepared is
completely and legitimately within the realm of Trip’s responsibilities. However,
the fact that bicycles need to be prepared may belong to the province of Mechanic.
The need for bicycle preparation is more how a Trip gets prepared than what a
Trip wants.

Figure 4.7 illustrates a third alternative sequence diagram for Trip preparation.
In this example, Trip merely tells Mechanic what it wants, that is, to be prepared,
and passes itself along as an argument. 

In this sequence diagram, Trip knows nothing about Mechanic but still manages
to collaborate with it to get bicycles ready. Trip tells Mechanic what it wants, passes
self along as an argument, and Mechanic immediately calls back to Trip to get the
list of the Bicycles that need preparing. 

In Figure 4.7:

• The public interface for Trip includes bicycles.

• The public interface for Mechanic includes prepare_trip and perhaps
prepare_bicycle.

72 Chapter 4. Creating Flexible Interfaces

Figure 4.7 A Trip asks a Mechanic to prepare the Trip.

a
Trip

a
Mechanic

prepare_bicycle(bike)

prepare_trip(self)

bicycles

for each bicycle

a
Trip

a
Mechanic

From the Library of Avi Flombaum

prepareFor(self)



Types as Interfaces

Grace note:
• you can define a type as an interface

type Preparer = interface { 
prepareFor(aTrip) → Done 
... 

}
• and use it to check your class:

class mechanic →Preparer { 
method prepareFor(aTrip) → Done { ... } 
… 

}

 15

list of method 
names (with optional 
parameter & result 

types)

will raise a type error (at 
runtime) if the new object does not 

have the right methods



Or, use a Unit Test

• Include this with other tests of 
the mechanic class

 16



Testing Inheritance Hierarchies
• Test that every object in the hierarchy has 

the right interface, and
• Test that concrete subclasses override all 

the required methods
‣ in some languages, static checks may make these 

tests redundant

• Consider creating a stub subclass as a way 
of testing an abstract superclass
‣ mock methods can check that the superclass makes 

hook requests

 17



ptg11539634

Summary
Tests are indispensable. Well-designed applications are highly abstract and under con-
stant pressure to evolve; without tests these applications can neither be understood
nor safely changed. The best tests are loosely coupled to the underlying code and test
everything once and in the proper place. They add value without increasing costs.

A well-designed application with a carefully crafted test suite is a joy to behold
and a pleasure to extend. It can adapt to every new circumstance and meet any
unexpected need. 

240 Chapter 9. Designing Cost-Effective Tests


