Cost-effective testing

Andrew P. Black

based on Chapter 9 of POODR

Portland State

IIIIIIIIII

Reasons for testing

e document the interface

» documents the non-interface methods too!

e design a good interface

> shift from implementor to client
e finding bugs
e supports the abstractions

e expose design flaws

» bad design => hard to test

Portland State

IIIIIIIIII

What to test?

Origins of Messages

A) Received C) Sent
fro%— to others
_ __j

/
7 Object under \

— depended upon by others == no dependents

Figure 9.1 Objects under test are like space capsules, messages breach their boundaries.

Portland State 3

UNIVERSITY

What to test?

Black’s Rule of Testing. For every test in the system, you should be able
to identify some property for which the test increases your confidence.
It’s obvious that there should be no important property that you are not
testing. This rule states the less obvious fact that there should be no test
that does not add value to the system by increasing your confidence
that a useful property holds. For example, several tests of the same
property do no good. In fact, they do harm in two ways. First, they
make it harder to infer the behaviour of the class by reading the tests.
Second, because one bug in the code might then break many tests, they
make it harder to estimate how many bugs remain in the code. So,
have a property in mind when you write a test.

From: Pharo By Example, volume 1

Portland State

IIIIIIIIII

Delete Unused Interfaces

Why?

IIIIIIIIII

Testing Private Methods

* The rules-of-thumb for testing private
methods are:

> Never write them, and
> if you do, never ever test them,

» unless of course it makes sense to do so.

* Therefore, be biased against writing these
tests, but

> do not fear to do so if this would improve your lot

Portland State 6

IIIIIIIIII

How to test a private method

* (Grace prohibits other objects from
requesting confidential methods

e Java prohibits other objects from
requesting private methods

> unless the requesting object happens to have
the same class as the target, which it won't if
the requesting object is a testCase.

e What do you do?

Portland State 7

IIIIIIIIII

Testing Outgoing Queries

 when the object under test makes a
request of an observer method, e.g.,

» gear requests diameter on wheel

e don’ttest it

» but suppose that wheel.diameter
answers incorrectly?

Portland State

IIIIIIIIII

Testing Outgoing Commands

 when the object under test makes a
request of a command method, e.g.,

» gear requests update on observer
 demonstrate that the request is made

» but don’t make any assertions about
the answer!

» That’s responsibility of observer’s tests

Portland State ?

IIIIIIIIII

Mock Objects

* Mock objects test behaviour, rather than
state:

> rather than checking the result of a request,

> they check that the request was made

 Mature languages will have a mocking
framework

> but you can also just code-up your own mock

Portland State 10

IIIIIIIIII

A Mock Observer

K Download mock.grace Help? Search Q Delete ®
1- class observer [
2
3 def log = list.empty
4 - method update {
5 log.addLast "update”
6 }
7~ method isCorrect {
8 (log.size == 1) && {log.first == "update"}
9 }
10 }
11

e Customized for this task

Portland State

UNIVERSITY

K Download gear observer test.grace

1 1import "observable gear” as gAndW
2 1import "gUnit" as gUnit

3 1import "mock" as mock

4

5~ def gearObserverTest = object {
6~ class forMethod(m) {

Using the

observer

7 inherit gUnit.testCaseNamed(m)

8

9~ method testNotifiesObserverOfChainringChange {

10 def obs = mock.observer

11 def gear = gAndW.gearRing(42) cog (11) observer (obs)
12 gear.chainring := 52

13 assert(obs.isCorrect)

14 }

15~ method testNotifiesObserverOfCogChange {

16 def obs = mock.observer

17 def gear = gAndW.gearRing(42) cog (11) observer (obs)
18 gear.cog := 17

19 assert(obs.isCorrect)

20 }

21 }

22 }

23

24 gUnit.testSuite.fromTestMethodsIn(gearObserverTest).runAndPrintResults
25
26

Portland State 12

UNIVERSITY

Why use a Mock?

* Why not just test that observable gear
gets the correct answer from its update
request to the observer?

Portland State 3

IIIIIIIIII

Testing Interfaces

. a a

 Metz calls this Trip Mechanic
“Testing Duck eparerorGel) |
Types” : bicycles ‘ \
IN— .

¢ H{eca” from for each bicycleb‘

Chapter 4: prepare_bicycle(bike) :I
a a

Trip Mechanic

Portland State

IIIIIIIIII

Types as Interfaces
list of method

names (with optional
parameter & result

WU can define a type as an interface

pe Preparer = interface {
prepareFor(aTrip) = Done

will raise a type error (at
runtime) if the new object does not
Y have the right methods

* and use itto checkour class;

class mechanic(Prepare ' {
method preparerenteT

}

Portland State 15

IIIIIIIIII

Or, use a Unit Test

K Download mechanics are preparers test.grace
1 dialect "minitest"
2 1import "preparers" as p
3
4- testSuite {
S~ test "mechaninics are preparers"” by {
6 assert (p.mechanic) hasType (p.Preparer)
7 }
8 }
9
10

Portland State

IIIIIIIIII

e |nclude this with other tests of
the mechanic class

Testing Inheritance Hierarchies

e Test that every object in the hierarchy has
the right interface, and

e Test that concrete subclasses override all
the required methods

> in some languages, static checks may make these
tests redundant

* Consider creating a stub subclass as a way
of testing an abstract superclass

> mock methods can check that the superclass makes
hook requests

Portland State

IIIIIIIIII

Summary

Tests are indispensable. Well-designed applications are highly abstract and under con-
stant pressure to evolve; without tests these applications can neither be understood
nor safely changed. The best tests are loosely coupled to the underlying code and test
everything once and in the proper place. They add value without increasing costs.

A well-designed application with a carefully crafted test suite is a joy to behold
and a pleasure to extend. It can adapt to every new circumstance and meet any

unexpected need.

