On Understanding
Data Abstraction

Revi;ifed

William R. Cook
The University
of Texas at Austin

Dedicated to P. Wegner

On Understanding Data Abstraction, Revisited

William R. Cook

University of Texas at Austin

wcook@cs.utexas.edu

Abstract

In 1985 Luca Cardelli and Peter Wegner, my advisor, pub-
lished an ACM Computing Surveys paper called “On un-
derstanding types, data abstraction, and polymorphism”.
Their work kicked off a flood of research on semantics and
type theory for object-oriented programming, which contin-
ues to this day. Despite 25 years of research, there is still
widespread confusion about the two forms of data abstrac-
tion, abstract data types and objects. This essay attempts to
explain the differences and also why the differences matter.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features—Abstract
data types; D.3.3 [Programming Languages]: Language
Constructs and Features—Classes and objects

General Terms Languages

Keywords object, class, abstract data type, ADT

1. Introduction

What is the relationship between objects and abstract data
types (ADTs)? I have asked this question to many groups of
computer scientists over the last 20 years. I usually ask it at
dinner, or over drinks. The typical response is a variant of
“objects are a kind of abstract data type”.

This response is consistent with most programming lan-
guage textbooks. Tucker and Noonan [57] write “A class
is itself an abstract data type”. Pratt and Zelkowitz [51] in-
termix discussion of Ada, C++, Java, and Smalltalk as if
they were all slight variations on the same idea. Sebesta [54]
writes “the abstract data types in object-oriented languages...
are called classes.” He uses “abstract data types” and “data
abstraction” as synonyms. Scott [53] describes objects in de-
tail, but does not mention abstract data types other than giv-
ing a reasonable discussion of opaque types.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

OOPSLA 2009, October 25-29, 2009, Orlando, Florida, USA.

Copyright (© 2009 ACM 978-1-60558-734-9/09/10. .. $10.00

So what is the point of asking this question? Everyone
knows the answer. It’s in the textbooks. The answer may be
a little fuzzy, but nobody feels that it’s a big issue. If I didn’t
press the issue, everyone would nod and the conversation
would move on to more important topics. But I do press the
issue. I don’t say it, but they can tell I have an agenda.

My point is that the textbooks mentioned above are
wrong! Objects and abstract data types are not the same
thing, and neither one is a variation of the other. They are
fundamentally different and in many ways complementary,
in that the strengths of one are the weaknesses of the other.
The issues are obscured by the fact that most modern pro-
gramming languages support both objects and abstract data
types, often blending them together into one syntactic form.
But syntactic blending does not erase fundamental semantic
differences which affect flexibility, extensibility, safety and
performance of programs. Therefore, to use modern pro-
gramming languages effectively, one should understand the
fundamental difference between objects and abstract data
types.

While objects and ADTs are fundamentally different,
they are both forms of data abstraction. The general con-
cept of data abstraction refers to any mechanism for hiding
the implementation details of data. The concept of data ab-
straction has existed long before the term “data abstraction”
came into existence. In mathematics, there is a long history
of abstract representations for data. As a simple example,
consider the representation of integer sets. Two standard ap-
proaches to describe sets abstractly are as an algebra or as a
characteristic function. An algebra has a sort, or collection
of abstract values, and operations to manipulate the values'.
The characteristic function for a set maps a domain of values
to a boolean value, which indicates whether or not the value
is included in the set. These two traditions in mathematics
correspond closely to the two forms of data abstraction in
programming: algebras relate to abstract data types, while
characteristic functions are a form of object.

In the rest of this essay, I elaborate on this example
to explain the differences between objects and ADTs. The

I The sort, or carrier set, of an algebra is often described as a set, making
this definition circular. Our goal is to define specific set abstractions with
restricted operations, which may be based on and assume a more general
concept of sets

Ob jects

eeee

Abstract Data Types

Warnings!

No “Objects Model the
Real World”

No Inheritance

No Mutable State

No Subtyping!

Interfaces
as types

Not
Essential

(very nice but not essential)

discuss
inheritance
later

Abstraction

Visible

Procedural
Abstraction

bool f(intx) { ...}

Procedural
Abstraction

Int & bool

(one kind of)

Type
Abstraction

VT.Set[T]

Abstract Data Type

signature Set
empty . Set
insert : Set, Int — Set
iISEmpty . Set — Bool
contains : Set, Int — Bool

Abstract Data Type

signature Set
empty . Set
insert : Set, Int — Set
iISEmpty . Set — Bool
contains : Set, Int — Bool

Type
<+

Operations

ADT Implementation
abstype Set

empty =[]
insert(s, n) =(n:Ss)
ISEmpty(s) = §S == K])
contains(s, n) =(n&s

Using ADT values

def x:Set = empty

def y:Set = insert(x, 3)

def z:Set = insert(y, 5)

print(contains(z, 2))==> false

Visible
name: Set

Hidden
representation:
List of Int

|ISetModule =

empty
Insert

ISEmpty
contains

4Set {
: Set
: Set, Int — Set

: Set — Bool
: Set, Int — Bool

Natural!

just like
built-in types

Mathematical
Abstract Algebra

Type Theory

ax.P

(existential types)

Abstract Data Type

Data Abstraction

Right?

>={1,3,57,9}

Another way

P(n) = even(n) & 1=n<9

S={1,3,579)

P(n) = even(n) & 1=n<9

Sets as
characteristic
functions

type Set =
Int — Bool

Empty =

An. false

Insert(s, m) =

An. (n=m) v s(n)

Using them is easy

def x:Set = Empty

def y:Set = Insert(x, 3)
def z:Set = Insert(y, 5)
print(z(2)) ==> false

So What?

Flexibility

set of all
even numbers

Set ADT:
Not Allowed!

0]

break open ADT
& change
representation

set of
even numbers
as a
function?

Even =

ANn. (n mod 2 = 0)

Even iInteroperates

def x:Set
def y:Set = Insert(x, 3)
def x:Set = Insert(y, 5)

print(z(2))
==> frue

Sets-as-functions
are
ob jects!

No type abstraction
required!

type Set = Int — Bool

multiple
methods?

SureCCQ

interface Set {
contains: Int — Bool

ISEmpty: Bool
}

What about
Empty and Insert?

(they are classes)

class Empty {
contains(n) { return false;}
ISEmpty() { return true;}

;

class Insert(s, m) {
contains(n) { return (n=m)
v s.contains(n) }

iISEmpty() { return false }
}

Using Classes

def x:Set = Empty()

def y:Set = Insert(x, 3)

def z:Set = Insert(y, 5)

print(z.contains(2)) ==> false

An ob ject
IS
the set of observations
that |
can be made upon i1t

Including
more methods

interface Set {
contains : Int — Bool
ISEmpty : Bool
iInsert - Int — Set

;

interface Set {
contains : Int — Bool
ISEmpty : Bool
insert Int — Set
} Type
Recursion

class Empty {
contains(n) { return false;}
iISEmpty() { return true;}
insert(n) { return
Insert(this, n);}

class Empty {
contains(n) { return false;}
iISEmpty() { return true;}
insert(n) { return
Insert(this, n);}

) Value
Recursion

Using ob jects

def x:Set = Empty

def y:Set = x.insert(3)

def z:Set = y.insert(5)

print(z.contains(2))==> false

Autognosis

Autognosis

(Self-knowledge)

Autognosis

An object can access
other ob jects only
through public
interfaces

operations
~on
multiple ob jects?

union

of
two sets

class Union(a, b) {
contains(n) { a.contains(n)
v b.contains(n); }
ISEmpty() { a.lsEmpty(n)
A b.sEmpty(n); }

interface Set {
contains: Int — Bool

ISEmpty: Bool
insert Int — Set
union - Set — Set

} Complex Operation
(binary)

intersection

of

two sets
e?

class Intersection(a, b) {
contains(n) { a.contains(n)
A b.contains(n); }

ISEmpty() {? no way! ?}

Autognosis:
Prevents some
operations
(complex ops)

Autognosis:
Prevents some
optimizations
(complex ops)

Inspecting two
representations &
optimizing operations
on them are easy
with ADTS

Ob jects are
fundamentally different
from ADTS

Object Interface
(recursive types)

Set ={
ISEmpty : Bool
contains : Int — Bool
insert ' Int — Set
union : Set — Set

Y

Empty : Set

Insert : Set x Int — Set
Union : Set x Set — Set

ADT
(existential types)

Setlmpl = 3 Set . {
empty : Set
ISEmpty : Set — Bool
contains : Set, Int — Bool

insert : Set, Int — Set
union : Set, Set — Set
Y

78

Operations/Observations

S
Empty Insert(s', m)
isEmpty(s) true false
n=m v
contains(s, n) false L
contains(s’, n)
insert(s, n) false Insert(s, n)

union(s,s") isEmpty(s") Union(s, s")

79

ADT Organization

)

Empty Insert(s’, m)

00 Organization

S
Empty Insert(s', m)
iISEmpty(s) true false
contains(s, n) false con:;nms (\;,’)
insert(s, n) false Insert(s, n)
union(s,s") isEmpty(s") Union(s, s")

8l

Ob jects are
fundamental
(t00)

Mathematical
functional
representation
of data

Type Theory
uX. P

(recursive types)

ADTs require
a
static type system

Ob jects work well
with or without
static typing

“Binary” Operations?

Stack, Socket, Window,
Service, DOM, Enterprise
Data, ...

Ob jects are
very
higher-order

(functions passed as data and
returned as results)

Verification

ADTs: construction

Ob jects: observation

ADTs: induction

Ob jects: coinduction
complicated by: callbacks,
state

Ob jects are designed
to be as difficult as
possible to verify

Simulation

One object can
simulate another!
(identity 1s bad)

Java

What is a type?

Declare variables

Classify values

Class as type

=> representation

Class as type
=> ADT

Interfaces as type

=> behavior
pure ob jects

Harmful!

instanceof Class
(Class) exp
Class X;

Ob ject-Oriented
subset of Java:
class name used
only after “new”

It’s not an accident
that “int” is an ADT
in Java

Smalltalk

b
|se:
- Tn;eifFa
. ue:
CifTE\ !

b
e:
) Fa;SﬁFals
Iasue:
Cich\ !

True =
Aa.ADb.

False =
ra.Ab.

Inheritance
(in one slide)

Inheritance

Object

Self-

reference
Inheritance

Y(AoG

History

User-defined types

and
bt prOcedUral data

User-deh ypes (O nd | ral lor hmcuona\) s es Are <of lemen-

1 ! wr-\)uﬁm-d Types and l'rnct-dum\ PData Gtructures 8s Complementary
»\ppmm‘hm to Data Abstraction

1ary methods jata abstractiol, a capability Jacked bY {he other. with

st jres, each part of the program which creates data can specify 1t$ own rcprcscl\uunn.
\l\dcpﬂ\\\cn\\) of any rcprcsanm\mm used clsewhere for the same kind of date However, this
description of data i8 achieved at the cost of p(ol\lbmng. primitive

oper accessing 1he reprcscnu\iuns of more than one data item- The contrast be-
ween these & pp] ustrated bya simple example.

Introduction

User-def types and “IUL\‘L\\H..\ a structures have both been pmpuscd as p |‘ ’I I le nta ry

defined 1 information & entation of a pxmcu\ar kind of dat2 is St r
c:n\r.\\ucd inatype definition and hid: t of the program With proe ral data l | re S

methods for ata abstractiot, 12 (ing and segregaling the portion of a pro-
gram that the rcprcscmauon used for some Kkind of data In this paper

we suggests by means of a simple example. that these methods are plementarys a p rO
cach prmndmg a capability |acked bY . e S to

The dea of u efined types has bee y } _7), LiskoV and
Zilles [3), Fischer ! ’ _and Wulf (5}, i o eartier work bY d
Hoare and D2 . proach, each pnmcu\ar conceptual kind of datd is a a a b t .
, : used in @ program {he program 18 divided into WO S r a
e Aty an ¢ or “abstrd - am. The type defimtion Ct I O n

nve

matter 15 that any ¢
ation can be ¢ ing the wype

program- by J - (:
various potions of pru;cdx.r.x (or funcliona\\\ structures b y] y n O I d

by Reynolds 7 Landin [8): and Balzer o). In

A. Schuman, editor, New Directions \# Algorithmic Langwages 1975, 1314
Working Group 21 o0 Algol. INRIAL Pagss 157-168. Rcvnmr:d in Davd Gries, editons "nlqramminq
M ethodolog)s A Collection of Papers by Members of IFIP WG 23 \913.5;\(\“;:(-‘4":1\13_ pages 309-317
{ Springer Verlag, at® Permissions Dept., 175 Fifth Ave, 19 Flr, New York, NY 10010

First appeared 19 Stephen
2

New Advances In
A|gorithmic

109

Abstract data typ

1 L wr»\)vﬁm-d Types and procedural Data Structures as C omplementary
A ppmm‘hr\ to Data Abstr action

Jobn C. Reynolds
Abstract
c-deh ypes (O 1 3 or hmc\mna\\ d S res arc <o olemen-

1ary methods for jata abstractiol, cach p(owdmg acked bY {he other. with

defined 15§ {nformation about the represt : kind of dat2 is

«mm\ucd inatype definition and hidden from the 168 J \

st jres, each part of the program which creates data can specify 1t$ own rcprcscmnunn.

u\dcpcndcml) of any mprcscnl-.a\mm used clsewhere for the same kind of date Howevet. this
of the description of data is achieved at the cost of prohibiting prirmitive

oper qccessing 1he reprcscnm\iuns of more than one data item- The contrast be-
ween these app] ustrated bya simple example.

\etraction, 1.6 for limiting and seg,reganng the portion of a pro-

.Jural data structures have both been proposed 25 I | I I Ie nta ry

gram that the rcplcscmulion used for some kind of data In this paper

;. me xample. that these methods are complement rys a p rO
cach pmndmg i y lac y the other. C e S to

The idea of U = od types has beet developed bY Morris {1, 7), LiskoV and
7zilles (3} Fischer i wlf [5) and has its roots in earlier work by

Hoare and Da . g aach, each P rticular conccplua\ kind of datd is d ata a .
called @ 1¥Pé an : y in ¢ program is divided into wo S ra
parts. @ type definition 2 d " ¢ or “abstr ' am. The type defimtion I O n

s the rcprcscma\l'\on 1C] 3 ta type itive

matter 15 that any ¢
tat be cflecie ing the wype

program- : y J - (:
various notions of procedura (ot functional) ¢ , structures hav] y n O I d

by Reynu\dx‘ 7 Landin 8) and Balzer 91 In this appmach. the abstract

First Amw';ucd in Stepben A. Schuman, editor, New Directions \# Algorithmic Languages. 1975, 1314
> Group 21 o0 Al

Workin ages 19 168, Reprinies ¥
M ethodolog)s A Collection of Papers Members of 1FIP WG 23, 19"3.Sprmgr(-\'tvug_ pa
{4 Springer Verlag atl® Permissions Dept. 175 Fifth Ave, 19 Flr, New York, NY 10010

o David Gnes, editor, l‘nngromm:‘nq
309-317

Al New Advances in
gorithmic Language
INRIA, 1975 >

10

“lan object with two methods]
iS more a tour de force than a
specimen of clear programming.”

- J. Reynolds

Extensibility Problem
(aka Expression Problem)

1975 Discovered by J. Reynolds
1990 Elaborated by W. Cook
1998 Renamed by P. Wadler
2005 Solved by M. Odersky (?)
2025 Widely understood (?)

Summary

It is possible to do
Ob ject-Oriented
programming In Java

Lambda-calculus
was the first
ob ject-oriented
language (1941)

Data Abstraction

/ \

Ob jects

