
 1

On Understanding 
Data Abstraction 

... 
Revisited

 2

William R. Cook 
The University 

of Texas at Austin 
 

Dedicated to P. Wegner

m

 3

On Understanding Data Abstraction, Revisited

William R. Cook
University of Texas at Austin

wcook@cs.utexas.edu

Abstract
In 1985 Luca Cardelli and Peter Wegner, my advisor, pub-
lished an ACM Computing Surveys paper called “On un-
derstanding types, data abstraction, and polymorphism”.
Their work kicked off a flood of research on semantics and
type theory for object-oriented programming, which contin-
ues to this day. Despite 25 years of research, there is still
widespread confusion about the two forms of data abstrac-
tion, abstract data types and objects. This essay attempts to
explain the differences and also why the differences matter.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features—Abstract
data types; D.3.3 [Programming Languages]: Language
Constructs and Features—Classes and objects

General Terms Languages

Keywords object, class, abstract data type, ADT

1. Introduction
What is the relationship between objects and abstract data
types (ADTs)? I have asked this question to many groups of
computer scientists over the last 20 years. I usually ask it at
dinner, or over drinks. The typical response is a variant of
“objects are a kind of abstract data type”.

This response is consistent with most programming lan-
guage textbooks. Tucker and Noonan [57] write “A class
is itself an abstract data type”. Pratt and Zelkowitz [51] in-
termix discussion of Ada, C++, Java, and Smalltalk as if
they were all slight variations on the same idea. Sebesta [54]
writes “the abstract data types in object-oriented languages...
are called classes.” He uses “abstract data types” and “data
abstraction” as synonyms. Scott [53] describes objects in de-
tail, but does not mention abstract data types other than giv-
ing a reasonable discussion of opaque types.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA 2009, October 25–29, 2009, Orlando, Florida, USA.
Copyright c� 2009 ACM 978-1-60558-734-9/09/10. . . $10.00

So what is the point of asking this question? Everyone
knows the answer. It’s in the textbooks. The answer may be
a little fuzzy, but nobody feels that it’s a big issue. If I didn’t
press the issue, everyone would nod and the conversation
would move on to more important topics. But I do press the
issue. I don’t say it, but they can tell I have an agenda.

My point is that the textbooks mentioned above are
wrong! Objects and abstract data types are not the same
thing, and neither one is a variation of the other. They are
fundamentally different and in many ways complementary,
in that the strengths of one are the weaknesses of the other.
The issues are obscured by the fact that most modern pro-
gramming languages support both objects and abstract data
types, often blending them together into one syntactic form.
But syntactic blending does not erase fundamental semantic
differences which affect flexibility, extensibility, safety and
performance of programs. Therefore, to use modern pro-
gramming languages effectively, one should understand the
fundamental difference between objects and abstract data
types.

While objects and ADTs are fundamentally different,
they are both forms of data abstraction. The general con-
cept of data abstraction refers to any mechanism for hiding
the implementation details of data. The concept of data ab-
straction has existed long before the term “data abstraction”
came into existence. In mathematics, there is a long history
of abstract representations for data. As a simple example,
consider the representation of integer sets. Two standard ap-
proaches to describe sets abstractly are as an algebra or as a
characteristic function. An algebra has a sort, or collection
of abstract values, and operations to manipulate the values1.
The characteristic function for a set maps a domain of values
to a boolean value, which indicates whether or not the value
is included in the set. These two traditions in mathematics
correspond closely to the two forms of data abstraction in
programming: algebras relate to abstract data types, while
characteristic functions are a form of object.

In the rest of this essay, I elaborate on this example
to explain the differences between objects and ADTs. The

1 The sort, or carrier set, of an algebra is often described as a set, making
this definition circular. Our goal is to define specific set abstractions with
restricted operations, which may be based on and assume a more general
concept of sets

 4

Objects 
 

???? 
 

Abstract Data Types

 5

Warnings!

 6

No “Objects Model the
Real World”

 7

No Inheritance

 8

No Mutable State

 9

No Subtyping!

 10

Interfaces 
as types

 11

Not 
Essential 

 
(very nice but not essential)

[]
 12

discuss 
inheritance 

later

 13

Abstraction

 14

Hidden

Visible

 15

 16

Procedural 
Abstraction

bool f(int x) { … }

 17

Procedural 
Abstraction

int → bool

 18

(one kind of) 
Type  

Abstraction

∀T.Set[T]

 19

Abstract Data Type 
 
signature Set 
 empty : Set 
 insert : Set, Int → Set 
 isEmpty : Set → Bool  
 contains : Set, Int → Bool

Abstract

 20

Abstract Data Type 
 
signature Set 
 empty : Set 
 insert : Set, Int → Set 
 isEmpty : Set → Bool  
 contains : Set, Int → Bool

 21

Type  
+ 

Operations

 22

ADT Implementation 
 
abstype Set = List of Int 
 empty = [] 
 insert(s, n) = (n : s) 
 isEmpty(s) = (s == []) 
 contains(s, n) = (n ∈ s)

 23

Using ADT values 
 
def x:Set = empty 
def y:Set = insert(x, 3) 
def z:Set = insert(y, 5) 
print(contains(z, 2))==> false

 24

Hidden
representation:

List of Int

Visible  
name: Set

 25

 26

ISetModule = ∃Set.{ 
 empty : Set 
 insert : Set, Int → Set 
  
 isEmpty : Set → Bool  
 contains : Set, Int → Bool  
}

 27

Natural!

 28

just like 
built-in types

 29

Mathematical 
Abstract Algebra

 30

Type Theory

∃x.P
(existential types)

 31

Abstract Data Type 
= 

Data Abstraction

 32

Right?

 33

S = { 1, 3, 5, 7, 9 } 

 34

Another way

 35

P(n) = even(n) & 1≤n≤9

 36

S = { 1, 3, 5, 7, 9 } 
 

P(n) = even(n) & 1≤n≤9

 37

Sets as 
characteristic 

functions

 38

type Set = 
 Int → Bool

 39

Empty = 
 
 λn. false

 40

Insert(s, m) = 
 
 λn. (n=m) ∨ s(n)

 41

Using them is easy 
 
def x:Set = Empty 
def y:Set = Insert(x, 3) 
def z:Set = Insert(y, 5) 
print(z(2)) ==> false

 42

So What?

 43

Flexibility

 44

set of all 
even numbers

 45

Set ADT: 
Not Allowed!

 46

or…  
break open ADT 

& change
representation

 47

set of  
even numbers 

as a 
function?

 48

Even = 
 
 λn. (n mod 2 = 0)

 49

Even interoperates 
 
def x:Set = Even  
def y:Set = Insert(x, 3) 
def x:Set = Insert(y, 5) 
print(z(2)) 
==> true

 50

Sets-as-functions 
are 

objects!

 51

No type abstraction
required! 

 
type Set = Int → Bool

 52

multiple  
methods?  

 
sure...

 53

interface Set { 
 contains: Int → Bool  
 isEmpty: Bool  
}

 54

What about  
Empty and Insert? 

 
(they are classes)

 55

class Empty { 
 contains(n) { return false;} 
 isEmpty() { return true;} 
}

 56

class Insert(s, m) { 
 contains(n) { return (n=m) 
 ∨ s.contains(n) } 
 isEmpty() { return false } 
}

 57

Using Classes 
 
def x:Set = Empty() 
def y:Set = Insert(x, 3) 
def z:Set = Insert(y, 5) 
print(z.contains(2)) ==> false

 58

An object  
is

the set of observations
that

can be made upon it

 59

Including  
more methods

 60

interface Set { 
 contains : Int → Bool  
 isEmpty : Bool  
 insert : Int → Set 
}

Type
Recursion

 61

interface Set { 
 contains : Int → Bool  
 isEmpty : Bool  
 insert : Int → Set 
}

 62

class Empty { 
 contains(n) { return false;} 
 isEmpty() { return true;} 
 insert(n) { return  
 Insert(this, n);} 
}

Value
Recursion

 63

class Empty { 
 contains(n) { return false;} 
 isEmpty() { return true;} 
 insert(n) { return  
 Insert(this, n);} 
}

 64

Using objects 
 
def x:Set = Empty 
def y:Set = x.insert(3) 
def z:Set = y.insert(5) 
print(z.contains(2))==> false

 65

Autognosis 
 
 
  
 

 66

Autognosis 
 
 

(Self-knowledge)  
 

 67

Autognosis 
 

An object can access
other objects only
through public

interfaces

 68

operations 
on 

multiple objects?

 69

union  
of 

two sets

 70

class Union(a, b) { 
 contains(n) { a.contains(n) 
 ∨ b.contains(n); } 
 isEmpty() { a.isEmpty(n) 
 ∧ b.isEmpty(n); } 
 ... 
}

Complex Operation
(binary) 71

interface Set { 
 contains: Int → Bool  
 isEmpty: Bool  
 insert : Int → Set 
 union : Set → Set 
}

 72

intersection 
of 

two sets 
??

 73

class Intersection(a, b) { 
 contains(n) { a.contains(n) 
 ∧ b.contains(n); } 
 
 isEmpty() { ? no way! ? } 
 ... 
}

 74

Autognosis: 
Prevents some
operations 

(complex ops)

 75

Autognosis: 
Prevents some
optimizations 
(complex ops)

 76

Inspecting two
representations &

optimizing operations
on them are easy

with ADTs

 77

Objects are
fundamentally different  

from ADTs

ADT 
(existential types) 

 

SetImpl = ∃ Set . { 
 empty : Set 

 isEmpty : Set → Bool  
 contains : Set, Int → Bool  
 insert : Set, Int → Set 
 union : Set, Set → Set 

}

 78

Object Interface  
(recursive types) 
 
 
Set = { 
 isEmpty : Bool  
 contains : Int → Bool  
 insert : Int → Set 
 union : Set → Set 
} 
Empty : Set 
Insert : Set x Int → Set 
Union : Set x Set → Set

s

Empty Insert(s', m)

isEmpty(s) true false

contains(s, n) false
n=m ∨

contains(s', n)

insert(s, n) false Insert(s, n)

union(s, s'') isEmpty(s'') Union(s, s'')

Operations/Observations

 79

s

Empty Insert(s', m)

isEmpty(s) true false

contains(s, n) false
n=m ∨

contains(s', n)

insert(s, n) false Insert(s, n)

union(s, s'') isEmpty(s'') Union(s, s'')

 80

ADT Organization

s

Empty Insert(s', m)

isEmpty(s) true false

contains(s, n) false
n=m ∨

contains(s', n)

insert(s, n) false Insert(s, n)

union(s, s'') isEmpty(s'') Union(s, s'')

OO Organization

 81

 82

Objects are
fundamental  

(too)

 83

Mathematical 
functional

representation  
of data

 84

Type Theory  
µx.P 

(recursive types)

 85

ADTs require  
a  

static type system

 86

Objects work well
with or without  
static typing

 87

“Binary” Operations? 
 

Stack, Socket, Window,
Service, DOM, Enterprise

Data, ...

 88

Objects are  
very 

higher-order 
(functions passed as data and

returned as results)

 89

Verification

 90

ADTs: construction 
 

Objects: observation 
 

 91

ADTs: induction 
 

Objects: coinduction 
complicated by: callbacks,

state

 92

Objects are designed
to be as difficult as
possible to verify

 93

Simulation 
 

One object can
simulate another! 
(identity is bad)

 94

Java

 95

What is a type?

 96

Declare variables 
 

Classify values

 97

Class as type 
 
=> representation

 98

Class as type 
 
=> ADT

 99

Interfaces as type 
 
=> behavior 
 pure objects

 100

Harmful!  
 

instanceof Class 
(Class) exp  
Class x;

 101

Object-Oriented  
 subset of Java: 
class name used  
only after “new”

 102

It’s not an accident
that “int” is an ADT  

in Java

 103

Smalltalk

 104

class True  
 ifTrue: a ifFalse: b  
 ^a 
 
class False  
 ifTrue: a ifFalse: b  
 ^b

 105

True = 
 λ a . λ b . 
 a 
 
False = 
 λ a . λ b . 
 b

 106

Inheritance 
(in one slide) 

106

A
Object

Y(G)

G

Self-
reference

Δ(A)
AΔ

Modificatio
n

Δ(Y(G))
GΔ

Y(ΔoG)

GΔ
Inheritance Δ(Y(G))

GΔ

 107

Inheritance

107

 108

History

108

 109

User-defined types
and

procedural data
structures

as 
 complementary
approaches to  

data abstraction  
 

by J. C. Reynolds
 

New Advances in
Algorithmic

Languages INRIA,

objects

Abstract data types User-defined types
and

procedural data
structures

as 
 complementary
approaches to  

data abstraction  
 

by J. C. Reynolds
 

New Advances in
Algorithmic Languages

INRIA, 1975
 110

110

 111

“[an object with two methods] 
 is more a tour de force than a
specimen of clear programming.” 

 
 - J. Reynolds

111

Extensibility Problem
(aka Expression Problem)

 112

1975 Discovered by J. Reynolds 
1990 Elaborated by W. Cook 
1998 Renamed by P. Wadler  
2005 Solved by M. Odersky (?) 
2025 Widely understood (?)

 113

Summary

 114

It is possible to do
Object-Oriented

programming in Java

 115

Lambda-calculus 
was the first
object-oriented  
language (1941)

 116

 Data Abstraction 

/ \ 
 ADT Objects

