
 1

On Understanding 
Data Abstraction 

... 
Revisited



 2

William R. Cook 
The University 

of Texas at Austin 
 

Dedicated to P. Wegner



m

 3

On Understanding Data Abstraction, Revisited

William R. Cook
University of Texas at Austin

wcook@cs.utexas.edu

Abstract
In 1985 Luca Cardelli and Peter Wegner, my advisor, pub-
lished an ACM Computing Surveys paper called “On un-
derstanding types, data abstraction, and polymorphism”.
Their work kicked off a flood of research on semantics and
type theory for object-oriented programming, which contin-
ues to this day. Despite 25 years of research, there is still
widespread confusion about the two forms of data abstrac-
tion, abstract data types and objects. This essay attempts to
explain the differences and also why the differences matter.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features—Abstract
data types; D.3.3 [Programming Languages]: Language
Constructs and Features—Classes and objects

General Terms Languages

Keywords object, class, abstract data type, ADT

1. Introduction
What is the relationship between objects and abstract data
types (ADTs)? I have asked this question to many groups of
computer scientists over the last 20 years. I usually ask it at
dinner, or over drinks. The typical response is a variant of
“objects are a kind of abstract data type”.

This response is consistent with most programming lan-
guage textbooks. Tucker and Noonan [57] write “A class
is itself an abstract data type”. Pratt and Zelkowitz [51] in-
termix discussion of Ada, C++, Java, and Smalltalk as if
they were all slight variations on the same idea. Sebesta [54]
writes “the abstract data types in object-oriented languages...
are called classes.” He uses “abstract data types” and “data
abstraction” as synonyms. Scott [53] describes objects in de-
tail, but does not mention abstract data types other than giv-
ing a reasonable discussion of opaque types.
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So what is the point of asking this question? Everyone
knows the answer. It’s in the textbooks. The answer may be
a little fuzzy, but nobody feels that it’s a big issue. If I didn’t
press the issue, everyone would nod and the conversation
would move on to more important topics. But I do press the
issue. I don’t say it, but they can tell I have an agenda.

My point is that the textbooks mentioned above are
wrong! Objects and abstract data types are not the same
thing, and neither one is a variation of the other. They are
fundamentally different and in many ways complementary,
in that the strengths of one are the weaknesses of the other.
The issues are obscured by the fact that most modern pro-
gramming languages support both objects and abstract data
types, often blending them together into one syntactic form.
But syntactic blending does not erase fundamental semantic
differences which affect flexibility, extensibility, safety and
performance of programs. Therefore, to use modern pro-
gramming languages effectively, one should understand the
fundamental difference between objects and abstract data
types.

While objects and ADTs are fundamentally different,
they are both forms of data abstraction. The general con-
cept of data abstraction refers to any mechanism for hiding
the implementation details of data. The concept of data ab-
straction has existed long before the term “data abstraction”
came into existence. In mathematics, there is a long history
of abstract representations for data. As a simple example,
consider the representation of integer sets. Two standard ap-
proaches to describe sets abstractly are as an algebra or as a
characteristic function. An algebra has a sort, or collection
of abstract values, and operations to manipulate the values1.
The characteristic function for a set maps a domain of values
to a boolean value, which indicates whether or not the value
is included in the set. These two traditions in mathematics
correspond closely to the two forms of data abstraction in
programming: algebras relate to abstract data types, while
characteristic functions are a form of object.

In the rest of this essay, I elaborate on this example
to explain the differences between objects and ADTs. The

1 The sort, or carrier set, of an algebra is often described as a set, making
this definition circular. Our goal is to define specific set abstractions with
restricted operations, which may be based on and assume a more general
concept of sets
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Objects 
 

???? 
 

Abstract Data Types
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Warnings!
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No “Objects Model the 
Real World”
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No Inheritance
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No Mutable State
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No Subtyping!
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Interfaces 
as types
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Not 
Essential 

 
(very nice but not essential)



[ ]
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discuss 
inheritance 

later
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Abstraction
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Hidden

Visible
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Procedural 
Abstraction 

bool f(int x) { … }
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Procedural 
Abstraction 

int → bool
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(one kind of) 
Type  

Abstraction 

∀T.Set[T]
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Abstract Data Type 
 
signature Set 
  empty : Set 
  insert : Set, Int → Set 
  isEmpty : Set → Bool  
  contains : Set, Int → Bool



Abstract
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Abstract Data Type 
 
signature Set 
  empty : Set 
  insert : Set, Int → Set 
  isEmpty : Set → Bool  
  contains : Set, Int → Bool
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Type  
+ 

Operations
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ADT Implementation 
 
abstype Set = List of Int 
  empty = [] 
  insert(s, n)    = (n : s) 
  isEmpty(s)  = (s == []) 
  contains(s, n) = (n ∈ s)
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Using ADT values 
 
def x:Set = empty 
def y:Set = insert(x, 3) 
def z:Set = insert(y, 5) 
print( contains(z, 2) )==> false
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Hidden
representation:

List of Int

Visible  
name: Set
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ISetModule = ∃Set.{ 
    empty : Set 
    insert : Set, Int → Set 
  
    isEmpty : Set → Bool  
    contains : Set, Int → Bool  
}
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Natural!
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just like 
built-in types
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Mathematical 
Abstract Algebra
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Type Theory 

∃x.P 
(existential types)
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Abstract Data Type 
= 

Data Abstraction
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Right?
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S = { 1, 3, 5, 7, 9 } 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Another way
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P(n) = even(n) & 1≤n≤9
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S = { 1, 3, 5, 7, 9 } 
 

P(n) = even(n) & 1≤n≤9
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Sets as 
characteristic 

functions
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type Set = 
     Int → Bool
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Empty = 
 
     λn. false
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Insert(s, m) = 
 
  λn. (n=m) ∨ s(n)
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Using them is easy 
 
def x:Set = Empty 
def y:Set = Insert(x, 3) 
def z:Set = Insert(y, 5) 
print( z(2) ) ==> false
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So What?
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Flexibility
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set of all 
even numbers
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Set ADT: 
Not Allowed!
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or…  
break open ADT 

& change 
representation
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set of  
even numbers 

as a 
function?
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Even = 
 
    λn. (n mod 2 = 0)
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Even interoperates 
 
def x:Set = Even  
def y:Set = Insert(x, 3) 
def x:Set = Insert(y, 5) 
print( z(2) ) 
==> true
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Sets-as-functions 
are 

objects!
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No type abstraction 
required! 

 
type Set = Int → Bool
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multiple  
methods?  

 
sure...
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interface Set { 
  contains: Int → Bool  
  isEmpty: Bool  
}
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What about  
Empty and Insert? 

 
(they are classes)
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class Empty { 
  contains(n) { return false;} 
  isEmpty()   { return true;} 
}
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class Insert(s, m) { 
  contains(n) { return (n=m) 
                  ∨ s.contains(n) } 
  isEmpty() { return false } 
}
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Using Classes 
 
def x:Set = Empty() 
def y:Set = Insert(x, 3) 
def z:Set = Insert(y, 5) 
print( z.contains(2) ) ==> false



 58

An object  
is 

the set of observations 
that 

can be made upon it



 59

Including  
more methods
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interface Set { 
  contains : Int → Bool  
  isEmpty : Bool  
  insert    : Int → Set 
}



Type
Recursion
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interface Set { 
  contains : Int → Bool  
  isEmpty : Bool  
  insert    : Int → Set 
}
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class Empty { 
  contains(n) { return false;} 
  isEmpty()   { return true;} 
  insert(n)  { return  
                    Insert(this, n);} 
}



Value
Recursion
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class Empty { 
  contains(n) { return false;} 
  isEmpty()   { return true;} 
  insert(n)  { return  
                    Insert(this, n);} 
}
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Using objects 
 
def x:Set = Empty 
def y:Set = x.insert(3) 
def z:Set = y.insert(5) 
print( z.contains(2) )==> false
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Autognosis 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Autognosis 
 
 

(Self-knowledge)  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Autognosis 
 

An object can access 
other objects only 
through public 

interfaces
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operations 
on 

multiple objects?



 69

union  
of 

two sets
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class Union(a, b) { 
  contains(n) { a.contains(n) 
                  ∨ b.contains(n); } 
  isEmpty()   { a.isEmpty(n) 
                ∧ b.isEmpty(n); } 
  ... 
}



Complex Operation
(binary)  71

interface Set { 
  contains: Int → Bool  
  isEmpty: Bool  
  insert : Int → Set 
  union : Set → Set 
}
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intersection 
of 

two sets 
??
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class Intersection(a, b) { 
  contains(n) { a.contains(n) 
                ∧ b.contains(n); } 
 
  isEmpty()   { ? no way! ? } 
  ... 
}
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Autognosis: 
Prevents some 
operations 

(complex ops)
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Autognosis: 
Prevents some 
optimizations 
(complex ops)
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Inspecting two 
representations & 

optimizing operations 
on them are easy 

with ADTs
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Objects are 
fundamentally different  

from ADTs



ADT 
(existential types) 

 

SetImpl = ∃ Set . { 
  empty : Set 

  isEmpty : Set → Bool  
  contains : Set, Int → Bool  
  insert : Set, Int → Set 
  union : Set, Set → Set 

}
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Object Interface  
(recursive types) 
 
 
Set = { 
  isEmpty : Bool  
  contains : Int → Bool  
  insert : Int → Set 
  union : Set → Set 
} 
Empty : Set 
Insert  : Set x Int → Set 
Union  : Set x Set → Set



s

Empty Insert(s', m)

isEmpty(s) true false

contains(s, n) false
n=m ∨

contains(s', n)

insert(s, n) false Insert(s, n)

union(s, s'') isEmpty(s'') Union(s, s'')

Operations/Observations
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s

Empty Insert(s', m)

isEmpty(s) true false

contains(s, n) false
n=m ∨

contains(s', n)

insert(s, n) false Insert(s, n)

union(s, s'') isEmpty(s'') Union(s, s'')
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ADT Organization



s

Empty Insert(s', m)

isEmpty(s) true false

contains(s, n) false
n=m ∨

contains(s', n)

insert(s, n) false Insert(s, n)

union(s, s'') isEmpty(s'') Union(s, s'')

OO Organization

 81



 82

Objects are 
fundamental  

(too)
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Mathematical 
functional 

representation  
of data
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Type Theory  
µx.P 

(recursive types)
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ADTs require  
a  

static type system
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Objects work well 
with or without  
static typing
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“Binary” Operations? 
 

Stack, Socket, Window,  
Service, DOM, Enterprise 

Data, ...
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Objects are  
very 

higher-order 
(functions passed as data and 

returned as results)
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Verification
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ADTs: construction 
 

Objects: observation 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ADTs: induction 
 

Objects: coinduction 
complicated by: callbacks, 

state
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Objects are designed 
to be as difficult as 
possible to verify
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Simulation 
 

One object can 
simulate another! 
(identity is bad)
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Java
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What is a type?
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Declare variables 
 

Classify values
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Class as type 
 
=> representation
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Class as type 
 
=> ADT
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Interfaces as type 
 
=> behavior 
   pure objects
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Harmful!  
 

instanceof Class 
(Class) exp  
Class x;
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Object-Oriented  
 subset of Java: 
class name used  
only after “new”
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It’s not an accident 
that “int” is an ADT  

in Java
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Smalltalk
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class True  
  ifTrue: a ifFalse: b  
      ^a 
 
class False  
  ifTrue: a ifFalse: b  
      ^b
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True = 
  λ a . λ b . 
      a 
 
False = 
  λ a . λ b . 
      b
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Inheritance 
(in one slide) 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A
Object

Y(G)

G

Self-
reference

Δ(A)
AΔ

Modificatio
n

Δ(Y(G))
GΔ

Y(ΔoG)

GΔ
Inheritance Δ(Y(G))

GΔ
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Inheritance
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History
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User-defined types 
and 

procedural data 
structures  

as 
 complementary 
approaches to  

data abstraction  
 

by J. C. Reynolds 
 

New Advances in 
Algorithmic 

Languages INRIA, 



objects

Abstract data types User-defined types 
and 

procedural data 
structures  

as 
 complementary 
approaches to  

data abstraction  
 

by J. C. Reynolds 
 

New Advances in 
Algorithmic Languages 

INRIA, 1975
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“[an object with two methods] 
 is more a tour de force than a 
specimen of clear programming.” 

 
                - J. Reynolds
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Extensibility Problem
(aka Expression Problem)
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1975 Discovered by J. Reynolds 
1990 Elaborated by W. Cook 
1998 Renamed by P. Wadler  
2005 Solved by M. Odersky (?) 
2025 Widely understood (?)
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Summary
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It is possible to do 
Object-Oriented 

programming in Java
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Lambda-calculus 
was the first  
object-oriented  
language (1941)
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 Data Abstraction 

/  \ 
  ADT Objects


