Composition

Based on Metz Chapter 8:
Combining Objects with Composition

Portland State

IIIIIIIIII

What is Composition?

Objects respond to requests

How?

they have their own methods

they “pass the buck” to another object:
forwarding to a component

they acquire behavior from another object:
delegation

Portland State

IIIIIIIIII

The Gang of Four say:

 The second principle of object-oriented
design:

> Favor object composition over inheritance

Portland State

IIIIIIIIII

The Gang of Four say:

* The first principle of object-oriented
design:

> Program to an interface, not to an
iImplementation

 The second principle of object-oriented
design:

> Favor object composition over inheritance

Portland State

IIIIIIIIII

Inheritance vs. Composition

e |nheritance lets us quickly create a
specialization of an existing object

» all we need do is program the differences

 But inheritance is not a panacea.

» the extension must be prepared in advance, as
a new class or factory

» the kind of extension can’t be changed at
runtime

» with single inheritance, you have just one shot

Portland State 4

IIIIIIIIII

Costs of Inheritance

 What happens when you get it wrong?

» Reasonable, usable and Exemplary are
coins with two sides!

> = reasonable: making changes near the top of
an incorrectly-modeled hierarchy

> = usable: recumbentMountainBike (or
immutableSet) can’t be built

> - exemplary: can’t extend an incorrectly-
modeled hierarchy

Portland State >

IIIIIIIIII

Composition

* Pros
> component can be changed at runtime
° e.g., state pattern

» clear separation of responsibilities

- need know only the interface of the component

e Cons

> more work

- define separate classes for part, parts ...

> delegation not supported by most languages

o must use self delegation pattern (Beck, p.67)

Portland State

IIIIIIIIII

Metz:

e |nheritance:

> for the cost of arranging objects in a hierarchy, you get
message delegation for free
 Composition:
> reverses these costs & benefits:

> not restricted to a hierarchy; objects relationships are explicit

- delegation of messages must also be explicit

 when faced with a problem that composition can
solve, you should be biased towards using
composition

Portland State 7

IIIIIIIIII

Composing a
Bicycle from Parts

IIIIIIIIII

4 Download

bicycle with inheritance.grace

1- def
2-

OCoo~NO UV AW

15

16 }
17

18 - def
19~

20

21

22

23

24

25

26

27 }
28

29~ def
30~

31

32

33

34

35

36

37

38

39

40 }
41

42 def

43 def

bicycle = object {
class withProperties (props) {
// represents an abstract bicycle, with properties describes by props

def size is public = props.at "size"
def chain is public = props.at "chain" ifAbsent {defaultChain}
def tireSize is public = props.at "tireSize" ifAbsent {defaultTireSize }

method defaultChain is confidential { "10-speed" } // subobjects may
override
method defaultTireSize is required, confidential
method spares {
dictionary ["tireSize"::tireSize, "chain"::chain] ++ localSpares
}

method localSpares is confidential { dictionary [] }

}

roadBike = object {
class withProperties(props) {
// represents a road bike
inherit bicycle.withProperties(props)

def tapeColor is public = props.at "tapeColor"
method defaultTireSize { "700C x 23" }
def localSpares is public = dictionary ["tapeColor’

: :tapeColor]

mountainBike = object {

class withProperties(props) {
// represents a mountain bike
inherit bicycle.withProperties(props)

def frontShock is public = props.at "frontShock"

def rearShock is public = props.at "rearShock"

method defaultChain is confidential { "9-speed" }
method defaultTireSize is confidential { "26 x 2.1" }
def localSpares = dictionary ["rearShock"::rearShock]

mtb = mountainBike.withProperties (dictionary ["size"::"M", "frontShock"
::"Fox", "rearShock"::"Manitou"])

rdb = roadBike.withProperties (dictionary ["size"::"S", "tapeColor"::"yellow
& black"])

Help? Search Q Delete ®

Bicycle with

Inheritance from
Chapter 6

K Download bicycle with inheritance.grace Help? Search Q Delete ®

1- def bicycle = object {
2~ class withProperties (props) {

3 // represents an abstract bicycle, with properties describes by props Bi Cycl e With

4

5 def size is public = props.at "size" I r] s

6 def chain is public = props.at "chain" ifAbsent {defaultChain} 'f

7 def tireSize is public = props.at "tireSize" ifAbsent {defaultTireSize } n erltance rom

8

9 method defaultChain is confidential { "1@-speed" } // subobjects may Chapter 6
override

10 method defaultTireSize is required, confidential

11~ method spares {

12 dictionary ["tireSize"::tireSize, "chain"::chain] ++ localSpares

13 }

14 method localSpares is confidential { dictionary [] }

15 }

16 }

17

18 - def roadBike = object {
19~ class withProperties(props) {

20 // represents a road bike

21 inherit bicycle.withProperties(props)

22

23 def tapeColor is public = props.at "tapeColor"

24 method defaultTireSize { "700C x 23" }

25 def localSpares is public = dictionary ["tapeColor"::tapeColor]
26 }

27 }

28

29~ def mountainBike = object {

30~ class withProperties(props) {

31 // represents a mountain bike

32 inherit bicycle.withProperties(props)

33

34 def frontShock is public = props.at "frontShock"

35 def rearShock is public = props.at "rearShock"

36 method defaultChain is confidential { "9-speed" }

37 method defaultTireSize is confidential { "26 x 2.1" }
38 def localSpares = dictionary ["rearShock"::rearShock]
39 }

40 }

41

42 def mtb = mountainBike.withProperties (dictionary ["size"::"M", "frontShock"
::"Fox", "rearShock"::"Manitou"])

43 def rdb = roadBike.withProperties (dictionary [“"size"::"S", "tapeColor"::"yellow
& black"])

4 Download

bicycle with inheritance.grace

1- def
2-

OCoo~NO UV AW

15

16 }
17

18 - def
19~

20

21

22

23

24

25

26

27 }
28

29~ def
30~

31

32

33

34

35

36

37

38

39

40 }
41

42 def

43 def

bicycle = object {
class withProperties (props) {
// represents an abstract bicycle, with properties describes by props

def size is public = props.at "size"
def chain is public = props.at "chain" ifAbsent {defaultChain}
def tireSize is public = props.at "tireSize" ifAbsent {defaultTireSize }

method defaultChain is confidential { "10-speed" } // subobjects may
override
method defaultTireSize is required, confidential
method spares {
dictionary ["tireSize"::tireSize, "chain"::chain] ++ localSpares
}

method localSpares is confidential { dictionary [] }

}

roadBike = object {
class withProperties(props) {
// represents a road bike
inherit bicycle.withProperties(props)

def tapeColor is public = props.at "tapeColor"
method defaultTireSize { "700C x 23" }
def localSpares is public = dictionary ["tapeColor’

: :tapeColor]

mountainBike = object {

class withProperties(props) {
// represents a mountain bike
inherit bicycle.withProperties(props)

def frontShock is public = props.at "frontShock"

def rearShock is public = props.at "rearShock"

method defaultChain is confidential { "9-speed" }
method defaultTireSize is confidential { "26 x 2.1" }
def localSpares = dictionary ["rearShock"::rearShock]

mtb = mountainBike.withProperties (dictionary ["size"::"M", "frontShock"
::"Fox", "rearShock"::"Manitou"])

rdb = roadBike.withProperties (dictionary ["size"::"S", "tapeColor"::"yellow
& black"])

Help? Search Q Delete ®

Bicycle with

Inheritance from
Chapter 6

4 Download

bicycle with inheritance.grace Help? Search Q Delete ®

1- def
2-

Ooo~NOYUVT AW

15

16 }
17

18 - def
19~

20

21

22

23

24

25

26

27 }
28

29~ def
30~

31

32

33

34

35

36

37

38

39

40 }
41

42 def

43 def

bicycle = object {
class withProperties (props) {
// represents an abstract bicycle, with properties describes by props Bicycle With

def size is public = props.at "size"
def chain is public = props.at "chain" ifAbsent {defaultChain}

def tireSize is public = props.at "tireSize" ifAbsent {defaultTireSize } Inherlta’nce from

method defaultChain is confidential { "10-speed" } // subobjects may Chapter’ 6
override

method defaultTireSize is required, confidential
method spares {

dictionary ["tireSize"::tireSize, "chain"::chain] ++ localSpares
}

method localSpares is confidential { dictionary [] }

}

roadBike = object {
class withProperties(props) {
// represents a road bike

inherit bicycle.withProperties(props) What’s the major

def tapeColor is public = props.at "tapeColor"
method defaultTireSize { "700C x 23" }
def localSpares is public = dictionary ["tapeColor’

responsibility of a
! bicycle object!?

: :tapeColor]

mountainBike = object {

class withProperties(props) {
// represents a mountain bike
inherit bicycle.withProperties(props)

def frontShock is public = props.at "frontShock"

def rearShock is public = props.at "rearShock"

method defaultChain is confidential { "9-speed" }
method defaultTireSize is confidential { "26 x 2.1" }
def localSpares = dictionary ["rearShock"::rearShock]

mtb = mountainBike.withProperties (dictionary ["size"::"M", "frontShock"
::"Fox", "rearShock"::"Manitou"]) 9
rdb = roadBike.withProperties (dictionary ["size"::"S", "tapeColor"::"yellow
& black"])

» What’s the major responsibility of a
bicycle object?

» To respond to the spares request with a
collection of spare parts

 Bicycles have parts; this feels like a
bicycle should be composed of parts

* S0, let’s create a parts object

- bicycles will delegate responsibility for
spares to their parts

Portland State 10

IIIIIIIIII

- bicycles will delegate responsibility for
spares to their parts

a Bicycle the Parts

spares

,
spares

a Bicycle the Parts

Figure 8.1 A Bicycle asks Parts for spares.

Bicycle @ » Parts

Figure 8.2 A Bicycle has-a Parts.

- bicycles will delegate responsibility for
spares to their parts

a Bicycle the Parts

spares
P >

spares

a Bicycle the Parts

Figure 8.1 A Bicycle asks Parts for spares.

Bicycle @

Figure 8.2 A Bicycle has-a Parts.

relationship

- bicycles will delegate responsibility for
spares to their parts

a Bicycle the Parts

spares

,
spares

a Bicycle the Parts

Figure 8.1 A Bicycle asks Parts for spares.

Bicycle @ » Parts

Figure 8.2 A Bicycle has-a Parts.

« bicycles will delegate responsibility for
spares to their parts

a Bicycle the Parts

spares

> :
spares

-

a Bicycle the Parts

Figure 8.1 A Bicycle asks Parts for spares.

Bicycle @

composition
Figure 8.2 A Bicycle has-a Parts.

relationship

- bicycles will delegate responsibility for
spares to their parts

a Bicycle the Parts

spares

,
spares

a Bicycle the Parts

Figure 8.1 A Bicycle asks Parts for spares.

Bicycle @ » Parts

Figure 8.2 A Bicycle has-a Parts.

« bicycles will delegate responsibility for
spares to their parts

a Bicycle the Parts

spares . |
E spares >i
DR U
a Bicycle the Parts
one€
Figure 8.1 A Bicycle asks Parts for spares. parts Object per
bicycle
’
Bicycle @

Figure 8.2 A Bicycle has-a Parts.

- bicycles will delegate responsibility for
spares to their parts

a Bicycle the Parts

spares

,
spares

a Bicycle the Parts

Figure 8.1 A Bicycle asks Parts for spares.

Bicycle @ » Parts

Figure 8.2 A Bicycle has-a Parts.

K Download bicycle with parts.grace

Bicycles with Parts

1~ def bicycle = object {

2~ class withSize (sz) parts (p) {

3 // represents an abstract bicycle, with parts p

4

) def size is public = sz

6 def parts is public = p

7

8 method spares { parts.spares }

3 }

10

11~ class parts(properties:Dictionary) {

12 // represents a collection of parts with properties

13 def chain is public = properties.at "chain" ifAbsent {defaultChain}

14 def tireSize is public = properties.at "tireSize" ifAbsent
{defaultTireSize }

15~ method spares {

16 dictionary ["tireSize"::tireSize, "chain"::chain] ++ localSpares

17 }

18

19 method defaultTireSize is required

20

21 method localSpares is confidential { dictionary.empty }

22 // subobject may override

23

24 method defaultChain is confidential { "10-speed" }

25 // subobjects may override

26 }

27 }

728

Portland State 12

UNIVERSITY

28 | | Bicycles with Parts
29~ def roadBike = object {

30~ class parts(properties:Dictionary) {

31 // represents the parts of a road bike

32 inherit bicycle.parts(properties)

33

34 def tapeColor is public = properties.at "tapeColor"

35 method defaultTireSize { "700C x 23" }

36 def localSpares is confidential = dictionary ["tapeColor"::tapeColor]
37 }

38 }

39

49 - def mountainBike = object {

4] - class parts(properties:Dictionary) {

42 // represents the parts of a mountain bike

43 inherit bicycle.parts(properties)

44

45 def frontShock is public = properties.at "frontShock"
46 def rearShock is public = properties.at "rearShock"

47 method defaultChain is confidential { "9-speed" }

48 method defaultTireSize is confidential { "26 x 2.1" }
49 def localSpares = dictionary ["rearShock"::rearShock]
50 }

S }

52

53 def mtb = mountainBike.parts (dictionary ["size"::"M", "frontShock"::"Fox",
"rearShock": : "Manitou"])

54 def rdb = roadBike.parts (dictionary [“"size"::"S", "tapeColor"::"yellow &
black"])

UNIVERSITY

55
% Portland State '

Hierarchy (after Fig 8.3)

bicycle.withSize(sz) 1
parts(p)

bicycle.parts(p)

roadBike.parts(p)

N

Portland State

IIIIIIIIII

mountainBike
.parts(p)

The result

e Most code from bicycle moves into
parts

> Metz: wasn’t a big change, and isn’t much of an
iImprovement

> made it blindingly obvious just how little Bicycle
specific code there was to begin with

> Most of the code ...deals with individual parts; the
Parts hierarchy now cries out for another
refactoring.

Portland State

IIIIIIIIII

Composing the Parts Object

a Bicycle the Parts a Part
spares

€ --- - - A
a Bicycle the Parts a Part

Figure 8.4 Bicycle sends sparesto Parts, Parts sends needs spare to each Part.

Bicycle @ > Parts @ > Part

Figure 8.5 Bicycle holds one Parts object, which in turn holds many Part objects.

Portland State 6

UNIVERSITY

Composing the Parts Object

a Bicycle the Parts a Part
spares

R
""""" } . ohe or more part
a Bicycle the Parts objects per parts

object

Bicycle @ > Parts @ > Part

Figure 8.5 Bicycle holds one Parts object, which in turn holds many Part objects.

Portland State 6

UNIVERSITY

Composing the Parts Object

a Bicycle the Parts a Part
spares

€ --- - - A
a Bicycle the Parts a Part

Figure 8.4 Bicycle sends sparesto Parts, Parts sends needs spare to each Part.

Bicycle @ > Parts @ > Part

Figure 8.5 Bicycle holds one Parts object, which in turn holds many Part objects.

Portland State 6

UNIVERSITY

Should the Parts object be like a List?

IIIIIIIIII

Delegation

 Delegation allows you to share
implementation without inheritance

* Pass part of your work on to another
object. Put that object in one of your
instance variables

> e.g., a Path contains a field form, the bit mask
responsible for actually drawing on the display.

> e.g., a Text contains a String

Portland State 18

IIIIIIIIII

What about self?

* When you delegate, the receiver
of the delegating message (the
delegate) is no longer the target
> Does it matter? Does the delegate need

access to the target? Does the delegate
send a message back to the client?

e |f it doesn’t matter, forward
messages unchanged — Beck
calls this Simple Delegation

Portland State

IIIIIIIIII

What about self?

* When you delegate, the receiver
of the delegating message (the
delegate) is no longer the target
> Does it matter? Does the delegate need

access to the target? Does the delegate
send a message back to the client?

e |f it doesn’t matter, forward
messages unchanged — Beck
calls this Simple Delegation

Portland State

IIIIIIIIII

What about self?

* When you delegate, the receiver ey
of the delegating message (the .
delegate) is no longer the target
> Does it matter? Does the delegate need

access to the target? Does the delegate
send a message back to the client?

e |f it doesn’t matter, forward
messages unchanged — Beck
calls this Simple Delegation

Portland State 19

IIIIIIIIII

What about self?

* When you delegate, the receiver
of the delegating message (the
delegate) is no longer the target

(i)
[At 5 e
_ delegate |

™ D D

> Does it matter? Does the delegate need
access to the target? Does the delegate
send a message back to the client?

e |f it doesn’t matter, forward
messages unchanged — Beck
calls this Simple Delegation

Portland State 19

IIIIIIIIII

What about self?

* When you delegate, the receiver
of the delegating message (the
delegate) is no longer the target

(i)
[At 5 e
_ delegate |

™ D D

> Does it matter? Does the delegate need
access to the target? Does the delegate
send a message back to the client?

e |f it doesn’t matter, forward
messages unchanged — Beck
calls this Simple Delegation

Portland State 19

IIIIIIIIII

What about self?

* When you delegate, the receiver
of the delegating message (the
delegate) is no longer the target

(i)
[At 5 e
_ delegate |

& D D

> Does it matter? Does the delegate need
access to the target? Does the delegate
send a message back to the client?

e |f it doesn’t matter, forward
messages unchanged — Beck
calls this Simple Delegation

Portland State 19

IIIIIIIIII

Simple Delegation Example

method do(aBlock) {
collectionOfPoints.do(aBlock) }

method map(aBlock) {
def newPath = path.withForm(self.form)
newPath.points =
(collectionOfPoints.map(aBlock)
newPath }

Portland State 20

IIIIIIIIII

Simple Delegation works when:

* you don’t need the state of the original
target object

* you don’t need the behaviour of the
original target object

* you don’t need the identity of the original
target object

If you need these things, use self delegation

Portland State 2|

IIIIIIIIII

Self Delegation

* When the delegate needs a reference to
the delegating object...

 Pass along the delegating object as an
additional parameter.

Portland State 22

IIIIIIIIII

Self Delegation Example

Dictionary: method at(key) put(value) {
self.hashTable.at(key) put(value) for(self)

}

HashTable: method at(key) put(value) for(aCollection) {
def hash = aCollection.hashOf(key)

}

Dictionary: method hashOf(anObiject) {
anQObject.hash

}

PlugableDictionary: method hashOf(anObject) {
injectedHash(anObject)

}

Portland State

IIIIIIIIII

23

