
Composition

Based on Metz Chapter 8:  
Combining Objects with Composition

 1

What is Composition?

• Objects respond to requests

• How?
✦ they have their own methods
✦ they “pass the buck” to another object:

forwarding to a component
✦ they acquire behavior from another object:

delegation

 2

The Gang of Four say:

 3

• The first principle of object-oriented
design:
‣ Program to an interface, not to an

implementation

• The second principle of object-oriented
design:
‣ Favor object composition over inheritance

The Gang of Four say:

 3

• The first principle of object-oriented
design:
‣ Program to an interface, not to an

implementation

• The second principle of object-oriented
design:
‣ Favor object composition over inheritance

• The first principle of object-oriented
design:
‣ Program to an interface, not to an

implementation

• The second principle of object-oriented
design:
‣ Favor object composition over inheritance

Inheritance vs. Composition
• Inheritance lets us quickly create a

specialization of an existing object
‣ all we need do is program the differences

• But inheritance is not a panacea:
‣ the extension must be prepared in advance, as

a new class or factory

‣ the kind of extension can’t be changed at
runtime

‣ with single inheritance, you have just one shot
 4

Costs of Inheritance
• What happens when you get it wrong?

• Reasonable, usable and Exemplary are
coins with two sides!
‣ ¬ reasonable: making changes near the top of

an incorrectly-modeled hierarchy

‣ ¬ usable: recumbentMountainBike (or
immutableSet) can’t be built

‣ ¬ exemplary: can’t extend an incorrectly-
modeled hierarchy

 5

Composition
• Pros
‣ component can be changed at runtime

° e.g., state pattern

‣ clear separation of responsibilities
° need know only the interface of the component

• Cons
‣ more work

° define separate classes for part, parts ...

‣ delegation not supported by most languages
° must use self delegation pattern (Beck, p.67)

 6

Metz:
• Inheritance:
‣ for the cost of arranging objects in a hierarchy, you get

message delegation for free

• Composition:
‣ reverses these costs & benefits:

° not restricted to a hierarchy; objects relationships are explicit

° delegation of messages must also be explicit

• when faced with a problem that composition can
solve, you should be biased towards using
composition

 7

Composing a  
Bicycle from Parts

 9

Bicycle with
Inheritance from

Chapter 6

 9

Bicycle with
Inheritance from

Chapter 6

ptg11539634

Some object-oriented programming languages have syntax that allows you to
explicitly declare classes as abstract. Java, for example, has the abstract keyword.
The Java compiler itself prevents creation of instances of classes to which this keyword
has been applied. Ruby, in line with its trusting nature, contains no such keyword and
enforces no such restriction. Only good sense prevents other programmers from
creating instances of Bicycle; in real life, this works remarkably well.

Abstract classes exist to be subclassed. This is their sole purpose. They provide a
common repository for behavior that is shared across a set of subclasses—subclasses
that in turn supply specializations.

It almost never makes sense to create an abstract superclass with only one sub-
class. Even though the original Bicycle class contains general and specific behavior
and it’s possible to imagine modeling it as two classes from the very beginning, do
not. Regardless of how strongly you anticipate having other kinds of bikes, that day
may never come. Until you have a specific requirement that forces you to deal with
other bikes, the current Bicycle class is good enough.

Even though you now have a requirement for two kinds of bikes, this still may not
be the right moment to commit to inheritance. Creating a hierarchy has costs; the best
way to minimize these costs is to maximize your chance of getting the abstraction right
before allowing subclasses to depend on it. While the two bikes you know about supply
a fair amount of information about the common abstraction, three bikes would supply
a great deal more. If you could put this decision off until FastFeet asked for a third kind
of bike, your odds of finding the right abstraction would improve dramatically.

A decision to put off the creation of the Bicycle hierarchy commits you to writing
MountainBike and RoadBike classes that duplicate a great deal of code. A decision to
proceed with the hierarchy accepts the risk that you may not yet have enough informa-
tion to identify the correct abstraction. Your choice about whether to wait or to proceed

118 Chapter 6. Acquiring Behavior Through Inheritance

Bicycle

MountainBike RoadBike

Figure 6.6 Bicycle as the superclass of MountainBike and RoadBike.

 9

Bicycle with
Inheritance from

Chapter 6

 9

Bicycle with
Inheritance from

Chapter 6

What’s the major
responsibility of a

bicycle object?

• What’s the major responsibility of a
bicycle object?

• To respond to the spares request with a
collection of spare parts

• Bicycles have parts; this feels like a
bicycle should be composed of parts

• So, let’s create a parts object
• bicycles will delegate responsibility for

spares to their parts

 10

• bicycles will delegate responsibility for
spares to their parts

ptg11539634

Composing a Bicycle of Parts
This section begins where the Bicycle example in Chapter 6, Acquiring Behavior
Through Inheritance, ended. If that code is no longer in the forefront of your mind, it’s
worth flipping back to the end of Chapter 6 and refreshing your memory. This section
takes that example and moves it through several refactorings, gradually replacing
inheritance with composition.

Updating the Bicycle Class
The Bicycle class is currently an abstract superclass in an inheritance hierarchy and
you’d like to convert it to use composition. The first step is to ignore the existing code
and think about how a bicycle should be composed.

The Bicycle class is responsible for responding to the spares message. This
spares message should return a list of spare parts. Bicycles have parts, the bicycle–parts
relationship quite naturally feels like composition. If you created an object to hold all of
a bicycle’s parts, you could delegate the spares message to that new object.

It’s reasonable to name this new class Parts. The Parts object can be responsible
for holding a list of the bike’s parts and for knowing which of those parts needs spares.
Notice that this object represents a collection of parts, not a single part.

The sequence diagram in Figure 8.1 illustrates this idea. Here, a Bicycle sends
the spares message to its Parts object.

Every Bicycle needs a Parts object; part of what it means to be a Bicycle is to
have-a Parts. The class diagram in Figure 8.2 illustrates this relationship.

164 Chapter 8. Combining Objects with Composition

Figure 8.1 A Bicycle asks Parts for spares.

a Bicycle the Parts

a Bicycle the Parts

spares

Bicycle Parts
1

Figure 8.2 A Bicycle has-a Parts.

spares

• bicycles will delegate responsibility for
spares to their parts

ptg11539634

Composing a Bicycle of Parts
This section begins where the Bicycle example in Chapter 6, Acquiring Behavior
Through Inheritance, ended. If that code is no longer in the forefront of your mind, it’s
worth flipping back to the end of Chapter 6 and refreshing your memory. This section
takes that example and moves it through several refactorings, gradually replacing
inheritance with composition.

Updating the Bicycle Class
The Bicycle class is currently an abstract superclass in an inheritance hierarchy and
you’d like to convert it to use composition. The first step is to ignore the existing code
and think about how a bicycle should be composed.

The Bicycle class is responsible for responding to the spares message. This
spares message should return a list of spare parts. Bicycles have parts, the bicycle–parts
relationship quite naturally feels like composition. If you created an object to hold all of
a bicycle’s parts, you could delegate the spares message to that new object.

It’s reasonable to name this new class Parts. The Parts object can be responsible
for holding a list of the bike’s parts and for knowing which of those parts needs spares.
Notice that this object represents a collection of parts, not a single part.

The sequence diagram in Figure 8.1 illustrates this idea. Here, a Bicycle sends
the spares message to its Parts object.

Every Bicycle needs a Parts object; part of what it means to be a Bicycle is to
have-a Parts. The class diagram in Figure 8.2 illustrates this relationship.

164 Chapter 8. Combining Objects with Composition

Figure 8.1 A Bicycle asks Parts for spares.

a Bicycle the Parts

a Bicycle the Parts

spares

Bicycle Parts
1

Figure 8.2 A Bicycle has-a Parts.
relationship

spares

• bicycles will delegate responsibility for
spares to their parts

ptg11539634

Composing a Bicycle of Parts
This section begins where the Bicycle example in Chapter 6, Acquiring Behavior
Through Inheritance, ended. If that code is no longer in the forefront of your mind, it’s
worth flipping back to the end of Chapter 6 and refreshing your memory. This section
takes that example and moves it through several refactorings, gradually replacing
inheritance with composition.

Updating the Bicycle Class
The Bicycle class is currently an abstract superclass in an inheritance hierarchy and
you’d like to convert it to use composition. The first step is to ignore the existing code
and think about how a bicycle should be composed.

The Bicycle class is responsible for responding to the spares message. This
spares message should return a list of spare parts. Bicycles have parts, the bicycle–parts
relationship quite naturally feels like composition. If you created an object to hold all of
a bicycle’s parts, you could delegate the spares message to that new object.

It’s reasonable to name this new class Parts. The Parts object can be responsible
for holding a list of the bike’s parts and for knowing which of those parts needs spares.
Notice that this object represents a collection of parts, not a single part.

The sequence diagram in Figure 8.1 illustrates this idea. Here, a Bicycle sends
the spares message to its Parts object.

Every Bicycle needs a Parts object; part of what it means to be a Bicycle is to
have-a Parts. The class diagram in Figure 8.2 illustrates this relationship.

164 Chapter 8. Combining Objects with Composition

Figure 8.1 A Bicycle asks Parts for spares.

a Bicycle the Parts

a Bicycle the Parts

spares

Bicycle Parts
1

Figure 8.2 A Bicycle has-a Parts.

spares

• bicycles will delegate responsibility for
spares to their parts

ptg11539634

Composing a Bicycle of Parts
This section begins where the Bicycle example in Chapter 6, Acquiring Behavior
Through Inheritance, ended. If that code is no longer in the forefront of your mind, it’s
worth flipping back to the end of Chapter 6 and refreshing your memory. This section
takes that example and moves it through several refactorings, gradually replacing
inheritance with composition.

Updating the Bicycle Class
The Bicycle class is currently an abstract superclass in an inheritance hierarchy and
you’d like to convert it to use composition. The first step is to ignore the existing code
and think about how a bicycle should be composed.

The Bicycle class is responsible for responding to the spares message. This
spares message should return a list of spare parts. Bicycles have parts, the bicycle–parts
relationship quite naturally feels like composition. If you created an object to hold all of
a bicycle’s parts, you could delegate the spares message to that new object.

It’s reasonable to name this new class Parts. The Parts object can be responsible
for holding a list of the bike’s parts and for knowing which of those parts needs spares.
Notice that this object represents a collection of parts, not a single part.

The sequence diagram in Figure 8.1 illustrates this idea. Here, a Bicycle sends
the spares message to its Parts object.

Every Bicycle needs a Parts object; part of what it means to be a Bicycle is to
have-a Parts. The class diagram in Figure 8.2 illustrates this relationship.

164 Chapter 8. Combining Objects with Composition

Figure 8.1 A Bicycle asks Parts for spares.

a Bicycle the Parts

a Bicycle the Parts

spares

Bicycle Parts
1

Figure 8.2 A Bicycle has-a Parts.
composition
relationship

spares

• bicycles will delegate responsibility for
spares to their parts

ptg11539634

Composing a Bicycle of Parts
This section begins where the Bicycle example in Chapter 6, Acquiring Behavior
Through Inheritance, ended. If that code is no longer in the forefront of your mind, it’s
worth flipping back to the end of Chapter 6 and refreshing your memory. This section
takes that example and moves it through several refactorings, gradually replacing
inheritance with composition.

Updating the Bicycle Class
The Bicycle class is currently an abstract superclass in an inheritance hierarchy and
you’d like to convert it to use composition. The first step is to ignore the existing code
and think about how a bicycle should be composed.

The Bicycle class is responsible for responding to the spares message. This
spares message should return a list of spare parts. Bicycles have parts, the bicycle–parts
relationship quite naturally feels like composition. If you created an object to hold all of
a bicycle’s parts, you could delegate the spares message to that new object.

It’s reasonable to name this new class Parts. The Parts object can be responsible
for holding a list of the bike’s parts and for knowing which of those parts needs spares.
Notice that this object represents a collection of parts, not a single part.

The sequence diagram in Figure 8.1 illustrates this idea. Here, a Bicycle sends
the spares message to its Parts object.

Every Bicycle needs a Parts object; part of what it means to be a Bicycle is to
have-a Parts. The class diagram in Figure 8.2 illustrates this relationship.

164 Chapter 8. Combining Objects with Composition

Figure 8.1 A Bicycle asks Parts for spares.

a Bicycle the Parts

a Bicycle the Parts

spares

Bicycle Parts
1

Figure 8.2 A Bicycle has-a Parts.

spares

• bicycles will delegate responsibility for
spares to their parts

ptg11539634

Composing a Bicycle of Parts
This section begins where the Bicycle example in Chapter 6, Acquiring Behavior
Through Inheritance, ended. If that code is no longer in the forefront of your mind, it’s
worth flipping back to the end of Chapter 6 and refreshing your memory. This section
takes that example and moves it through several refactorings, gradually replacing
inheritance with composition.

Updating the Bicycle Class
The Bicycle class is currently an abstract superclass in an inheritance hierarchy and
you’d like to convert it to use composition. The first step is to ignore the existing code
and think about how a bicycle should be composed.

The Bicycle class is responsible for responding to the spares message. This
spares message should return a list of spare parts. Bicycles have parts, the bicycle–parts
relationship quite naturally feels like composition. If you created an object to hold all of
a bicycle’s parts, you could delegate the spares message to that new object.

It’s reasonable to name this new class Parts. The Parts object can be responsible
for holding a list of the bike’s parts and for knowing which of those parts needs spares.
Notice that this object represents a collection of parts, not a single part.

The sequence diagram in Figure 8.1 illustrates this idea. Here, a Bicycle sends
the spares message to its Parts object.

Every Bicycle needs a Parts object; part of what it means to be a Bicycle is to
have-a Parts. The class diagram in Figure 8.2 illustrates this relationship.

164 Chapter 8. Combining Objects with Composition

Figure 8.1 A Bicycle asks Parts for spares.

a Bicycle the Parts

a Bicycle the Parts

spares

Bicycle Parts
1

Figure 8.2 A Bicycle has-a Parts.

one
parts object per

bicycle

spares

• bicycles will delegate responsibility for
spares to their parts

ptg11539634

Composing a Bicycle of Parts
This section begins where the Bicycle example in Chapter 6, Acquiring Behavior
Through Inheritance, ended. If that code is no longer in the forefront of your mind, it’s
worth flipping back to the end of Chapter 6 and refreshing your memory. This section
takes that example and moves it through several refactorings, gradually replacing
inheritance with composition.

Updating the Bicycle Class
The Bicycle class is currently an abstract superclass in an inheritance hierarchy and
you’d like to convert it to use composition. The first step is to ignore the existing code
and think about how a bicycle should be composed.

The Bicycle class is responsible for responding to the spares message. This
spares message should return a list of spare parts. Bicycles have parts, the bicycle–parts
relationship quite naturally feels like composition. If you created an object to hold all of
a bicycle’s parts, you could delegate the spares message to that new object.

It’s reasonable to name this new class Parts. The Parts object can be responsible
for holding a list of the bike’s parts and for knowing which of those parts needs spares.
Notice that this object represents a collection of parts, not a single part.

The sequence diagram in Figure 8.1 illustrates this idea. Here, a Bicycle sends
the spares message to its Parts object.

Every Bicycle needs a Parts object; part of what it means to be a Bicycle is to
have-a Parts. The class diagram in Figure 8.2 illustrates this relationship.

164 Chapter 8. Combining Objects with Composition

Figure 8.1 A Bicycle asks Parts for spares.

a Bicycle the Parts

a Bicycle the Parts

spares

Bicycle Parts
1

Figure 8.2 A Bicycle has-a Parts.

spares

 12

Bicycles with Parts

 13

Bicycles with Parts

Hierarchy (after Fig 8.3)

 14

bicycle.withSize(sz)
parts(p)

bicycle.parts(p)

roadBike.parts(p)
mountainBike  

.parts(p)

1

The result

• Most code from bicycle moves into
parts
‣ Metz: wasn’t a big change, and isn’t much of an

improvement

‣ made it blindingly obvious just how little Bicycle
specific code there was to begin with

‣ Most of the code … deals with individual parts; the
Parts hierarchy now cries out for another
refactoring.

 15

Composing the Parts Object

 16

ptg11539634Creating a Part
Figure 8.4 shows a new sequence diagram that illustrates the conversation between
Bicycle and its Parts object, and between a Parts object and its Part objects.
Bicycle sends spares to Parts and then the Parts object sends needs_spare to
each Part.

Changing the design in this way requires creating a new Part object. The Parts
object is now composed of Part objects, as illustrated by the class diagram in Figure 8.5.
The “1..*” on the line near Part indicates that a Parts will have one or more Part
objects.

Introducing this new Part class simplifies the existing Parts class, which now
becomes a simple wrapper around an array of Part objects. Parts can filter its list of
Part objects and return the ones that need spares. The code below shows three
classes: the existing Bicycle class, the updated Parts class, and the newly introduced
Part class.

1 class Bicycle
2 attr_reader :size, :parts
3
4 def initialize(args={})
5 @size = args[:size]
6 @parts = args[:parts]

169Composing the Parts Object

a Bicycle

spares

needs_spare

the Parts a Part

a Bicycle the Parts a Part

Figure 8.4 Bicycle sends spares to Parts, Parts sends needs_spare to each Part.

Bicycle Parts
1

Part
1..*

Figure 8.5 Bicycle holds one Parts object, which in turn holds many Part objects.

Composing the Parts Object

 16

ptg11539634Creating a Part
Figure 8.4 shows a new sequence diagram that illustrates the conversation between
Bicycle and its Parts object, and between a Parts object and its Part objects.
Bicycle sends spares to Parts and then the Parts object sends needs_spare to
each Part.

Changing the design in this way requires creating a new Part object. The Parts
object is now composed of Part objects, as illustrated by the class diagram in Figure 8.5.
The “1..*” on the line near Part indicates that a Parts will have one or more Part
objects.

Introducing this new Part class simplifies the existing Parts class, which now
becomes a simple wrapper around an array of Part objects. Parts can filter its list of
Part objects and return the ones that need spares. The code below shows three
classes: the existing Bicycle class, the updated Parts class, and the newly introduced
Part class.

1 class Bicycle
2 attr_reader :size, :parts
3
4 def initialize(args={})
5 @size = args[:size]
6 @parts = args[:parts]

169Composing the Parts Object

a Bicycle

spares

needs_spare

the Parts a Part

a Bicycle the Parts a Part

Figure 8.4 Bicycle sends spares to Parts, Parts sends needs_spare to each Part.

Bicycle Parts
1

Part
1..*

Figure 8.5 Bicycle holds one Parts object, which in turn holds many Part objects.

one or more part
objects per parts

object

Composing the Parts Object

 16

ptg11539634Creating a Part
Figure 8.4 shows a new sequence diagram that illustrates the conversation between
Bicycle and its Parts object, and between a Parts object and its Part objects.
Bicycle sends spares to Parts and then the Parts object sends needs_spare to
each Part.

Changing the design in this way requires creating a new Part object. The Parts
object is now composed of Part objects, as illustrated by the class diagram in Figure 8.5.
The “1..*” on the line near Part indicates that a Parts will have one or more Part
objects.

Introducing this new Part class simplifies the existing Parts class, which now
becomes a simple wrapper around an array of Part objects. Parts can filter its list of
Part objects and return the ones that need spares. The code below shows three
classes: the existing Bicycle class, the updated Parts class, and the newly introduced
Part class.

1 class Bicycle
2 attr_reader :size, :parts
3
4 def initialize(args={})
5 @size = args[:size]
6 @parts = args[:parts]

169Composing the Parts Object

a Bicycle

spares

needs_spare

the Parts a Part

a Bicycle the Parts a Part

Figure 8.4 Bicycle sends spares to Parts, Parts sends needs_spare to each Part.

Bicycle Parts
1

Part
1..*

Figure 8.5 Bicycle holds one Parts object, which in turn holds many Part objects.

Should the Parts object be like a List?

 17

 18

Delegation

• Delegation allows you to share
implementation without inheritance

• Pass part of your work on to another
object. Put that object in one of your
instance variables
‣ e.g., a Path contains a field form, the bit mask

responsible for actually drawing on the display.
‣ e.g., a Text contains a String

 19

What about self?
• When you delegate, the receiver

of the delegating message (the
delegate) is no longer the target
‣ Does it matter? Does the delegate need

access to the target? Does the delegate
send a message back to the client?

• If it doesn’t matter, forward
messages unchanged — Beck
calls this Simple Delegation

 19

What about self?
• When you delegate, the receiver

of the delegating message (the
delegate) is no longer the target
‣ Does it matter? Does the delegate need

access to the target? Does the delegate
send a message back to the client?

• If it doesn’t matter, forward
messages unchanged — Beck
calls this Simple Delegation

target

 19

What about self?
• When you delegate, the receiver

of the delegating message (the
delegate) is no longer the target
‣ Does it matter? Does the delegate need

access to the target? Does the delegate
send a message back to the client?

• If it doesn’t matter, forward
messages unchanged — Beck
calls this Simple Delegation

self

target

 19

What about self?
• When you delegate, the receiver

of the delegating message (the
delegate) is no longer the target
‣ Does it matter? Does the delegate need

access to the target? Does the delegate
send a message back to the client?

• If it doesn’t matter, forward
messages unchanged — Beck
calls this Simple Delegation

delegate
self

target

 19

What about self?
• When you delegate, the receiver

of the delegating message (the
delegate) is no longer the target
‣ Does it matter? Does the delegate need

access to the target? Does the delegate
send a message back to the client?

• If it doesn’t matter, forward
messages unchanged — Beck
calls this Simple Delegation

delegate

target

 19

What about self?
• When you delegate, the receiver

of the delegating message (the
delegate) is no longer the target
‣ Does it matter? Does the delegate need

access to the target? Does the delegate
send a message back to the client?

• If it doesn’t matter, forward
messages unchanged — Beck
calls this Simple Delegation

self

delegate

target

 20

Simple Delegation Example
method do(aBlock) {
 collectionOfPoints.do(aBlock) }

method map(aBlock) { 
def newPath = path.withForm(self.form) 
newPath.points :=  
 (collectionOfPoints.map(aBlock) 
newPath } 
 

Simple Delegation works when:

• you don’t need the state of the original
target object

• you don’t need the behaviour of the
original target object

• you don’t need the identity of the original
target object

If you need these things, use self delegation

 21

 22

Self Delegation

• When the delegate needs a reference to
the delegating object…

• Pass along the delegating object as an
additional parameter.

 23

Self Delegation Example

Dictionary: method at(key) put(value) {
	 self.hashTable.at(key) put(value) for(self) 
}

HashTable: method at(key) put(value) for(aCollection) {
	 def hash = aCollection.hashOf(key) 
} 
Dictionary: method hashOf(anObject) {
	 anObject.hash 
}

PlugableDictionary: method hashOf(anObject) {
	 injectedHash(anObject) 
}

