
Composition

Based on Metz Chapter 8:
Combining Objects with Composition

1

Wednesday, 20 May 2015

The Gang of Four say:

• The second principle of object-oriented
design:
‣ Favor object composition over inheritance

2

Wednesday, 20 May 2015

The Gang of Four say:

• The first principle of object-oriented
design:
‣ Program to an interface, not to an

implementation

• The second principle of object-oriented
design:
‣ Favor object composition over inheritance

3

Wednesday, 20 May 2015

Inheritance vs. Composition
• Inheritance lets us quickly create a

specialization of an existing object
‣ all we need do is program the differences

• But inheritance is not a panacea:
‣ the extension must be prepared in advance, as

a new class or factory

‣ the kind of extension can’t be changed at
runtime

‣ with single inheritance, you have just one shot
4

Wednesday, 20 May 2015

Costs of Inheritance
• What happens when you get it wrong?

• Reasonable, usable and Exemplary are
coins with two sides!
‣ ¬ reasonable: making changes near the top of

an incorrectly-modeled hierarchy

‣ ¬ usable: recumbentMountainBike (or
immutableSet) can’t be built

‣ ¬ exemplary: can’t extend an incorrectly-
modeled hierarchy

5

Wednesday, 20 May 2015

Composition
• Pros
‣ component can be changed at runtime

° e.g., state pattern

‣ clear separation of responsibilities
° need know only the interface of the component

• Cons
‣ more work

° define separate classes for part, parts ...

‣ delegation not supported by most languages
° must use self delegation pattern (Beck, p.67)

6

Wednesday, 20 May 2015

Metz:
• Inheritance:
‣ for the cost of arranging objects in a hierarchy, you get

message delegation for free

• Composition:
‣ reverses these costs & benefits:

° not restricted to a hierarchy; objects relationships are explicit

° delegation of messages must also be explicit

• when faced with a problem that composition can
solve, you should be biased towards using
composition

7

Wednesday, 20 May 2015

8

Delegation

• Delegation allows you to share
implementation without inheritance

• Pass part of your work on to another
object. Put that object in one of your
instance variables
‣ e.g., a Path contains a field form, the bit mask

responsible for actually drawing on the display.

‣ e.g., a Text contains a String

Wednesday, 20 May 2015

9

What about self?
• When you delegate, the receiver

of the delegating message (the
delegate) is no longer the target
‣ Does it matter? Does the delegate need

access to the target? Does the delegate
send a message back to the client?

• If it doesn’t matter, forward
messages unchanged — Beck
calls this Simple Delegation

self

delegate
self

target

Wednesday, 20 May 2015

10

Simple Delegation Example

method do(aBlock) {
 collectionOfPoints.do(aBlock) }

method map(aBlock) {
def newPath = path.withForm(self.form)
newPath.points :=
 (collectionOfPoints.map(aBlock)
newPath }

Wednesday, 20 May 2015

Simple Delegation works when:

• you don’t need the state of the original
target object

• you don’t need the behaviour of the
original target object

• you don’t need the identity of the original
target object

If you need these things, use self delegation

11

Wednesday, 20 May 2015

12

Self Delegation

• When the delegate needs a reference to
the delegating object…

• Pass along the delegating object as an
additional parameter.

Wednesday, 20 May 2015

13

Self Delegation Example

Dictionary: method at(key) put(value) {
 self.hashTable.at(key) put(value) for(self)
}
HashTable: method at(key) put(value) for(aCollection) {
 def hash = aCollection.hashOf(key)
}
Dictionary: method hashOf(anObject) {
 anObject.hash
}
PlugableDictionary: method hashOf(anObject) {
 injectedHash(anObject)
}

Wednesday, 20 May 2015

