Composition

Based on Metz Chapter 8:
Combining Objects with Composition

Portland State

IIIIIIIIII

Wednesday, 20 May 2015



The Gang of Four say:

 The second principle of object-oriented
design:

» Favor object composition over inheritance

Portland State

IIIIIIIIII

Wednesday, 20 May 2015



The Gang of Four say:

e The first principle of object-oriented
design:

» Program to an interface, not to an
Implementation

e The second principle of object-oriented
design:

» Favor object composition over inheritance

Portland State

IIIIIIIIII

Wednesday, 20 May 2015



Inheritance vs. Composition

* |nheritance lets us quickly create a
specialization of an existing object

» all we need do is program the differences

 But inheritance is not a panacea.

» the extension must be prepared in advance, as
a new class or factory

» the kind of extension can’t be changed at
runtime

» with single inheritance, you have just one shot

Portland State 4

IIIIIIIIII

Wednesday, 20 May 2015



Costs of Inheritance

 What happens when you get it wrong?

* Reasonable, usable and Exemplary are
coins with two sides!

> = reasonable: making changes near the top of
an incorrectly-modeled hierarchy

» - usable: recumbentMountainBike (or
immutableSet) can’t be built

> = exemplary: can’t extend an incorrectly-
modeled hierarchy

Portland State >

IIIIIIIIII

Wednesday, 20 May 2015



Composition

* Pros

» component can be changed at runtime

> e.g., state pattern

» clear separation of responsibilities

- need know only the interface of the component

e Cons

> more work
o define separate classes for part, parts ...

» delegation not supported by most languages

o must use self delegation pattern (Beck, p.67)

Portland State

IIIIIIIIII

Wednesday, 20 May 2015



Metz:

e |nheritance:

» for the cost of arranging objects in a hierarchy, you get
message delegation for free

e Composition:
» reverses these costs & benefits:

o not restricted to a hierarchy; objects relationships are explicit

o delegation of messages must also be explicit

 when faced with a problem that composition can
solve, you should be biased towards using
composition

Portland State 7

IIIIIIIIII

Wednesday, 20 May 2015



Delegation

 Delegation allows you to share
implementation without inheritance

 Pass part of your work on to another
object. Put that object in one of your
instance variables

> e.g., a Path contains a field form, the bit mask
responsible for actually drawing on the display.

> e.g., a Text contains a String

Portland State 8

IIIIIIIIII

Wednesday, 20 May 2015



What about self?

* When you delegate, the receiver
of the delegating message (the
delegate) is no longer the target

» Does it matter? Does the delegate need
access to the target? Does the delegate
send a message back to the client?

e |Ifit doesn’t matter, forward
messages unchanged — Beck
calls this Simple Delegation

Portland State 9

IIIIIIIIII

Wednesday, 20 May 2015



Simple Delegation Example

method do(aBlock) {
collectionOfPoints.do(aBlock) }

method map(aBlock) {
def newPath = path.withForm(self.form)
newPath.points =
(collectionOfPoints.map(aBlock)
newPath }

Portland State 10

IIIIIIIIII

Wednesday, 20 May 2015



Simple Delegation works when:

* you don’t need the state of the original
target object

e you don’t need the behaviour of the
original target object

* you don’t need the identity of the original
target object

If you need these things, use self delegation

Portland State a3

IIIIIIIIII

Wednesday, 20 May 2015



Self Delegation

* When the delegate needs a reference to
the delegating object...

 Pass along the delegating object as an
additional parameter.

Portland State 12

IIIIIIIIII

Wednesday, 20 May 2015



Self Delegation Example

Dictionary: method at(key) put(value) {
self.hashTable.at(key) put(value) for(self)

}

HashTable: method at(key) put(value) for(aCollection) {
def hash = aCollection.hashOf(key)

]

Dictionary: method hashOf(anObiject) {
anQObject.hash

}

PlugableDictionary: method hashOf(anObject) {
injectedHash(anObiject)

}

Portland State

IIIIIIIIII

Wednesday, 20 May 2015



