Composition

Based on Metz Chapter 8:
Combining Objects with Composition
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The Gang of Four say:

 The second principle of object-oriented
design:

» Favor object composition over inheritance
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The Gang of Four say:

e The first principle of object-oriented
design:

» Program to an interface, not to an
Implementation

e The second principle of object-oriented
design:

» Favor object composition over inheritance
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Inheritance vs. Composition

* |nheritance lets us quickly create a
specialization of an existing object

» all we need do is program the differences

 But inheritance is not a panacea.

» the extension must be prepared in advance, as
a new class or factory

» the kind of extension can’t be changed at
runtime

» with single inheritance, you have just one shot
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Costs of Inheritance

 What happens when you get it wrong?

* Reasonable, usable and Exemplary are
coins with two sides!

> = reasonable: making changes near the top of
an incorrectly-modeled hierarchy

» - usable: recumbentMountainBike (or
immutableSet) can’t be built

> = exemplary: can’t extend an incorrectly-
modeled hierarchy
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Composition

* Pros

» component can be changed at runtime

> e.g., state pattern

» clear separation of responsibilities

- need know only the interface of the component

e Cons

> more work
o define separate classes for part, parts ...

» delegation not supported by most languages

o must use self delegation pattern (Beck, p.67)
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Metz:

e |nheritance:

» for the cost of arranging objects in a hierarchy, you get
message delegation for free

e Composition:
» reverses these costs & benefits:

o not restricted to a hierarchy; objects relationships are explicit

o delegation of messages must also be explicit

 when faced with a problem that composition can
solve, you should be biased towards using
composition
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Delegation

 Delegation allows you to share
implementation without inheritance

 Pass part of your work on to another
object. Put that object in one of your
instance variables

> e.g., a Path contains a field form, the bit mask
responsible for actually drawing on the display.

> e.g., a Text contains a String

Portland State 8

IIIIIIIIII

Wednesday, 20 May 2015



What about self?

* When you delegate, the receiver
of the delegating message (the
delegate) is no longer the target

» Does it matter? Does the delegate need
access to the target? Does the delegate
send a message back to the client?

e |Ifit doesn’t matter, forward
messages unchanged — Beck
calls this Simple Delegation
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Simple Delegation Example

method do(aBlock) {
collectionOfPoints.do(aBlock) }

method map(aBlock) {
def newPath = path.withForm(self.form)
newPath.points =
(collectionOfPoints.map(aBlock)
newPath }
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Simple Delegation works when:

* you don’t need the state of the original
target object

e you don’t need the behaviour of the
original target object

* you don’t need the identity of the original
target object

If you need these things, use self delegation
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Self Delegation

* When the delegate needs a reference to
the delegating object...

 Pass along the delegating object as an
additional parameter.
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Self Delegation Example

Dictionary: method at(key) put(value) {
self.hashTable.at(key) put(value) for(self)

}

HashTable: method at(key) put(value) for(aCollection) {
def hash = aCollection.hashOf(key)

]

Dictionary: method hashOf(anObiject) {
anQObject.hash

}

PlugableDictionary: method hashOf(anObject) {
injectedHash(anObiject)

}
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