
Grace
Best Practice Patterns

1

Based on the Book by …

Kent Beck

2

Very little here is

Smalltalk-specific

Why Patterns?

• There are only so many ways of using
objects
‣ many of the problems that you must solve are

independent of the application domain

‣ patterns record these problems and successful
solutions

• Remember: the purpose of eduction is to
save you from having to think

3

What’s hard about programming?

• Communicating with the computer?
‣ not any more!

‣ we have made real progress with languages,
environments and style

• Communicating with other software
developers!
‣ 70% of the development budget is spent on

“maintenance”
° discovering the intent of the original programmers

4

How to improve communication

• Increase bandwidth
‣ within the development team

‣ between the team and the re-users

• Increase information density
‣ say more with fewer bits

‣ make our words mean more

5

A Pattern is:

• A literary form for capturing “best
practice”

• A solution to a problem in a context

• A way of packing more meaning into the
bytes of our programs

6

Patterns exist …

• At many levels:
‣ Management Patterns

‣ Architectural Patterns

‣ Design Patterns

‣ Programing Patterns

‣ Documentation Patterns

7

Patterns exist …

• At many levels:
‣ Management Patterns

‣ Architectural Patterns

‣ Design Patterns

‣ Programing Patterns

‣ Documentation Patterns

8

‣ Programing Patterns

Behavioral Patterns

• Objects Behave!
‣ Objects contain both state and behavior

‣ Behavior is what you should focus on getting right!

• Sandi Metz:
‣ You don’t send messages because you have

objects, you have objects because you send
messages

9

Patterns for Methods
- Composed Method
- Complete Creation Method
- Constructor Parameter Method
- Shortcut Constructor Method
- Conversion
- Converter Method
- Converter Constructor Method
- Query Method
- Comparing Method
- Execute Around Method
- Debug Printing Method
- Method Comment

10

Composed Method
How do you divide a program into
methods?
➡Each method should perform one

identifiable task
➡All operations in the method should be

at the same level of abstraction
➡You will end up with many small

methods

11

Complete Creation Method

How do you represent instance
creation?
➡Don’t: expect your clients to use new

and then operate on the new object to
initialize it.

➡Instead: provide factory methods that
create fully-formed instances. Pass all
required parameters to them

12

Grace note:

° it doesn’t matter to the computer whether you use a
class, or a method returning an object: they do the
same thing: create and answer a new object.

° Are all methods that return objects classes?
- No. Many methods that returns objects get a new object from a

class, manipulate it in some way, and then return it

- I’m going to refer to methods that returns new(ish) objects as
factory methods.

13

Non-example:
➡def nyssa = dog.new  

nyssa.name := "Nyssa"  
nyssa.breed := mutt 
nyssa.sound := whine

Example:
➡def nyssa = dog.named "Nyssa"  

 breed (mutt) sound (whine)

14

Why not use the ordinary setter methods?
➡ Once and Only Once
➡ Two circumstances:

° initialization
° state-change during computation

➡ Two methods

15

Shortcut Constructor Methods

What is the external interface for creating
a new object when a Factory Method is
too wordy?
➡Represent object creation as a method

on one of the arguments.
° Add no more than three such shortcut constructor

methods per system!

° Examples: 20@30, key::value, 1..10  

16

Builder
(from GoF p97, Alpert p47)

How do you construct an object when
there are a multitude of possible
initialization options?
➡too many combinations to have one

factory method for each
Solution: use a builder object to collect
the options

17

Example of Builder
def carBuilder := fordBuilder 
carBuilder.add2doorSedanBody 
carBuilder.add6CylinderEngine  
carBuilder.addLeatherBucketSeats 
… 
def car = carBuilder.result

• Note that the builder doesn’t return anything
interesting; it collects the options internally, and
answers the new object when asked for its result

• Conventionally, builders return self

18

Returning self enables “chaining”
def carBuilder = fordBuilder.add2doorSedanBody. 
 add6CylinderEngine.addLeatherBucketSeats  
… 
def car = carBuilder.result

or even
def car = fordBuilder.add2doorSedanBody. 
 add6CylinderEngine.addLeatherBucketSeats  
 ….result 

19

Builders can do more …

➡add parts provide by part factories
➡choose which pert factories to use

based on prior options
➡transform arguments into new parts
➡interpret and abstract specification

(UIBuilder)

20

An object can be its own builder

import "graphix" as g  
def graphics = g.create(300, 300)  
graphics.addCircle.at(100@200). 

colored "red" .filled(true).draw

• here addCircle returns a circle-builder ... 
or does it return a circle?

• We don’t have to know!

21

Conversion
How do you convert information from
one object’s format to another?
➡Don’t: add all possible protocol to

every object that may need it
➡Instead: convert from one object to

another
° If you convert to an object with similar responsibilities,

use a CONVERTER METHOD.
° If you convert to an object with different protocol, use

a CONVERTER FACTORY METHOD

22

Converter Method

How do you represent simple conversion
of another object with the same protocol
but a different format?
Kent Beck tells a story …

23

For a long time, it bothered me that there was a
String » asDate method. I couldn't quite put my
finger on what it was that bothered me about it,
though. Then, I walked into a project where
they had taken the idea of conversion to
extremes. Every domain object had twenty or
thirty different conversion methods. Every time
a new object was added, it had to have all twenty
or thirty methods before it would start working
with the rest of the system.

24

One problem with representing conversion as
methods in the object to be converted is that
there is no limit to the number of methods that
can be added. … Another is that it [couples] the
receiver, however tenuously, with a class of which
it would otherwise be oblivious.

I avoid the protocol explosion problem by
representing conversions with a message to the
object to be converted only when:
• The source and destination of conversion share the same

protocol

• There is only one reasonable way to do the conversion.

25

Converter Method Pattern
➡ If the source and the destination share

the same protocol, and there is only one
reasonable way to do the conversion,
then provide a method in the source
object that converts to the destination.

➡ Name the conversion method
“asDestinationType”
‣ examples: aList.asSet,

aSequence.asDictionary,  
but not aString.asDate

26

Converter Factory Method
How do you represent the conversion of
an object to another with a different
protocol?
➡Make a factory method that takes the

object to be converted as an argument
° Put Converter Factory Methods in the same object as

the other instance creation method for that class of
object.

° Example: aDate.fromStringMonthFirst(s: String)  
aDate.fromStringYearFirst(S: String)

27

Query Method
How do you represent the task of testing a
property on an object?

What should the method answer?
What should it be named?

➡ Provide a method that returns a
Boolean. Name it by prefacing the
property name with a form of “be” — 
is, was, will, etc.

28

Examples:
➡ var status is readable == "on"
➡ method on { status := "on" }
➡ method off { status := "off" }

29

Examples:
➡ var status is readable == "on"
➡ method on { status := "on" }
➡ method off { status := "off" }

➡ var status := "on" 
method turnOn { status := "on" } 
method turnOff { status := "off" } 
method isOn { status == "on" } 
method isOff { status == "off" }

1. It’s now clear from the names which methods test
the state, and which change it.

30

Example:
➡ var status := "on" 

method turnOn { status := "on" } 
method turnOff { status := "off" } 
method isOn { status == "on" } 
method isOff { status == "off" }

2. This encapsulates the representation of the state —
reducing coupling. I can change the representation
without clients needing to know:
➡ var stateIsOn := true  

method turnOn { stateIsOn := true } 
method turnOff { stateIsOn := false }  
method isOn { stateIsOn } 
method isOff { stateIsOn.not } 

31

Comparing Method
How do you order objects with respect
to each other?
➡Implement < to answer true if the

receiver should be ordered before the
argument, and == to answer true if the
objects are equal.

➡Implement < and == only if there is a
single overwhelming way to order the
objects

32

Execute Around Method
How do you represent pairs of actions
that should be taken together?
➡Open a file — close a file
➡Acquire a lock — release a lock
Obvious solution: make both methods
part of the protocol
➡file.open -> Stream aStream.close
➡lock.acquire lock.release

33

What’s wrong with that?

Clients are responsible for “getting it
right”
How should they know?

34

Solution

Code a method that takes a block as an
argument.
Name the method by appending
“During(aBlock)” to the name of the first
method
method openDuring(aBlock) 
def s = self.open  
aBlock.apply(s) 
s.close

35

Solution

method openDuring(aBlock) { 
 def s = self.open  
 aBlock.apply(s) 
 s.close  
}

Even better:
method openDuring(aBlock) { 
 try {  

 def s = self.open  
 aBlock.apply(s) 

 } finally { s.close } 
}

36

Reversing Method
A composed method may be hard to read
because requests are made of too many
receivers

method printOn(aStream) { 
 x.printOn(aStream)  
 aStream.append "@" 
 y.printOn(aStream) 
}

➡ How do you code a smooth flow of
messages?

37

38

method printOn(aStream) { 
 x.printOn(aStream) 
 aStream.append "@" 
 y.printOn(aStream)  

}
Why isn’t this smooth?
➡ We want to think of the method as

doing three things to aStream. But
that's not what it says!

Why isn’t this smooth?
➡ We want to think of the method as

doing three things to aStream. But
that's not what it says!

Instead:
method printOn(aStream) { 
 aStream.append(x) 
 aStream.append "@" 
 aStream.append(y) 
}

39

method printOn(aStream) { 
 x.printOn(aStream) 
 aStream.append "@" 
 y.printOn(aStream)  

}

Instead:
method printOn(aStream) { 
 aStream.append(x) 
 aStream.append "@" 
 aStream.append(y) 
}

or even:
method printOn(aStream) { 
aStream  

.append(x) 

.append "@" 

.append(y) 
}

assuming that append answers self
40

Method Object

What do you do when COMPOSED
METHOD doesn’t work?
Why doesn’t it work?
➡many expressions share method

parameters and temporary variables

41

Beck:
➡ “This was the last pattern I added to this book. I

wasn't going to include it because I use it so seldom.
Then it convinced an important client to give me a
really big contract. I realized that when you need it,
you really need it”

The code (on obligation objects) looked like this:
method sendTask(aTask) job(aJob) { 

 def notProcessed = list.empty 
 def processed = list.empty 
 var copied  
 var executed  
 … 150 lines of heavily commented code … 

} 

42

What happens when you apply
COMPOSED METHOD?

43

Turn the method  
into a object!
➡ define a local class:

class taskSender (obligation, aTask, aJob) { 
 …  
}

• Name the class on the original method
• original receiver and parameters become

parameters of the class
• all of the method temporaries become fields

of the object
44

method sendTask(aTask) job(aJob) { 
def notProcessed = list.empty  
def processed = list.empty  
var copied  
var executed  
… 150 lines of heavily commented code …  

}

the new CLASS initializes the fields:
class taskSender(obligation, task, job) 

 def notProcessed = list.empty  
 def processed = list.empty 
 var copied := … 
 var executed := …  

 ... 
}

45

Put the original code in a compute method:
method compute { 

… 150 lines of heavily commented code …  
}

• code that previously referred to method parameters now refers to class
parameters!

• code that previously referred to method locals now refers to the object’s
fields

Change the original method in the obligation object to
use a TaskSender:

method sendTask(aTask) job(aJob) { 
 taskSender(self, aTask, aJob).compute  
} 

46

Now run the tests

47

Now apply COMPOSED METHOD to the
150 lines of heavily commented code.
➡Composite methods are in the

taskSender object.
➡No need to pass parameters
° all the methods share instance variables, and
° can access class parameters

48

Beck:
➡“by the time I was done, the compute

method read like documentation; I had
eliminated three of the instance
variables, the code as a whole was half
of its original length, and I’d found and
fixed a bug in the original code.”

49

String Conversion Methods
was: DEBUG PRINTING METHOD

• Converting objects to strings is powerful:
‣ strings fit nicely into generic interfaces, like menus,

tables, and text editors

‣ strings are useful to the programmer: they should tell you
most of what you need to know about an object to
diagnose a problem

• Grace provides two ways of presenting any
object as a String
‣ asDebugString is there for you, the programmer

‣ asString is there for client objects

50

Converting Objects to Strings

There are now four getters defined in trait Object for converting an Object to a String:

Show ASCII

In the trait, all of the other methods are defined in terms of asString, so asString is the principal

method that you should override when you create a new trait. Frequently, programmers write a

method that emits more information about the internal structure of an object to help in debugging. If

you do that, make it a getter and call it asDebugString.

asExprString is intended to produce a fortress expression that is equal to the object being

converted.

Examples

The automatic conversion to String that takes place when an object is concatenated to a String uses

asString.

The assert(a, b, m ...) function uses asDebugString to print a and b when a ≠ b

Here are the results of using the three getters on the same string:

asString: The word "test" is overused

asExprString: "The word \"test\" is overused"

asDebugString: BC27/1:

 J15/0:The word "test"

 J12/0: is overused

Here they are applied to the range 1:20:2

asString: [1,3,5,7,... 19]

asExprString: 1:19:2

asDebugString: StridedFullParScalarRange(1,19,2)

Method Comment
How do you comment a method?
➡Communicate important information

that is not obvious from the code in a
comment at the beginning of the
method

52

How do you communicate what the method
does?
• INTENTION-REVEALING METHOD NAME

…what the arguments should be?
• type annotations in the method header

…what the answer is?
• other method patterns, such as QUERY METHOD

• type annotation in the header
…what the important cases are?
• Each case becomes a separate method

What’s left for the method comment?

53

Method Comment
How do you comment a method?
➡Communicate important information

that is not obvious from the code in a
comment at the beginning of the
method

Between 0% and 1% of Kent's code
needs a method comment.
➡use them for method dependencies,  

TODOs, reason for a change
54

But:
➡method dependencies can be

represented by an EXECUTE-AROUND
METHOD

➡TODOs can be represented using a
request like flag "message"

55

Useless Comment
show  
(self flags bitAnd: 2r1000) == 1 "am I visible"  

ifTrue: […]

isVisible 
^ (self flags bitAnd: 2r1000)

show  
self isVisible ifTrue: […] 

56

