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Based on the Book by …

Kent Beck
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Very little here is 

Smalltalk-specific



Why Patterns?

• There are only so many ways of using 
objects
‣ many of the problems that you must solve are 

independent of the application domain

‣ patterns record these problems and successful 
solutions

• Remember: the purpose of eduction is to 
save you from having to think
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What’s hard about programming?

• Communicating with the computer?
‣ not any more!

‣ we have made real progress with languages, 
environments and style

• Communicating with other software 
developers!
‣ 70% of the development budget is spent on 

“maintenance”
° discovering the intent of the original programmers
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How to improve communication

• Increase bandwidth
‣ within the development team

‣ between the team and the re-users

• Increase information density
‣ say more with fewer bits

‣ make our words mean more
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A Pattern is:

• A literary form for capturing “best 
practice”

• A solution to a problem in a context

• A way of packing more meaning into the 
bytes of our programs
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Patterns exist …

• At many levels:
‣ Management Patterns

‣ Architectural Patterns

‣ Design Patterns

‣ Programing Patterns

‣ Documentation Patterns
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‣ Programing Patterns



Behavioral Patterns

• Objects Behave!
‣ Objects contain both state and behavior

‣ Behavior is what you should focus on getting right!

• Sandi Metz:
‣ You don’t send messages because you have 

objects, you have objects because you send 
messages
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Patterns for Methods
- Composed Method
- Complete Creation Method
- Constructor Parameter Method
- Shortcut Constructor Method
- Conversion
- Converter Method
- Converter Constructor Method
- Query Method
- Comparing Method
- Execute Around Method
- Debug Printing Method
- Method Comment
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Composed Method
How do you divide a program into 
methods?
➡Each method should perform one 

identifiable task
➡All operations in the method should be 

at the same level of abstraction
➡You will end up with many small 

methods
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Complete Creation Method

How do you represent instance 
creation?
➡Don’t: expect your clients to use new 

and then operate on the new object to 
initialize it.

➡Instead: provide factory methods that 
create fully-formed instances. Pass all 
required parameters to them
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Grace note:

° it doesn’t matter to the computer whether you use a 
class, or a method returning an object: they do the 
same thing: create and answer a new object.

° Are all methods that return objects classes?
- No.  Many methods that returns objects get a new object from a 

class, manipulate it in some way, and then return it

- I’m going to refer to methods that returns new(ish) objects as 
factory methods.
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Non-example:
➡def nyssa = dog.new  

nyssa.name := "Nyssa"  
nyssa.breed := mutt 
nyssa.sound := whine

Example:
➡def nyssa = dog.named "Nyssa"  

    breed (mutt) sound (whine)
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Why not use the ordinary setter methods?
➡ Once and Only Once
➡ Two circumstances: 

° initialization
° state-change during computation

➡ Two methods
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Shortcut Constructor Methods

What is the external interface for creating 
a new object when a Factory Method is 
too wordy?
➡Represent object creation as a method 

on one of the arguments.  
° Add no more than three such shortcut constructor 

methods per system!

° Examples: 20@30,  key::value, 1..10  
                  

16



Builder 
(from GoF p97, Alpert p47)

How do you construct an object when 
there are a multitude of possible 
initialization options?
➡too many combinations to have one 

factory method for each
Solution: use a builder object to collect 
the options
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Example of Builder
def carBuilder := fordBuilder 
carBuilder.add2doorSedanBody 
carBuilder.add6CylinderEngine  
carBuilder.addLeatherBucketSeats 
… 
def car = carBuilder.result

• Note that the builder doesn’t return anything 
interesting; it collects the options internally, and 
answers the new object when asked for its result

• Conventionally, builders return self
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Returning self enables “chaining”
def carBuilder = fordBuilder.add2doorSedanBody. 
    add6CylinderEngine.addLeatherBucketSeats  
… 
def car = carBuilder.result

or even
def car = fordBuilder.add2doorSedanBody. 
    add6CylinderEngine.addLeatherBucketSeats  
    ….result 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Builders can do more …

➡add parts provide by part factories
➡choose which pert factories to use 

based on prior options
➡transform arguments into new parts
➡interpret and abstract specification 

(UIBuilder)
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An object can be its own builder

import "graphix" as g  
def graphics = g.create(300, 300)  
graphics.addCircle.at(100@200). 

colored "red" .filled(true).draw

• here addCircle returns a circle-builder ... 
or does it return a circle?

• We don’t have to know!
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Conversion
How do you convert information from 
one object’s format to another?
➡Don’t: add all possible protocol to 

every object that may need it
➡Instead: convert from one object to 

another
° If you convert to an object with similar responsibilities, 

use a CONVERTER METHOD.
° If you convert to an object with different protocol, use 

a CONVERTER FACTORY METHOD

22



Converter Method

How do you represent simple conversion 
of another object with the same protocol 
but a different format?
Kent Beck tells a story …

23



For a long time, it bothered me that there was a 
String » asDate method.  I couldn't quite put my 
finger on what it was that bothered me about it, 
though.  Then, I walked into a project where 
they had taken the idea of  conversion to 
extremes.  Every domain object had twenty or 
thirty different conversion methods.  Every time 
a new object was added, it had to have all twenty 
or thirty methods before it would start working 
with the rest of  the system.
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One problem with representing conversion as 
methods in the object to be converted is that 
there is no limit to the number of  methods that 
can be added. …  Another is that it [couples] the 
receiver, however tenuously, with a class of  which 
it would otherwise be oblivious. 

I avoid the protocol explosion problem by 
representing conversions with a message to the 
object to be converted only when: 
• The source and destination of  conversion share the same 

protocol 

• There is only one reasonable way to do the conversion. 
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Converter Method Pattern
➡ If the source and the destination share 

the same protocol, and there is only one 
reasonable way to do the conversion, 
then provide a method in the source 
object that converts to the destination.

➡ Name the conversion method 
“asDestinationType”
‣ examples: aList.asSet, 

aSequence.asDictionary,  
but not aString.asDate
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Converter Factory Method
How do you represent the conversion of 
an object to another with a different 
protocol?
➡Make a factory method that takes the 

object to be converted as an argument
° Put Converter Factory Methods in the same object as 

the other instance creation method for that class of 
object.

° Example: aDate.fromStringMonthFirst(s: String)  
aDate.fromStringYearFirst(S: String)

27



Query Method
How do you represent the task of testing a 
property on an object?  

What should the method answer?  
What should it be named?

➡ Provide a method that returns a 
Boolean.  Name it by prefacing the 
property name with a form of “be” — 
is, was, will, etc.
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Examples:
➡ var status is readable == "on"
➡ method on  { status := "on" }
➡ method off  { status :=  "off" }
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Examples:
➡ var status is readable == "on"
➡ method on  { status := "on" }
➡ method off  { status :=  "off" }

➡ var status := "on" 
method turnOn { status := "on" } 
method turnOff { status := "off" } 
method isOn { status == "on" } 
method isOff { status == "off" }

1. It’s now clear from the names which methods test 
the state, and which change it.
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Example:
➡ var status := "on" 

method turnOn { status := "on" } 
method turnOff { status := "off" } 
method isOn { status == "on" } 
method isOff { status == "off" }

2. This encapsulates the representation of the state — 
reducing coupling.  I can change the representation 
without clients needing to know:
➡ var stateIsOn := true  

method turnOn { stateIsOn := true } 
method turnOff { stateIsOn := false }  
method isOn { stateIsOn } 
method isOff { stateIsOn.not } 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Comparing Method
How do you order objects with respect 
to each other?
➡Implement < to answer true if the 

receiver should be ordered before the 
argument, and == to answer true if the 
objects are equal.

➡Implement < and == only if there is a 
single overwhelming way to order the 
objects
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Execute Around Method
How do you represent pairs of actions 
that should be taken together?
➡Open a file — close a file
➡Acquire a lock — release a lock
Obvious solution: make both methods 
part of the protocol
➡file.open -> Stream aStream.close
➡lock.acquire lock.release

33



What’s wrong with that?

Clients are responsible for “getting it 
right”
How should they know?
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Solution

Code a method that takes a block as an 
argument.  
Name the method by appending 
“During(aBlock)” to the name of the first 
method
method openDuring(aBlock) 
def s = self.open  
aBlock.apply(s) 
s.close
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Solution

method openDuring(aBlock) { 
   def s = self.open  
   aBlock.apply(s) 
   s.close  
}

Even better:
method openDuring(aBlock) { 
    try {  

   def s = self.open  
   aBlock.apply(s) 

     } finally { s.close } 
}
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Reversing Method
A composed method may be hard to read 
because requests are made of too many 
receivers

method printOn(aStream) { 
    x.printOn(aStream)  
    aStream.append "@" 
    y.printOn(aStream) 
}

➡ How do you code a smooth flow of 
messages?
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method printOn(aStream) { 
   x.printOn(aStream) 
   aStream.append "@" 
   y.printOn(aStream)  

}
Why isn’t this smooth?
➡ We want to think of the method as 

doing three things to aStream.  But 
that's not what it says!



Why isn’t this smooth?
➡ We want to think of the method as 

doing three things to aStream.  But 
that's not what it says!

Instead:
method printOn(aStream) { 
    aStream.append(x) 
    aStream.append "@" 
    aStream.append(y) 
}
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   aStream.append "@" 
   y.printOn(aStream)  

}



Instead:
method printOn(aStream) { 
    aStream.append(x) 
    aStream.append "@" 
    aStream.append(y) 
}

or even:
method printOn(aStream) { 
aStream  

.append(x) 

.append "@" 

.append(y) 
}

assuming that append answers self
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Method Object

What do you do when COMPOSED 
METHOD doesn’t work?
Why doesn’t it work?
➡many expressions share method 

parameters and temporary variables
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Beck:
➡ “This was the last pattern I added to this book.  I 

wasn't going to include it because I use it so seldom.  
Then it convinced an important client to give me a 
really big contract.  I realized that when you need it, 
you really need it”

The code (on obligation objects)  looked like this:
method sendTask(aTask) job(aJob) { 

  def notProcessed = list.empty 
  def processed = list.empty 
  var copied  
  var executed  
     … 150 lines of heavily commented code … 

} 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What happens when you apply 
COMPOSED METHOD?
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Turn the method  
into a object!
➡ define a local class:

class taskSender (obligation, aTask, aJob) { 
    …  
}

• Name the class on the original method
• original receiver and parameters become 

parameters of the class
• all of the method temporaries become fields 

of the object
44

method sendTask(aTask) job(aJob) { 
def notProcessed = list.empty  
def processed = list.empty  
var copied  
var executed  
… 150 lines of heavily commented code …  

}



the new CLASS initializes the fields:
class taskSender(obligation, task, job) 

  def notProcessed = list.empty  
  def processed = list.empty 
  var copied := … 
  var executed := …  

     ... 
}

45



Put the original code in a compute method:
method compute { 

… 150 lines of heavily commented code …  
}

• code that previously referred to method parameters now refers to class 
parameters!

• code that previously referred to method locals now refers to the object’s 
fields

Change the original method in the obligation object to 
use a TaskSender:

method sendTask(aTask) job(aJob) { 
      taskSender(self, aTask, aJob).compute  
} 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Now run the tests
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Now apply COMPOSED METHOD to the 
150 lines of heavily commented code.
➡Composite methods are in the 

taskSender object.
➡No need to pass parameters
°  all the methods share instance variables, and
° can access class parameters
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Beck:
➡“by the time I was done, the compute 

method read like documentation; I had 
eliminated three of the instance 
variables, the code as a whole was half 
of its original length, and I’d found and 
fixed a bug in the original code.”
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String Conversion Methods 
was: DEBUG PRINTING METHOD

• Converting objects to strings is powerful:
‣ strings fit nicely into generic interfaces, like menus, 

tables, and text editors

‣ strings are useful to the programmer: they should tell you 
most of what you need to know about an object to 
diagnose a problem

• Grace provides two ways of presenting any 
object as a String
‣ asDebugString is there for you, the programmer

‣ asString is there for client objects
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Converting Objects to Strings

There are now four getters defined in trait Object for converting an Object to a String:

Show ASCII

 

 

 

In the trait, all of the other methods are defined in terms of asString, so asString is the principal

method that you should override when you create a new trait. Frequently, programmers write a

method that emits more information about the internal structure of an object to help in debugging. If

you do that, make it a getter and call it asDebugString.

asExprString is intended to produce a fortress expression that is equal to the object being

converted.

Examples

The automatic conversion to String that takes place when an object is concatenated to a String uses

asString.

The assert(a, b, m ...) function uses asDebugString to print a and b when a ≠ b

Here are the results of using the three getters on the same string:

asString:      The word "test" is overused

asExprString:  "The word \"test\" is overused"

asDebugString: BC27/1:

                       J15/0:The word "test"

                       J12/0: is overused

Here they are applied to the range 1:20:2

asString:      [1,3,5,7,... 19]

asExprString:  1:19:2

asDebugString: StridedFullParScalarRange(1,19,2)



Method Comment
How do you comment a method?
➡Communicate important information 

that is not obvious from the code in a 
comment at the beginning of the 
method
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How do you communicate what the method 
does?
• INTENTION-REVEALING METHOD NAME

…what the arguments should be?
• type annotations in the method header

…what the answer is?
• other method patterns, such as QUERY METHOD

• type annotation in the header
…what the important cases are?
• Each case becomes a separate method

What’s left for the method comment?
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Method Comment
How do you comment a method?
➡Communicate important information 

that is not obvious from the code in a 
comment at the beginning of the 
method

Between 0% and 1% of Kent's code 
needs a method comment.
➡use them for method dependencies,  

TODOs, reason for a change
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But:
➡method dependencies can be 

represented by an EXECUTE-AROUND 
METHOD

➡TODOs can be represented using a 
request like flag "message"
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Useless Comment
show  
(self flags bitAnd: 2r1000) == 1 "am I visible"  

ifTrue: [ … ]

isVisible 
^ (self flags bitAnd: 2r1000)

show  
self isVisible ifTrue: [ … ] 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