
Acquiring behaviour  
through 

 Inheritance

Andrew P. Black

 1

What is Inheritance?

• Objects respond to requests

• How?
✦ they have their own methods
✦ they “pass the buck” to another object:

forwarding
✦ they acquire behavior from another object:

delegation

 2

Forwarding vs Delegation

 3

orig forwardee

self-request

orig delegate

self-request

originator and  
delegate have one self

The right class structure

 4

ptg8315951

Some object-oriented programming languages have syntax that allows you to
explicitly declare classes as abstract. Java, for example, has the abstract keyword.
The Java compiler itself prevents creation of instances of classes to which this keyword
has been applied. Ruby, in line with its trusting nature, contains no such keyword and
enforces no such restriction. Only good sense prevents other programmers from
creating instances of Bicycle; in real life, this works remarkably well.

Abstract classes exist to be subclassed. This is their sole purpose. They provide a
common repository for behavior that is shared across a set of subclasses—subclasses
that in turn supply specializations.

It almost never makes sense to create an abstract superclass with only one sub-
class. Even though the original Bicycle class contains general and specific behavior
and it’s possible to imagine modeling it as two classes from the very beginning, do
not. Regardless of how strongly you anticipate having other kinds of bikes, that day
may never come. Until you have a specific requirement that forces you to deal with
other bikes, the current Bicycle class is good enough.

Even though you now have a requirement for two kinds of bikes, this still may not
be the right moment to commit to inheritance. Creating a hierarchy has costs; the best
way to minimize these costs is to maximize your chance of getting the abstraction right
before allowing subclasses to depend on it. While the two bikes you know about supply
a fair amount of information about the common abstraction, three bikes would supply
a great deal more. If you could put this decision off until FastFeet asked for a third kind
of bike, your odds of finding the right abstraction would improve dramatically.

A decision to put off the creation of the Bicycle hierarchy commits you to writing
MountainBike and RoadBike classes that duplicate a great deal of code. A decision to
proceed with the hierarchy accepts the risk that you may not yet have enough informa-
tion to identify the correct abstraction. Your choice about whether to wait or to proceed

118 Chapter 6. Acquiring Behavior Through Inheritance

Bicycle

MountainBike RoadBike

Figure 6.6 Bicycle as the superclass of MountainBike and RoadBike.

From the Library of Avi Flombaum

Abstract

Concrete

Abstract & Concrete

• Abstract Classes exist to be
subclassed. This is their sole purpose.

✦ it rarely makes sense to have an abstract
superclass with only one subclass.

✦ don't try to anticipate the need to subclass

• Put off creating a superclass until you
need three subclasses?

 5

Learn to spot missing classes
• Where have you seen an object with a

field that encodes a style, category, rôle
or kind ?

✦ bicycle.style → road or mountain
✦ twoThreeTreeNode → twoNode or threeNode
✦ dancingBox → leader or follower

• If the kind or role changes, consider a
state or strategy component

 6

How to add inheritance

• Add an empty abstract superclass

• It is better to promote code up to a
superclass than to push it down to a
subclass.

✦ When you make a mistake, you will get a
noSuchMethod error, rather than the wrong
behaviour.

 7

Template method

• requiring a sub-object to send a super
message creates another opportunity
for error

• Metz suggests sending a template
message in the super-object

✦ sub-object overrides the template method, but
never requests a method of the super-object

• What’s the snag?

 8

• Implement all your template methods
• with an empty method, or
• with a required, abstract, or error method

 9

Default values

• Where do you put default values?
✦ Make each default a separate attribute

method defaultTireSize is confidential {  
"25 x 622" 

}

def defaultChain = "11-speed"

• Why?

 10

Initialization

• Inheritance makes initialization
complicated

• When does initialization of variables
happen?

✦ How are initial values sent from the sub-object
to the super-object?

✦ If the initialization makes a self-request, which
version of the requested method is executed?

 11

 12

superObj

def x = size

method size {  
“9-speed” }

subObj

method size {  
“10-speed” }

• When superObj is
initialized, it requests
size on self.

• which size method
is executed?

• C++ says “9-speed”,
Java and Grace say
“10-speed”

inheriting
object

overriding
method

