
The Grace Programming Language
Draft Specification Version 0.7.5

Andrew P. Black Kim B. Bruce James Noble

Contents

1 Introduction 4

2 User Model 5

3 Syntax 5

3.1 Character Equivalencies . 6

3.2 Layout . 6

3.3 Comments . 7

3.4 Identifiers and Operators . 7

3.5 Reserved Tokens . 7

3.6 Newlines, Tabs and Control Characters 7

4 Built-in Objects 8

4.1 Done . 8

4.2 Elipsis . 8

4.3 Numbers . 8

4.4 Booleans . 9

4.5 Strings . 9

4.5.1 String Literals . 9

4.5.2 String Constructors . 10

4.6 Lineups . 10

4.7 Blocks . 10

1

5 Declarations 11

5.1 Fields . 12

5.1.1 Constants . 12

5.1.2 Variables . 12

5.2 Methods . 12

5.2.1 Method Names . 13

5.2.2 Method parameters . 14

5.2.3 Type Parameters . 14

5.2.4 Returning a Value from a Method 15

5.3 Annotations . 15

5.4 Encapsulation . 18

5.4.1 Public . 18

5.4.2 Confidential . 18

5.4.3 Methods, Classes, Traits and Types 19

5.4.4 Fields . 19

5.4.5 No Private Attributes . 19

6 Objects, Classes, and Traits 20

6.1 Objects . 20

6.2 Class Declarations . 21

6.3 Trait Objects and Trait Declarations 22

6.4 Type Parameters . 22

6.5 Reuse . 22

6.5.1 Object Combination and Initialisation 23

6.5.2 Required Methods . 24

6.5.3 Overriding Methods . 24

6.5.4 Default Methods . 25

2

7 Method Requests 26

7.1 Self . 26

7.2 Outer . 27

7.3 Named Requests . 27

7.3.1 Delimited Arguments . 27

7.3.2 Implicit Requests . 28

7.4 Assignment Requests . 28

7.5 Binary Operator Requests . 29

7.6 Unary Prefix Operator Requests 30

7.7 Precedence of Method Requests 30

7.8 Requesting Methods with Type Parameters 30

7.9 Manifest Expressions . 31

8 Pattern Matching 31

8.1 Matching Blocks . 31

8.2 Self-Matching Objects . 32

9 Exceptions 32

9.1 Catching Exceptions . 33

10 Types 34

10.1 Predeclared Types . 34

10.1.1 Type None . 34

10.1.2 Type Object . 34

10.1.3 Type Self . 34

10.1.4 Type Unknown . 35

10.2 Interface Types . 35

10.3 Type Declarations . 35

10.4 Type Conformance . 36

10.5 Composite types . 36

10.5.1 Variant Types . 37

10.5.2 Intersection Types . 37

3

10.5.3 Union Types . 38

10.5.4 Type Subtraction . 38

10.5.5 Nested Types . 38

10.6 Type Assertions . 38

11 Modules and Dialects 39

11.1 Modules . 39

11.2 Importing Modules . 39

11.3 Executing a Module . 40

11.4 Dialects . 40

11.5 Module and Dialect Scopes . 41

12 Pragmatics 42

12.1 Garbage Collection . 42

12.2 Concurrency . 42

13 Acknowledgements 42

14 Grammar 42

1 Introduction

This is a specification of the Grace Programming Language. This specification
is notably incomplete, and everything is subject to change. In particular, this
version does not address:

• static type system

• immutable data and pure methods.

• reflection

• assertions, data-structure invariants, pre- & post-conditions, and contracts

• concurrency

• libraries and dialects, including implementations of Number, and

• testing.

4

2 User Model

All designers in fact have user and use models consciously or sub-
consciously in mind as they work. Team design . . . requires explicit
models and assumptions.
Frederick P. Brooks, The Design of Design.

Grace has been designed with the following users in mind.

1. First year university students learning programming in CS1 and CS2
courses that use object-oriented programming.

• The courses may be structured objects first, or procedures first.
• The courses may be taught using dynamic types, static types, or both

in combination (in either order).
• Grace offers some (but not necessarily complete) support for “func-

tional first” curricula, primarily for courses that proceed rapidly to
procedural and object-oriented programming.

2. University students taking second year classes in programming, algorithms
and data structures, concurrent programming, software craft, and software
design.

3. Faculty and teaching assistants developing libraries, frameworks, examples,
problems and solutions, for the above courses.

4. Programming language researchers needing a contemporary object-oriented
programming language as a research vehicle.

5. Designers of other programming or scripting languages in search of a good
example of contemporary OO language design.

3 Syntax

Much of the following text assumes the reader has a minimal grasp of
computer terminology and a “feeling” for the structure of a program.
Jensen and Wirth, Pascal: User Manual and Report.

5

Grace programs are written in Unicode. Reserved words are written in the
ASCII subset of Unicode.

3.1 Character Equivalencies

The following ASCII sequences are treated as equivalent to the corresponding
Unicode characters everywhere except in strings.

ASCII Unicode Codepoint
>= ≥ U+2265
<= ≤ U+2264
!= 6= U+2260
-> → U+2192
]] K U+27E6
[[J U+27E7

3.2 Layout

Grace uses braces for grouping. Code layout must be consistent with grouping:
indentation must increase by at least two spaces after a brace. Statements
are terminated by line breaks when the following line has the same or lesser
indentation than the indentation of the line containing the start of the current
statement. Statements may optionally be terminated by semicolons.

Example code with punctuation
def x =
mumble "3"
fratz 7;

while {stream.hasNext} do {
print(stream.read);

};

Example code without punctuation
def x =
mumble "3"
fratz 7

while {stream.hasNext} do {
print(stream.read)

}

This defines x to be the result of the single request mumble ("3") fratz (7).

6

3.3 Comments

Comments start with a pair of slashes // and are terminated by the end of the
line. Comments are not treated as white-space. Each comment is conceptually
attached to the smallest immediately preceding syntactic unit, except that
comments following a blank line are attached to the largest immediately following
syntactic unit.

Example
// comment, to end of line

3.4 Identifiers and Operators

Identifiers must begin with a letter, which is followed by a sequence of zero or
more letters, digits, prime (') or underscore (_) characters. Conventionally, type
and pattern identifiers start with capital letters, while other identifiers start with
lower-case letters.

A identifier comprising a single underscore _ acts as a placeholder: it can appear
in declarations, but not in expressions. In declarations, _ is treated as a fresh
identifier.

Operators are sequences of unicode mathematical operator symbols and the
following ASCII operator characters:

! ? @ # % ^ & | ~ = + − ∗ / \ > < : . $

3.5 Reserved Tokens

Grace has the following reserved tokens:
alias as class def dialect exclude import inherit is method object
outer prefix required return self Self trait type use var where

. ... := = ; { } [] () : −> < >

3.6 Newlines, Tabs and Control Characters

Newline in Grace programs can be represented by the Unicode line feed (LF)
character, by the Unicode carriage return (CR) character, or by the Unicode line
separator (U+2028) character; a line feed that immediately follows a carriage
return is ignored.

Tabs and all other non-printing control characters are syntax errors, even in
a string literal. Escape sequences are provided to denote control characters in
strings; see the Table of StringEscapes.

7

https://en.wikipedia.org/wiki/Mathematical_operators_and_symbols_in_Unicode

4 Built-in Objects

4.1 Done

Assignments, and methods without an explicit result, have the value done, of type
Done. The type Done plays a role similar to void or Unit in other languages. The
only requests understood by done are asString and asDebugString; in particular,
done does not have an equality method.

4.2 Elipsis

The token ... is a valid expression, but evaluating it will lead to a runtime error.
It is included in the language so that programmers can indicate that their code
is incomplete.

4.3 Numbers

In Grace, numbers are objects. Grace supports a single type Number, which
accommodates at least 64-bit precision floats. Implementations may support
other classes of numbers, and may define types that extend Number; a full
specification of numeric types is yet to be completed.

Grace has three forms of numerals (that is, literals that denote Number objects).

1. Decimal numerals, written as strings of digits.

2. Base-exponent numerals, always in decimal, which contain a decimal point,
or an exponent, or both. Grace uses e as the exponent indicator. Base-
exponent numerals may have a minus in front of the exponent.

3. Explicit radix numerals, written as a (decimal) number between 2 and 35
representing the radix, a leading x, and a string of digits, where the digits
from 10 to 35 are represented by the letters A to Z, in either upper or
lower case. A radix of 0 is taken to mean a radix of 16.

Examples
1
42
3.14159265
13.343e−12
414.45e3
16xF00F00
2x10110100
0xdeadbeef // Radix zero treated as 16

8

4.4 Booleans

The predefined constants true and false denote values of Grace’s Boolean type.
Boolean operators are written using && for and, || for or, and prefix ! for not.

Examples
p && q
toBe || toBe.not

In addition to && and || taking boolean arguments, they also accept param-
eterless blocks that return Boolean. This gives them “short circuit” (a.k.a.
“non-commutative”) semantics.

Examples
p && { q }
toBe || { ! toBe }

4.5 Strings

4.5.1 String Literals

String literals in Grace are written between double quotes, and must be confined
to a single line. Strings literals support a range of escape characters such as
"\n\t", and also escapes for Unicode; these are listed in the table below.

Individual characters are represented by Strings of length 1. Strings are im-
mutable, so an implementation may intern them. Grace’s standard library
supports efficient incremental string construction.

Escape Meaning Unicode
\\ backslash U+005C
\n line-feed U+000A
\t tab U+0009
\{ left brace U+007B
\} right brace U+007D
\" double quote U+0022
\r carriage return U+000D
\l line separator U+2028
_ non-breaking space U+00A0
\uhhhh 4-digit Unicode U+hhhh
\Uhhhhhh 6-digit Unicode U+hhhhhh

Examples
"Hello World!"
"\t"

9

"The End of the Line\n"
"A"

4.5.2 String Constructors

String Constructors are a generalization of String Literals that contain expressions
enclosed in braces. The value of a String Constructor is obtained by first
evaluating any expressions inside braces, requesting asString of the resulting
object, and inserting the resulting string into the string literal in place of the
brace expression.

Example
"Adding {a} to {b} gives {a+b}"

4.6 Lineups

A Lineup is a comma separated list of expressions surrounded by [and].

Examples
[] //empty lineup
[1]
[red, green, blue]

When executed, a lineup returns an object that supports the Iterator interface,
which includes the methods size, map, do(_), and iterator. Lineups are most
frequently used to build collections, to control loops, and to pass collections of
options to methods.

Examples
set [1, 2, 4, 5] //make a set
sequence ["a", "b", "c"] //make a sequence
["a", "e", "i", "o", "u"].do { x −> testletter(x) }
myWindow.addWidgets [
title "Launch",
text "Good Morning, Mrs President",
button "OK" action { missiles.launch },
button "Cancel" action { missiles.abort }

]

4.7 Blocks

Grace blocks are lambda expressions, with or without parameters. If a parameter
list is present, the parameters are separated by commas and the list is separated
from the body of the block by the −> symbol. Within the body of the block,
the parameters cannot be assiged.

10

{ do.something }
{ i −> i + 1 }
{ i:Number −> i + 1 }
{ sum, next −> sum + next }

Blocks are lexically scoped, and can close over any visible field or parameter.
The body of a block consists of a sequence of declarations and expressions;
declarations are local to the block. An empty body is allowed, and is equivalent
to done. A return statement inside a block returns from the enclosing method.

Blocks construct objects containing a method named apply, or apply(n), or apply(
n, m), . . . , where the number of parameters to apply is the same as the number
of parameters of the block. Requesting the apply(...) method evaluates the block;
it is an error to provide the wrong number of arguments. If block parameters are
declared with type annotations, it is a TypeError if the arguments do not conform
to those types.

Examples

The looping construct
for (1..10) do {

i −> print i
}

might be implemented as a method with a block parameter
method for (collection) do (block) {

def stream = collection.iterator
while {stream.hasNext} do {

block.apply(stream.next)
}

}

Here is another example:
var sum := 0
def summingBlock: Block1[[Number, Number]] =

{ i: Number −> sum := sum + i }
summingBlock.apply(4) // sum now 4
summingBlock.apply(32) // sum now 36

5 Declarations

Declarations may occur anywhere within a module, object, class, or trait. Field
declarations may also occur within a method or block body. Declarations are
visible within the whole of their containing lexical scope. It is an error to declare
any name more than once in a given lexical scope.

Grace has a single namespace for all identifiers: methods, parameters, constants,
variables, classes, traits, and types. It is a shadowing error to declare a parameter

11

(but not a method or field) that has the same name as a lexically-enclosing field,
method, or parameter.

5.1 Fields

Grace has two kinds of fields: constants and variables.

5.1.1 Constants

Constants are defined with the def keyword; they bind an identifier to the value
of an initialising expression, and may optionally be given a type. This type is
checked when the constant is initialised. Constants cannot be re-bound.

Examples
def x = 3 ∗ 100 ∗ 0.01
def x:Number = 3
def x:Number // Syntax Error: x must be initialised

5.1.2 Variables

Variable are introduced with the var keyword. Variables can be re-bound to
new values as often as desired, using an assignment. A variable declaration
may optionally provide an initial value; if there is no initial value, the variable
is uninitialised until it is assigned. Any attempt to access the value of an
uninitialised variable is an error, which may be caught either at run time or at
compile time. Variables may be optionally given a type: this type is checked
when the variable is initialised and assigned.

Examples
var x:Rational := 3 // explicit type
var x:Rational // x must be initialised before access
var x := 3 // x has type Unknown
var x // x has type Unknown, value is uninitialised

5.2 Methods

Methods are declared using the method keyword followed by a name. Methods
define the action to be taken when the object containing the method receives a
request with the given name. Because every method must be associated with an
object, methods may not be declared directly inside other methods. The type of
the object returned from the method may optionally be given after the symbol
−>: this type is checked when the method returns. The body of the method is
enclosed in braces.

12

method pi { 3.141592634 }

method greet(user: Person) from(sender: Person) {
print "{sender} sends his greetings, {user}."

}

method either (a) or (b) −> Done {
if (random.nextBoolean)

then {a.apply} else {b.apply}
}

5.2.1 Method Names

To improve readability, method names have several forms. For each form, we
describe its appearance, and also a canonical form of the name which is used in
dispatching method requests. A request “matches” a method if the canonical
names are equal.

1. A method can be named by a single identifier, in which case the method
has no parameters; in this case the canonical name of the method is the
identifier.

2. A method can be named by a single identifier suffixed with :=; this form
of name is conventionally used for writer methods, both user-written and
automatically-generated, as exemplified by value:= below. Such methods
always take a single parameter after the :=

3. A method can be named by one or more parts, where each part is an
identifier followed by a parenthesized list of parameters. In this case the
canonical name of the method is a sequence of parts, where each part
comprises the identifier for that part followed by (_, ..., _), the number of
underscores between the parentheses being the number of parameters of
the part.

4. A method can be named by a sequence of operator symbols. Such an
“operator method” can have no parameters, in which case the method is
requested by a prefix operator expression. It can also have one parameter,
in which case it is requested by a binary operator expression. The canonical
name of a unary method is prefix followed by the operator symbols; the
canonical name of a binary method is the sequence of operator symbols
followed by (_)

Examples of single identifiers
method ping { print "PING!" }
method isEmpty { elements.size == 0 }

Examples of assignment methods

13

method value:= (n: Number) −> Done {
print "value currently {value}, now assigned {n}"
outer.value:= n

}

Examples of multi-part names
method drawLineFromOriginTo (destination)
method drawLineFrom (source) to (destination)
method max(v1, v2)

In the first two examples, the canonical names of the methods are
drawLineFromOriginTo(_), and drawLineFrom(_)to(_). The latter comprises
two parts: drawLineFrom(_) and to(_). In the third example, the canonical name
of the method is max(_,_).

Examples of operator symbols
method + (other : Point) −> Point {

(x + other.x) @ (y + other.y)
}

method prefix− −> Point
{ 0 − self }

As a consequence of the above rules, methods max(a, b, c) and max(a, b) have
different canonical names and are therefore treated as distinct methods. In other
words, Grace allows “overloading by arity”. (Grace does not allow overloading
by type).

5.2.2 Method parameters

Depending on their syntatic form, method declarations may include one or more
paramter lists. Inside method bodies, method paramters are treated as ‘def’s:
they may not be reassigned. Method parameters may optionally be annotated
with types: the corresponding arguments will be checked against those types,
either before execution, or just before the method body is executed.

5.2.3 Type Parameters

Methods may be declared with one or more type parameters, which are listed
between [[and]] used as brackets. If present, type parameters must appear after
the identifier of the first part of a multipart name.

If an operator method has a type parameter list, it must be separated from the
sequence of operator symbols that names the method by a space.

The presence or absence of type parameters does not change the canonical name
of the method.

Examples

14

method sumSq[[T]](a : T, b : T) −> T where T <: Numeric {
(a ∗ a) + (b ∗ b)

}

method prefix− [[T]] −> Number
{ 0 − self }

5.2.4 Returning a Value from a Method

Methods may contain one or more return statements. If a return e statement
is executed, the method terminates with the value of the expression e, while a
return statement with no expression is equivalent to return done. If execution
reaches the end of the method body without executing a return, the method
terminates and returns the value of the last expression evaluated. An empty
method body returns done.

5.3 Annotations

Any declaration, and any object constructor, may have a comma-separated list of
annotations following the keyword is before its body or initialiser. Grace defines
the following core annotations:

AnnotationSemantics

confidentialmethod
may
be
re-
quested
only
on
self
or
outer
—
see
En-
cap-
su-
la-
tion

15

AnnotationSemantics

manifestmethod
must
re-
turn
a
man-
i-
fest
ob-
ject
-
Man-
i-
fest
Ex-
pres-
sions

overridesmethod
must
over-
ride
an-
other
method
-
Over-
rid-
ing
Meth-
ods

public method
may
be
re-
quested
from
any-
where

16

AnnotationSemantics

field
can
be
read
and
writ-
ten
from
any
ob-
ject
-
see
En-
cap-
su-
la-
tion

readablefield
may
be
read
from
any-
where
-
see
En-
cap-
su-
la-
tion

17

AnnotationSemantics

writeablevariable
may
be
as-
signed
from
any-
where
-
see
En-
cap-
su-
la-
tion

Additional annotations may be defined by dialect or libraries.

Examples
var x is readable, writeable := 3
def y: Number is public
method foo is confidential { }
method id[[T]] is required { }

5.4 Encapsulation

Grace has different default encapsulation rules for methods, types, and fields.
The defaults can be changed by explicit annotations. The details are as follows.

5.4.1 Public

Public attributes can be requested by any client that has access to the object
that defines them.

5.4.2 Confidential

Confidential attributes can be requested only on self or on some number of
cascaded outers, or in an implicit request (which must resolve to one of the
former cases). Consequently, if m is defined in the object, class, or trait d, it is

18

accessible to d, to objects that inherit from d, and to objects lexically enclosed
by d, but not to clients of d.

5.4.3 Methods, Classes, Traits and Types

By default, methods (which category includes classes and traits), and types, are
public. If a method or type is annotated is confidential, it is confidential.

5.4.4 Fields

Variables and definitions (var and def declarations) immediately inside an object
constructor create fields in that object.

A field declared as var x can be read using the request x and assigned to using
the assignment request x:=(...). A field declared as def y can be read using the
request y, and cannot be assigned. By default, fields are confidential.

The default visibility can be changed using annotations. The annotation readable
can be applied to a def or var declaration, and makes the accessor request available
to any object. The annotation writable can be applied to a var declaration, and
makes the assignment request available to any object. It is also possible to
annotate a field declaration as public. In the case of a def, public is equivalent
to (and preferred over) readable. In the case of a var, public is equivalent to
readable, writable.

Fields and methods share the same namespace. The syntax for variable access is
identical to that for requesting a reader method, while the syntax for variable
assignment is identical to that for requesting an assignment method. This means
that an object cannot have a field and a method with the same name, and cannot
have a method x:=(_) as well as a var field named x.

Examples
object {

def a = 1 // Confidential access to a
def b is public = 2 // Public access to b
def c is readable = 2 // Public access to c
var d := 3 // Confidential access and assignment
var e is readable // Public access and confidential assignment
var f is writable // Confidential access, public assignment
var g is public // Public access and assignment
var h is readable, writable // Public access and assignment

}

5.4.5 No Private Attributes

Some other languages support “private attributes”, which are available only to
an object itself, and not to clients or inheritors. Grace does not have private

19

fields or methods; all can be accessed from subobjects. However, identifiers from
outer scopes can be used to obtain an effect similar to privacy.

Examples
method newShipStartingAt(s:Point)endingAt(e:Point) {

// returns a battleship object extending from s to e. This object cannot
// be asked its size, or its location, or how much floatation remains.
assert ((s.x == e.x) || (s.y == e.y))
def size = s.distanceTo(e)
var floatation := size
object {

method isHitAt(shot:Vector2D) {
if (shot.onLineFrom(s)to(e)) then {

floatation := floatation −1
if (floatation == 0) then { self.sink }
true

} else { false }
}
...

}
}

The object returned by newShipStartingAt()endingAt() can update the variable
floatation in the surrounding scope, even though it is not accessible to anything
inheriting from that object.

6 Objects, Classes, and Traits

Grace object constructors generate individual objects. Grace class declarations
define methods that generate objects, all of which have the same structure.

The design of Grace’s reuse mechanism is complete, but tentative. We need
experience before confirming the design.

6.1 Objects

Object constructors are expressions that evaluate to an object with the given
attributes. Each time an object constructor is executed, a new object is created.
In addition to declarations of fields and methods, object constructors can also
contain expressions (executable code at the top level), which are executed as a
side-effect of evaluating the object constructor. All of the declared attributes of
the object are in scope throughout the object constructor.

Examples
object {

def colour:Colour = Colour.tabby

20

def name:String = "Unnamed"
var miceEaten := 0
method eatMouse { miceEaten := miceEaten + 1 }

}

Like everything in Grace, object constructors are lexically scoped.

A name can be bound to an object constructor, like this:
def unnamedCat = object {

def colour : Colour = Colour.tabby
def name : String = "Unnamed"
var miceEaten := 0
method eatMouse { miceEaten := miceEaten + 1 }

}

6.2 Class Declarations

A class is a method whose body is treated as an object constructor that is
executed every time the class is invoked. The class returns the newly-created
object. For example,
class catColoured(c) named (n) {

def colour is public = c
def name is public = n
var miceEaten is readable := 0
method eatMouse {miceEaten := miceEaten + 1}
print "The cat {n} has been created."

}

is equivalent to
method catColoured(c) named (n) {

object {
inherit graceObject
def colour is public = c
def name is public = n
var miceEaten is readable := 0
method eatMouse {miceEaten := miceEaten + 1}
print "The cat {n} has been created."

}
}

This class might be used as follows:
def fergus = catColoured (colour.tortoiseshell) named "Fergus"

This creates an object with fields colour (set to colour.tortoiseshell), name (set
to "Fergus"), and miceEaten (initialised to 0), prints “The cat Fergus has been
created”, and binds the name fergus to this object.

21

6.3 Trait Objects and Trait Declarations

Trait objects are objects with certain properties. Specifically, a trait object
is created by an object constructor that contains no field declarations and no
executable code, that uses only other traits, and that inherits nothing.

Aside from these restrictions, Grace’s trait syntax and semantics is parallel to
the class syntax. In particular, a trait defines a method that returns a trait
object.
trait emptiness {

method isEmpty { size == 0 }
method nonEmpty { size != 0 }
method ifEmptyDo (eAction) nonEmptyDo (nAction) {

if (isEmpty) then { eAction.apply } else { do(nAction) }
}

}

6.4 Type Parameters

Like methods, classes and traits may be declared to have type parameters.
Requests on the class or trait may optionally be provided with type arguments.

Type parameters may be constrained with where clauses. The details have yet
to be specified.

Example
class vectorOfSize(size)[[T]] {

var contents := Array.size(size)
method at(index : Number) −> T {return contents.at() }
method at(index : Number) put(elem : T) { }

}

class sortedVectorOfSize(size)[[T]]
where T <: Comparable[[T]] {
...

}

6.5 Reuse

Grace supports reuse in two ways: through inherit statements and through use
statements. Object constructors (and classes) can contain one inherit statement,
while traits cannot contain an inherit statement; object constructors, classes and
traits can all contain one or more use statements.

Both inherit and use introduce the attributes of a reused object — called the
parent — into the current object (the object under construction). There are two
differences between inherit and use clauses:

22

1. the object reused by a use clause must be a trait object; and
2. inherit clauses include the methods from graceObject, while use clauses do

not.

An inherit or use clause contains a Manifest Expression that creates a new object,
such as a request on a class or trait. This means that the request cannot depend
on a self, implicitly or explicitly. This means that programs cannot inherit or use
any trait or class that can potentially be overridden. Note that the arguments
to Manifest Expression need not themselves be manifest.

If it is necessary for the current object to access an overridden attribute of a
parent, the overridden attribute can be given an additional name by attaching
an alias clause to the inherit or use statement: alias n(_) = m(_) creates a new
confidential alias n(_) for the attribute m(_). It is a object composition error to
alias an attribute to its own name. Attributes of the parent that are not wanted
can be excluded using an exclude clause: excluded attributes are replaced by a
confidential, required method. It is an object composition error to alias or exclude
attributes that are not present in the class or trait being inherited.

6.5.1 Object Combination and Initialisation

When executed, an object constructor (or trait or class declaration) first creates
a new object with no attributes, and binds it to self.

Second, the attributes of the superobject (created by the inherit clause, possibly
modified by alias and exclude) are installed in the new object.

Third, the methods of all traits (created by use clauses, possibly modified by alias
and exclude, and excluding those methods inherited unchanged from graceObject)
are combined. It is an object composition error for there to be multiple definitions
of a method. This combination of methods is then installed in the new object:
methods in the trait combination override declarations in the superobject.

Fourth, attributes create by local declarations are installed in the new object:
local declarations override declarations from both superobject and traits, except
that it is an object composition error for an alias to be overridden by a local
declaration.

Fifth, types are evaluated and bound to their declarations. Types cannot depend
on runtime values; if they depend on the type of a constant (because the constant
is treated as a Singleton type, then that constant, if overridden in a subclass,
can be overridden only by a new object with the same type.

Finally, field initializers and executable statements are executed, starting with
the most superior inherited superobject, and finishing with the initializers of
local fields, and local statements. (Note that used objects must be traits, and
therefore contain no executable code.) Initialisers for all defs and vars, and code
in the bodies of parents, are executed once in the order they are written, even

23

for defs or vars that are excluded from the new object, or aliased to one or more
new names. During initialisation, self is bound to the new object being created,
even while executing code and initialisers of parents.

As a consequence of these rules, a new object can change the initialization of its
parents, by overriding the method requested on self by the parents’ initialisers.

6.5.2 Required Methods

Methods may be declared to be required by giving them the body required
. (Required methods are similar to what some other languages call abstract
methods.) This indicates that a real method body must be supplied before
that method can be requested. Required methods do not conflict with other
methods; a required local method overrides an inherited method in the normal
way. Requesting a required method will generate a runtime error.

6.5.3 Overriding Methods

A new declaration in the current object overrides a declaration from a parent.
Methods may be annotated with override. A method so annotated must override
a method from its parent with the same name and arity. The override annotation
is optional: local methods override parents’ methods with or without the override
annotation. Dialects may require the annotation.

Examples

The example below shows how a class can use a method to override an accessor
method for an inherited variable.
class pedigreeCatColoured (aColour) named (aName) {

inherit catColoured (aColour) named (aName)
var prizes := 0
method miceEaten is override { 0 }

// a pedigree cat would never be so coarse
method miceEaten:= (n:Number) −> Number is override { return }

// ignore attempts to debase it
}

Traits are designed to be used as fine-grained components of reuse:
trait feline {

method independent { "I did it my way" }
method move {

if (isOut) then {
comeIn

} else {
goOut

}
}

24

}

trait canine {
method loyal { "I'm your best friend" }
method move {

if (you.location != self.location) then {
self.position := you.heel

}
}

}

In this context, the following object has a trait conflict:
object {

use feline alias catMove = move
use canine alias dogMove = move

}

because the move attribute is defined in two separate traits. In contrast, the
following definition is legal:
def nyssa = object {

use feline alias catMove = move
use canine alias dogMove = move
method move {

if (random.choice) then {
catMove

} else {
dogMove

}
}

}

Here, the conflict is resolved by overriding with a local move method. This
method accesses the overridden methods from the parent traits using the aliases
catMove and dogMove; as a result, nyssa will move either like a dog or a cat,
depending on a random variable.

6.5.4 Default Methods

All objects implement a number of default methods by inheriting from the
graceObject trait. Programmers can of course override some of these implementa-
tions, or write alternative implementations of these methods ab initio. The type
Object defines a type containing all the public default methods:

Method Purpose
isMe (other: Object) −> Boolean a confidential method that returns true if

other is the same object as self
6= (other: Object) −> Boolean the inverse of ==

25

Method Purpose
asString −> String a string describing self
asDebugString −> String a string describing the internals of self
:: (other:Object) −> Binding a Binding object with self as key and other

as value

Notice that graceObject implements 6= but not ==. This is to help ensure that,
when an object chooses to implement ==, 6= is also available, and is the inverse
of ==.

7 Method Requests

Grace is a pure object-oriented language. All computation proceeds by requesting
an object — the target of the request — to execute a method with a particular
name. The response of the target is to execute the method, and to answer the
return value of the method.

Grace distinguishes the act of requesting a method (what Smalltalk calls “sending
a message”), and executing that method. Requesting a method happens outside
the target object, and involves only a reference to the target, the method name,
and possibly some arguments. In contrast, executing the method involves the
code of the method, which is internal to the target.

7.1 Self

The reserved word self refers to the current object. Inside a method, self always
refers to the target of the method-request that caused the method to execute.
Elsewhere, self refers to the object being constructed by the lexically-innermost
module, object constructor, class or trait surrounding the word self Hence, the
expression self.x requests x on the current object.

The reserved word Self refers to the type of the current object.

Examples
self
self.value
self.bar(1,2,6)
self.doThis(3) timesTo("foo")
self + 1
! self

26

7.2 Outer

The reserved word outer refers to the object lexically enclosing the current object.
The expression outer.x requests x on the object lexically enclosing self.

Examples
outer
outer.outer.outer.outer
outer.value
outer.bar(1,2,6)
outer.outer.doThis(3) timesTo("foo")
outer + 1
! outer

7.3 Named Requests

A named method request comprises a receiver, followed by a dot ., followed by a
method name, wherein the parameters have been replaced by expressions that
evaluate to the method’s arguments. Note that a request without arguments
does not contain any parentheses.

The reciever is an expression, which when evaluated designates the target of the
request. The name of a method, which determines the position of the argument
lists within that name, is chosen when the method is declared (See Methods).
When reading a request of a multi-part method name, you should continue
accumulating words and argument lists as far to the right as possible.

Examples
self.clear
self.drawLineFrom (p1) to (p2)
self.drawLineFrom (origin) length (9) angle (pi/6)
self.movePenTo (x, y)
self.movePenTo (p)

7.3.1 Delimited Arguments

Parenthesis may be omitted where they would enclose a single argument that is
a numeral, string, lineup, or block.

Examples
self.drawLineFrom (p1) to (p2)
self.drawLineFrom (origin) length 9 angle (pi/6)
print "Hello World"
while {x < 10} then {

print [a, x, b]
x := x + 1

}

27

7.3.2 Implicit Requests

If the receiver of a named method request using the name m is self or outer it
may be left implicit, i.e., the self or outer and the dot may both be omitted.
Implicit requests are interpreted as a self request, or as an outer request, or as
an outer.outer. ... request with the appropriate number of outers.

When resolving an implicit request, the usual rules of lexical scoping apply, so a
definition of m in the current scope will take precedence over any definitions in
enclosing scopes. However, if m is defined in the current scope by inheritance or
trait use, rather than directly, and also defined directly in an enclosing scope,
then an implicit request of m is ambiguous and is an error.

Implicit requests are always resolved lexically, that is, within the scope in which
they are written, and not within the scope of object (class, or trait) that may
inherit the method containing them.

Examples of Implicit Requests
print "Hello world"
size
canvas

Example of Implicit Request Resolution
method foo { print "outer" }

class app {
method barf { foo }

}

class bar {
inherit app
method foo { print "bar" }

}

class baz {
inherit bar
method barf { foo } // ambiguous − could be self.foo or outer.foo

}

app.barf // prints "outer"
bar.barf // prints "outer"

7.4 Assignment Requests

An assignment request is a variable followed by :=, or a request of a method
whose name ends with :=. In both cases the := is followed by a single argument,

28

which need not be surrounded by parentheses. Spaces are optional before and
after the :=.

Examples
x := 3
y:=2
widget.active := true

Assignment methods conventionally return done.

7.5 Binary Operator Requests

Binary operators are methods whose names comprise one or more operator
characters, provided that the operator is not reserved by the Grace language.
Binary operators have a receiver and one argument; the receiver must be explicit.
So, for example, +, ++ and .. are valid operator symbols, but . is not, because it
is reserved.

Most Grace operators have the same precedence: it is a syntax error for two
distinct operator symbols to appear in an expression without parenthesis to
indicate order of evaluation. The same operator symbol can be requested more
than once without parenthesis; such expressions are evaluated left-to-right.

Four binary operators do have precedence defined between them: / and ∗ bind
more tightly than + and −.

Examples
1 + 2 + 3 // evaluates to 6
1 + (2 ∗ 3) // evaluates to 7
(1 + 2) ∗ 3 // evaluates to 9
1 + 2 ∗ 3 // evaluates to 7
1 +∗+ 4 −∗− 4 // precedence error

Examples

Named method requests without arguments bind more tightly than operator
requests.

Grace Parsed as
1 + 2.i 1 + (2.i)
(a ∗ a) + (b ∗ b).sqrt (a ∗ a) + ((b ∗b).sqrt)
((a ∗ a) + (b ∗ b)).sqrt ((a ∗ a) + (b ∗b)).sqrt
a ∗ a + b ∗ b (a ∗ a) + (b ∗b)
a + b + c (a + b) + c
a − b − c (a − b) − c

29

7.6 Unary Prefix Operator Requests

Grace supports unary methods named by operator symbols that precede the
explicit receiver. (Since binary operator methods must have an explicit receiver,
there is no syntactic ambiguity.)

Prefix operators bind less tightly than named method requests, and more tightly
than binary operator requests.

Examples
−3 + 4
(−b).squared
−(b.squared)
− b.squared // parses as −(b.squared)

status.ok := !engine.isOnFire && wings.areAttached && isOnCourse

7.7 Precedence of Method Requests

Grace programs are formally defined by the language’s Grammar. The grammar
gives the following precedence levels; lower numbers bind more tightly.

1. Numerals and constructors for strings, objects, iterables, blocks, and types;
parenthesized expressions.

2. Requests of named methods. Multi-part requests accumulate name-parts
and arguments as far to the right as possible.

3. Prefix operators
4. “Multiplicative” operators ∗ and /: associate left to right.
5. “Additive” operators + and −: associate left to right.
6. “Other” operators, whose binding must be given explicitly using parenthe-

sis.
7. Assignments and method requests that use := as a suffix to a method

name.

7.8 Requesting Methods with Type Parameters

Methods that have type parameters may be requested with or without explicit
type arguments. If type arguments are supplied there must be the same number
of arguments as there are parameters. If type arguments are omitted, they are
assumed to be type Unknown.

Examples
sumSq[[Number]](10.i64, 20.i64)

sumSq(10.i64, 20.i64)

30

7.9 Manifest Expressions

The parents in inherit <parent> and use <parent> clauses must be manifest. This
means that Grace must be able to determine the shape of the object that is
being inherited on a module-by-module basis. In particular,

1. the meaning of the parent expressions must not be subject to overriding,
and

2. the result of the parent expression must be a fresh object whose shape is
statically determinable.

8 Pattern Matching

Pattern matching is based on Pattern objects that respond to the match(subject)
request by returning a MatchResult, which is either false if the match fails, or
a SuccessfulMatch[[R]] object which behaves like true but also supports a result
request. All type objects are Patterns; in addition, libraries supply non-type
Patterns, and programmers are free to implement their own Patterns.

Example

Suppose that the type Point is defined by:
type Point = {
x −> Number
y −> Number

}

and implemented by this class:
class x(x':Number) y(y':Number) −> Point {
method x { x' }
method y { y' }

}

we can write
def cp = x(10) y(20)

Point.match(cp) // SuccessfulMatch, behaves like true
Point.match(cp).result // cp
Point.match(42) // false

8.1 Matching Blocks

Blocks with a single parameter are called matching blocks. Matching blocks also
conform to type Pattern, and can be evaluated by requesting match(_) as well as
apply(_). When apply(_) would raise a type error because the block’s argument

31

would not conform to its parameter type, match(_) returns false; when apply(_)
would return a result r, match(_) returns a SuccessfulMatch object whose result is
r.

If the parameter declaration of a matching block takes the form _:pattern, then
the _: can be omitted, provided that pattern is is parenthesized, or is a string
literal or a numeral. This rule (the delimited argument rule) means that the
pattern can’t be mistaken for a declaration of a parameter to the block.

8.2 Self-Matching Objects

The objects created by String Literals and Numerals are patterns that match
strings and numbers that are equal to the literal.

Examples
Matching blocks and self-matching objects can be conveniently used in the
match(_)case(_)... family of methods.
method fib(n : Number) −> Number {

match (n)
case { 0 −> 0 }
case { 1 −> 1 }
case { _ −> fib(n−1) + fib(n−2) }

}

The first two blocks use self-matching objects; the first is short for { _:0 -> 0 }.

The last block has no pattern (or, if you prefer, has the pattern Unknown, which
matches any object). Such a block always matches.

If match(_)case(_)... does not find a match, it raises a non-exhaustive match
exception.

{ 0 −> "Zero" }
// match against a Sting Literal

{ s:String −> print(s) }
// type match, binding s − identical to block with typed parameter

{ (pi) −> print("Pi = " ++ pi) }
// match against the value of an expression − requires parenthesis

{ a −> print("did not match") }
// match against empty type annotation; matches anything, and binds to `a`

9 Exceptions

Grace supports exceptions, which can be raised and caught. Exceptions are
categorized into a hierarchy of ExceptionKinds. At the site where an exceptional

32

situation is detected, an exception is raised by requesting the raise method on an
ExceptionKind object, with a string argument explaining the problem.

Raising an exception does two things: it creates an exception object of the
specified kind, and terminates the execution of the expression containing the
raise request; it is not possible to restart or resume that execution, although
reflection (and thus debuggers) should have access to the stack at the point the
exception is thrown. Execution continues when the exception is caught.

Examples
BoundsError.raise "index {ix} not in range 1..{n}"
UserException.raise "impossible happened"

9.1 Catching Exceptions

An exception in expression can be caught by a dynamically-enclosing
try(expression)

catch (block 1)
...
catch (block n)
finally (finalBlock)

in which the block i are pattern-matching blocks. More precisely, if an exception
is raised during the evaluation of the try block expression, the catch blocks block
1, block 2, . . . , block n, are attempted, in order, until one of them matches
the exception. If none of them matches, then the process of matching the
exception continues in the dynamically-surrounding try(_) catch(_) ... catch(_)
finally(_). The finalBlock is always executed before control leaves the try(_) catch
(_) ... catch(_) finally(_) construct, whether or not an exception is raised, and
whether or not one of the catch blocks returns.

Finally clauses can return early, either by executing a return, or by raising an
exception. In such a situation, any prior return or raised exception is silently
dropped.

Example
try {

def f = io.open("data.store", "r")
} catch {

e: NoSuchFile −> print "No Such File"
} catch {

e: PermissionError −> print "Permission denied"
} catch {

_: Exception −> print "Unidentified Error"
system.exit

} finally {
f.close

}

33

10 Types

Grace uses structural typing @Modula3 @malayeri08 @whiteoak08. Types
primarily describe the requests that objects can answer. Fields do not directly
influence types, except that a field that is public, readable or writable is treated
as the appropriate method or methods.
Type names introduced by type declarations are treated as expressions that
denote type objects. All type objects are also patterns, so they can be used
in pattern matching, typically to perform dynamic type tests. Because type
declarations cannot be changed by overriding, the value of a type expression can
always be determined before the program is executed; this means that types can
be checked statically.

10.1 Predeclared Types

A number of types are declared in the standard prelude and included in most
dialects, including None, Done, Boolean, Object, Number, String, Block0, Block1,
Block2, Fun, Iterator, Pattern, Exception, and ExceptionKind. Some particular types
are treated specially:

10.1.1 Type None

Type None is completely empty; it has no methods.

10.1.2 Type Object

The type Object includes methods to which most objects respond — the Default
Methods declared in graceObject. Some objects, notably done, do not conform to
Object.
type Object = {

!= (other: Object) −> Boolean // the inverse of ==
asString −> String // a string for use by the client
asDebugString −> String // a string for use by the implementor
:: (other:Object) −> Binding // a binding with self as the key

}

Notice that isMe, although present in graceObject, is not present in type Object,
because it is confidential. Also notice that neither graceObject nor type Object
include ==.

10.1.3 Type Self

The type Self represents the public interface of the current object. Self is
prohibited as the annotation on parameters, but can be used to annotate results.

34

10.1.4 Type Unknown

Unknown is not actually a type, although it is treated as a type by the type
checker. It is similar to the type label “Dynamic” in C#. Unknown can be written
explicitly as a type annotation; moreover, if a declaration is not annotated, then
the type of the declared name is implicitly Unknown. In addition, omitted type
arguments are replaced by Unknown.

Type-checking against Unknown will always succeed: any object matches type
Unknown, and type Unknown conforms to all other types.

Examples
var x: Unknown := 5 //who knows what the type is?
var x := 5 //same here, but Unknown is implicit
x := "five" //who cares
x.gilad //almost certainly raises NoSuchMethod

method id(x) { x } //argument and return types both implicitly unknown
method id(x: Unknown) −> Unknown { x } // same thing, explicitly

10.2 Interface Types

Types define the interface of objects by detailing their public methods, and the
types of the parameters and results of those methods. Types can also contain
definitions of other types to describe types nested inside objects.

The various Cat object and class descriptions (see Objects, Classes, and Traits)
would create objects that conform to an interface type such as the following.
Notice that the public methods implicitly inherited from Object are implicitly
included in all types.

interface {
colour −> Colour
name −> String
miceEaten −> Number
miceEaten:= (n : Number) −> Done

}

For commonality with method declarations, parameters are normally named in
type declarations. These names are useful when writing specifications of the
methods. If a parameter name is omitted, it must be replaced by an underscore.
The type of a parameter or result may be omitted, in which case the type is
Unknown.

10.3 Type Declarations

Types, including parameterized types, may be named in type declarations. By
convention, the names of types start with an uppercase letter. A simple type

35

literal consists of the keyword interface followed by an open curly brace, a
sequence of method signatures, and a closed curly brace. The interface keyword
may be omitted from the right-hand-side of a type declaration when the right-
hand-side is a simple type literal. Type declarations may not be overridden.

Examples
type MyCatType = interface { // the word interface may be omitted

color −> Colour
name −> String

}
// I care only about names and colours

type MyParametricType[[A,B]] =
interface {

at (_:A) put (_:B) −> Boolean
cleanup(_:B)

} where A <: Hashable, B <: DisposableReference

10.4 Type Conformance

The key relation between types is conformance. We write B <: A to mean B
conforms to A; that is, that B has all of the methods of A, and perhaps additional
methods (and that the corresponding methods have conforming signatures). This
can also be read as “B is a subtype of A”, or “A is a supertype of B”.

We now define the conformance relation more rigorously. This section draws
heavily on the wording of the Modula-3 report @Modula3.

If B <: A, then every object of type B is also an object of type A. The converse
does not apply.

If A and B are interfaces, then B <: A iff for every method m in A, there is a
corresponding method m (with the same canonical name) in B such that

• If the method m in A has signature “m(P1,...,Pk)n(Pk+1,...,Pn)... −> R, and
m in B has signature “m(Q1,...,Qk)n(Qk+1,...,Qn)... −> S”, then

– parameter types must be contravariant: Pi <: Qi
– results types must be covariant: S <: R

The relationship used in where clauses to constrain type parameters of classes
and methods has yet to be specified.

10.5 Composite types

Grace offers a number of operators to build up composite types.

36

10.5.1 Variant Types

The expression T1 | T2 | ... | Tn signifies an untagged, retained variant type.
When a variable or method is annotated with a variant type, that variable may
be bound to, or that method may return, an object of any one of the component
types T1, T2, . . . , Tn. No objects actually have variant types, only expressions.
The type of an object referred to by a variant variable (as determined by the
type annotations in its declaration) can be examined using that object’s reified
type information.

The only methods in the static type of a receiver with a variant type are methods
present in all members of the variant.

Variant types are not equivalent to the object type that describes all common
methods. This is so that the exhaustiveness of match/case statements can be
determined statically. Thus the rules for conformance are more restrictive:

S <: (S | T)
T <: (S | T)
(S' <: S) & (T' <: T) ==> (S' | T') <: (S | T)

Example

To illustrate the limitations on conformance of variant types, suppose
type S = {m: A −> B, n: C −> D}
type T = {m: A −> B, k: E −> F}
type U = {m: A −> B}

Then U fails to conform to S | T even though U contains all methods contained
in both S and T.

10.5.2 Intersection Types

An object conforms to an Intersection type, written T1 & T2 & ... & Tn, if and
only if that object conforms to all of the component types. The main uses of
intersection types is for augmenting types with new operations, and as bounds
on where clauses.

(S & T) <: S
(S & T) <: T
U <: S; U <: T; <==> U <: (S & T)

Examples
type List[[T]] = Sequence[[T]] & interface {

add(_:T) −> List[[T]]
remove(_:T) −> List[[T]]

}

class happy[[T]](param: T) −> Done
where T <: (Comparable[[T]] & Printable & Happyable) {

37

...
}

10.5.3 Union Types

Structural union types (sum types), written 1 + 2 + ... + Tn, are the dual of
intersection types. A union type T1 + T2 has the interface common to T1 and T2.
Thus, a type U conforms to T1 + T2 if it has a method that conforms to each of
the methods common to T1 and T2. Union types are included for completeness:
variant types subsume most uses.

S <: (S + T)
T <: (S + T)

10.5.4 Type Subtraction

A type subtraction, written T1 − T2 has the interface of T1 without any of the
methods in T2. The signatures of the methods in T2 are irrelevant.

10.5.5 Nested Types

Type definitions may be nested inside other expressions, for example, they may
be defined inside object, class, method, and other type definitions, and typically
accessed via Manifest Requests. This allows types to be declared and imported
from other modules.

10.6 Type Assertions

When parameters, fields, and method results are annoatated with types, the
programmer can be confident that objects bound to those parameters and fields,
and returned from those methods, do indeed have the specified types, insofar as
Grace has the required type information. The checks necessary to implement
this guarantee may be performed statically or dynamically.

When implementing the type check, types specified as Unknown will always
conform. So, if a variable is annotated with type

interface {
add(Number) −> Collection[[Number]]
removeLast −> Number

}

an object with type

38

interface {
add(Unknown) −> Collection[[Unknown]]
removeLast −> Unknown
size −> Number

}

will pass the type test. Of course, the presence of Unknown in the type of the
object means that a subsequent type error may still occur. For example, the code
of the add(_) method might actually depend on being given a String argument,
or the collection returned from add(_) might contain Booleans.

The same type check can be requested explicitly by using the operators <:, :>
and == between types.

Examples
assert (B <: A) description "B does not conform to A"
assert (B <: type { foo(_) }) description "B has no foo(_) method"
assert (B <: type {foo(_:C) −> D}) description "B doesn't have a method foo(_:C)

−>D"
assert (B == (A | C)) description "B is neither an A or a C"

11 Modules and Dialects

Grace programs can be divided into multiple modules. A module is typically
used to define library functionality.

11.1 Modules

A module is typically defined in a implementation-dependent fashion, typically
by creating a file containing Grace code. The text of the file is treated as the
body of an object constructor, so it may contain both declarations and executable
code. When a module is loaded, this object constructor is executed, resulting in
a module object.

11.2 Importing Modules

Modules may begin with one or more importmoduleName as nickname statements.
moduleName is a string literal that identifies the module to be imported in an
implementation-dependent manner; for example, moduleName may be a file path.
nickname is the Grace identifier used to refer to the imported module object
in the importing module. The nickname is confidential by default, but can be
annotated as public.

Because importing a module creates a module object, public declarations at
the top level of imported modules are accessed by requesting a method on the

39

module’s nickname. Confidential declarations are not visible to the importing
module.

11.3 Executing a Module

Grace programs are executed by asking the execution environment to run a
particular module, which may be thought of as the “main” module. Grace will
load and initialise all transitively imported modules in depth-first order, thus
executing the “main” module last, after all its dependencies are loaded. Each
imported module is loaded just once, the first time it is reached: importing the
same moduleName multiple times results in the same module object. Circular
module dependencies are errors.

Examples

cat.grace module:
import "animals" as a
print "initialising cat module"
class cat {

inherit a.mammal
method species { "cat" }

}
print "cat module done"

animals.grace module:
print "initialising animals module"
class mammal {

method asString { "I am a {species}" }
method species { "mammal" }

}
print "animals module done"

will print:
initialising animals module
animals module done
initialising cat module
cat module done

11.4 Dialects

Grace dialects support language levels for teaching, and domain-specific “little”
languages. A module may begin with a dialect statement dialect "name", where
the dialect keyword is followed by a string literal.

The effect of the dialect statement is to import the dialect like any other module,
but then arrange that the dialect’s module object lexically encloses the object

40

defined by the module. This means that Implicit Requests in the module can
resolve to the definitions in the dialect.

Many features built in to other programming languages are obtained from dialects
in Grace: this includes all preexisting type declarations, classes, traits, control
structures, and even the ‘graceObject’ trait that defines the default methods.

Modules that do not declare a ‘dialect’ implicitly belong to the standardGrace
dialect.

In addition to declarations, a dialect can also define a checker that examines
the parse tree or syntax tree of any module written in the dialect, and generates
errors. This enables a dialect to restrict the language of its modules to a subset
of the full Grace language.

Examples

The bcpl.grace module declares an unless(_)do(_) control structure that is like if,
but backwards.

bcpl.grace module:
method do (block: Block0) unless (test: Boolean) {

if (test.not) then (block)
}

A module written in this dialect can use that control structure as if it were built
in:

example.grace module:
dialect "bcpl"
...
do { average := sum / count } unless (count == 0)

11.5 Module and Dialect Scopes

The module scope of a Grace module contains all declarations at the top level
of the module, including the nicknames introduced by import declarations.

Surrounding the module scope is the dialect scope, which contains all public
declarations at the top level of the module providing the dialect. That is, the
public names at the top level of the dialect are treated as being in a scope
surrounding that of any module written in that dialect.

Lexical lookup stops at the dialect scope: it does not extend to the scope sur-
rounding the dialect (which would contain any other dialects used to implement
the current dialect).

This allows dialects to import modules, and to be defined via other (module-
defining) dialects, without those other definitions polluting the language defined
by the dialect.

41

12 Pragmatics

The distribution medium for Grace programs, objects, and libraries is Grace
source code.

Grace source files should have the file extension .grace. If, for any bizarre reason
a trigraph extension is required, it should be .grc

Grace files may start with one or more lines beginning with #: these lines are
ignored by the language, but may be interpreted as directives by an implementa-
tion.

12.1 Garbage Collection

Grace implementations should be garbage collected. GC may occur at any
backwards branch, at any method request, and at any point where an object is
constructed. Grace does not support finalization.

12.2 Concurrency

The core Grace specification does not describe a concurrent language. Various
concurrency models may be provided as dialects. The details remain to be
sepecified.

13 Acknowledgements

We thank Michael Homer and Tim Jones for working on early implementations
of Grace, and Josh Bloch, Cay Horstmann, Michael Kölling, Doug Lea, Ewan
Tempero, Laurence Tratt, and the participants at the Grace Design Workshops
and IFIP WG2.16 on Programming Language Design meetings for discussions
about the design of Grace.

14 Grammar

The following PEG defines the context-free syntax of Grace. Productions are
arranged in alphabetical order.

addExpression ::= rep1sep(multExpression, addOp)
aliasClause ::= aliasId ~ methodHeader ~ equals ~ methodHeader ~ semicolon
argumentHeader ::= identifier ~ methodParams
argumentsInParens ::= lParen ~ rep1sep(drop(opt(ws)) ~ expression, comma) ~

rParen
assignmentMethodHeader ::= identifier ~ assign ~ genericParams ~

42

oneMethodParam
assignmentTail ::= assign ~ expression
basicTypeExpression ::= nakedTypeLiteral | literal | pathTypeExpression |

parenTypeExpression
blockLiteral ::= lBrace ~ opt(ws) ~ opt(genericParams ~ opt(matchBinding) ~

blockParams ~ opt(ws)~ arrow) ~ innerCodeSequence ~ rBrace
blockParams ::= repsep(identifier ~ opt(colon ~ typeExpression), comma)
classOrTraitDeclaration ::= (classId | traitId) ~ classHeader ~

methodReturnType ~ whereClause ~ lBrace ~ rep(reuseClause) ~ codeSequence
~ rBrace

codeSequence ::= repdel((declaration | statement | empty), semicolon)
colon ::= both(symbol ":", not(assign))
comma ::= symbol(",")
declaration ::= varDeclaration | defDeclaration | classOrTraitDeclaration |

typeDeclaration | methodDeclaration
defDeclaration ::= defId ~ identifier ~ opt(colon ~ typeExpression) ~ equals

~ expression
delimitedArgument ::= argumentsInParens | blockLiteral | stringLiteral
excludeClause ::= excludeId ~ methodHeader ~ semicolon
expression ::= opExpression
firstArgumentHeader ::= identifier ~ genericParams ~ methodParams
firstRequestArgumentClause ::= identifier ~ genericActuals ~ opt(ws) ~

delimitedArgument
genericActuals ::= opt(lGeneric ~ opt(ws) ~ rep1sep(opt(ws) ~ typeExpression ~

opt(ws), opt(ws) ~ comma ~ opt(ws)) ~ opt(ws) ~ rGeneric)
genericParams ::= opt(lGeneric ~ rep1sep(identifier, comma) ~ rGeneric)
hashLine ::= (symbol "#") ~ rep(anyChar | space) ~ (newLine | end)
identifier ::= guard(identifierString, { s −> ! parse(s) with(

reservedIdentifier ~ end) })
implicitSelfRequest ::= requestWithArgs | rep1sep(unaryRequest,dot)
importStatement ::= importId ~ stringLiteral ~ asId ~ identifier ~ semicolon
innerCodeSequence ::= repdel((innerDeclaration | statement | empty),

semicolon)
innerDeclaration ::= varDeclaration | defDeclaration | classOrTraitDeclaration

| typeDeclaration
lBrack ::= both(symbol "[", not(lGeneric))
lineupLiteral ::= lBrack ~ repsep(expression, comma) ~ rBrack
listOfOuters ::= rep1sep(outerId, dot)
literal ::= stringLiteral | selfLiteral | blockLiteral | numberLiteral |

objectLiteral | lineupLiteral | typeLiteral
matchBinding ::= (stringLiteral | numberLiteral | (lParen ~ identifier ~

rParen)) ~ opt(colon ~ nonEmptyTypeExpression)
matchingBlockTail ::= lParen ~ rep1sep(matchBinding, comma) ~ rParen
methodDeclaration ::= methodId ~ methodHeader ~ methodReturnType ~

whereClause
~ lBrace ~ innerCodeSequence ~ rBrace

methodHeader ::= assignmentMethodHeader | methodWithArgsHeader |
unaryMethodHeader | operatorMethodHeader | prefixMethodHeader

methodParams ::= lParen ~ rep1sep(identifier ~ opt(colon ~ opt(ws) ~
typeExpression), comma) ~ rParen

43

methodReturnType ::= opt(arrow ~ nonEmptyTypeExpression)
methodWithArgsHeader ::= firstArgumentHeader ~ repsep(argumentHeader,opt(ws))
moduleHeader ::= rep(hashLine) ~ rep(importStatement | reuseClause)
multExpression ::= rep1sep(prefixExpression, multOp)
nakedTypeLiteral ::= lBrace ~ opt(ws) ~ repdel(methodHeader ~

methodReturnType, (semicolon | whereClause)) ~ opt(ws) ~ rBrace
nonEmptyTypeExpression ::= opt(ws) ~ typeOpExpression ~ opt(ws)
objectLiteral ::= objectId ~ lBrace ~ rep(reuseClause) ~ codeSequence ~ rBrace

oneMethodParam ::= lParen ~ identifier ~ opt(colon ~ typeExpression) ~ rParen
operator ::= otherOp | reservedOp
operatorMethodHeader ::= otherOp ~ genericParams ~ oneMethodParam
otherOp ::= guard(trim(rep1(operatorChar)), { s −> ! parse(s) with(reservedOp

~ end) })
parenExpression ::= lParen ~ rep1sep(drop(opt(ws)) ~ expression, semicolon) ~

rParen
parenTypeExpression ::= lParen ~ typeExpression ~ rParen
pathTypeExpression ::= opt(listOfOuters ~ dot) ~ rep1sep((identifier ~

genericActuals),dot)
prefixExpression ::= (opt(otherOp) ~ selectorExpression) | (otherOp ~

listOfOuters)
prefixMethodHeader ::= opt(ws) ~ token("prefix") ~ otherOp ~ genericParams
primaryExpression ::= literal | listOfOuters | implicitSelfRequest |

parenExpression
program ::= codeSequence ~ rep(ws) ~ end
rBrack ::= both(symbol "]", not(rGeneric))
requestArgumentClause ::= identifier ~ opt(ws) ~ delimitedArgument
requestWithArgs ::= firstRequestArgumentClause ~

repsep(requestArgumentClause,opt(ws))
reservedIdentifier ::= selfLiteral | aliasId | asId | classId | defId |

dialectId | excludeId | importId | inheritId | isId | methodId |
objectId | outerId | prefixId | requiredId | returnId | traitId |
typeId | useId | varId | whereId

reuseClause ::= (inheritId | useId) ~ expression ~ semicolon ~
rep(reuseModifiers)

reuseModifiers ::= excludeClause | aliasClause
selector ::= (dot ~ unaryRequest) | (dot ~ requestWithArgs)
selectorExpression ::= primaryExpression ~ rep(selector)
semicolon ::= (symbol(";") ~ opt(newLine)) | (opt(ws) ~ lineBreak("left" |

"same") ~ opt(ws))
statement ::= returnStatement | (expression ~ opt(assignmentTail))
stringChar ::= (drop(backslash) ~ escapeChar) | anyChar | space
stringLiteral ::= opt(ws) ~ doubleQuote ~ rep(stringChar) ~ doubleQuote ~

opt(ws)
typeDeclaration ::= typeId ~ identifier ~ genericParams ~ equals ~

nonEmptyTypeExpression ~ (semicolon | whereClause)
typeExpression ::= (opt(ws) ~ typeOpExpression ~ opt(ws)) | opt(ws)
typeLiteral ::= typeId ~ opt(ws) ~ nakedTypeLiteral
typeOp ::= opsymbol("|") | opsymbol("&") | opsymbol("+")
typePredicate ::= expression
unaryMethodHeader ::= identifier ~ genericParams

44

unaryRequest ::= trim(identifier) ~ genericActuals ~ not(delimitedArgument)
varDeclaration ::= varId ~ identifier ~ opt(colon ~ typeExpression) ~

opt(assign ~ expression)
whereClause ::= repdel(whereId ~ typePredicate, semicolon)

45

	Introduction
	User Model
	Syntax
	Character Equivalencies
	Layout
	Comments
	Identifiers and Operators
	Reserved Tokens
	Newlines, Tabs and Control Characters

	Built-in Objects
	Done
	Elipsis
	Numbers
	Booleans
	Strings
	String Literals
	String Constructors

	Lineups
	Blocks

	Declarations
	Fields
	Constants
	Variables

	Methods
	Method Names
	Method parameters
	Type Parameters
	Returning a Value from a Method

	Annotations
	Encapsulation
	Public
	Confidential
	Methods, Classes, Traits and Types
	Fields
	No Private Attributes

	Objects, Classes, and Traits
	Objects
	Class Declarations
	Trait Objects and Trait Declarations
	Type Parameters
	Reuse
	Object Combination and Initialisation
	Required Methods
	Overriding Methods
	Default Methods

	Method Requests
	Self
	Outer
	Named Requests
	Delimited Arguments
	Implicit Requests

	Assignment Requests
	Binary Operator Requests
	Unary Prefix Operator Requests
	Precedence of Method Requests
	Requesting Methods with Type Parameters
	Manifest Expressions

	Pattern Matching
	Matching Blocks
	Self-Matching Objects

	Exceptions
	Catching Exceptions

	Types
	Predeclared Types
	Type None
	Type Object
	Type Self
	Type Unknown

	Interface Types
	Type Declarations
	Type Conformance
	Composite types
	Variant Types
	Intersection Types
	Union Types
	Type Subtraction
	Nested Types

	Type Assertions

	Modules and Dialects
	Modules
	Importing Modules
	Executing a Module
	Dialects
	Module and Dialect Scopes

	Pragmatics
	Garbage Collection
	Concurrency

	Acknowledgements
	Grammar

