
graphix Tutorial Grace

1 Introduction

The graphix package allows the Grace programmer to:

• generate basic graphic shapes,

• add event listeners to those shapes, and

• add sounds, using built-in MP3 files

The implementation uses the createjs JavaScript library (http://www.createjs.com/), which draws on an

HTML–5 canvas. Thus, it is available only when running Grace in a web browser.

2 Graphics

To work with the graphix package, you need to include the following line at the top of your Grace file:

import ”graphix” as g

The graphics object needs to be created with the following command:

def graphics = g.create(width, height)

where width and height correspond to the desired graphics window width and height. For example:

def width = 300

def height = 300

def graphics = g.create(width, height)

3 Shapes

The following shape objects are available in graphix : Circle, Rectangle, Rounded-rectangle, PolyStar, Ellipse,

Arc, Text, Line, Custom Shape, and Input Box. To draw one of these objects to the screen, make a request

on the graphics object:

• addCircle

• addRectangle

• addPolyStar

• addRoundRectangle

• addEllipse

• addArc

• addText

• addLine

• addCustomShape

• addInputBox

• addButton

For instance, to add a circle to the window, you might do the following:

1

http://www.createjs.com/


graphix Tutorial Grace

import ”graphix” as g

def graphics = g.create(300, 300)

def circle = graphics.addCircle

circle.draw

Each shape has attributes that are used to create it. These attributes have default values, so you don’t

need to set each one every time you create a shape. Many of the attributes, such as location, are common

to all shapes, while others are specific to a particular shape. For example, a circle has a radius, but a

rectangle does not. Attributes can be both observed and set, so if you have created a shape myCircle, you

can observe its location by requesting myCircle.location, and you can also change its location by requesting

myCircle.location := 100@50.

3.1 Common Attributes

The attributes that are common to all types of shape are as follows.

• location (Point): The (x, y) coordinates where the shape will be placed in the graphics window.

Coordinates are expressed as Grace Point objects, such as 10@50. Keep in mind that the origin is in

the upper left corner of the graphics canvas, so 10@50 will be 10 pixels right and 50 pixels down from

the top-left corner of the canvas.

• color (String): The color of the shape. Basic colors can be set using strings such as “red” and “blue”.

You can also use strings containing 6-digit hex numbers such as “#CC3300” that represent an HTML 5

hex color. See http://www.w3schools.com/tags/ref colorpicker.asp for more details on colors.

• fill (Boolean): Whether or not you want to fill in the shape when it is drawn on the window.

• visible (Boolean): Whether or not you want the shape to be visible; it is true by default. Updating

this value does not require for the shape to be re-drawn with the draw method.

Chaining Methods

In order to make your code more compact, graphix has a number of “chaining” methods that you can use

instead of setting attributes individually. The common ones are:

• at(point) — sets the location

• colored(color) — sets the color

• filled(boolean) — true makes the shape filled, false makes it stroked

The chaining methods modify the receiver, but also return it, so that the first request can then be used as

the receiver for the second request, and so on. This allows you to construct the object like this:

import ”graphix” as g

def graphics = g.create(300, 300)

graphics.addCircle.at(100@200).colored(”red”).filled(true).draw

Other Methods

The following methods are also available on all shape objects:

• moveBy(x, y): This moves the shape relative to its current location. Both positive and negative

numbers can be used.

2

http://www.w3schools.com/tags/ref_colorpicker.asp


graphix Tutorial Grace

• drawAt(p:Point): Moves the shape to the absolute location p, and draws it (making it visible if it

wasn’t visible).

• contains(p:Point): This determines whether or not p is inside the receiving shape object. Returns

true or false.

3.2 Circle

Create: graphics.addCircle

Attributes:

• radius(Number): The length of the circle radius

Chaining Methods:

• setRadius(Number)

3.3 Rectangle

Create: graphics.addRectangle

Attributes:

• width(Number): Width of the rectangle

• height(Number): Height of the rectangle

• size(Point): Width and height of the rectangle

Chaining Methods:

• setWidth(Number)

• setHeight(Number)

• setSize(Point)

3.4 Rounded Rectangle

Create: graphics.addRoundRect

Attributes:

• width(Number): Width of the rectangle

• height(Number): Height of the rectangle

• radius(Number): Radius of the rounded corners

• size(Point): Width and height of the rectangle

Chaining Methods:

• setWidth(Number)

• setHeight(Number)

• setRadius(Number)

3



graphix Tutorial Grace

• setSize(Point)

3.5 PolyStar

Create: graphics.addPolyStar

Attributes:

• size(Number): Length of each side of the star

• sides(Number): Number of sides

• pointSize(Number): Size of the points

• angle(Number): Angle between the points

Chaining Methods:

• setSize(Number)

• setSize(Point) (sets size equal to (Point.x + Point.y) / 2)

• setSides(Number)

• setPointSize(Number)

• setAngle(Number)

3.6 Ellipse

Create: graphics.addEllipse

Attributes:

• width(Number): Width of the ellipse

• height(Number): Height of the ellipse

• size(Point): Width and height of the ellipse

Chaining Methods:

• setWidth(Number)

• setHeight(Number)

• setSize(Point)

3.7 Arc

Create: graphics.addArc

Attributes:

• radius(Number): Radius of the arc

• startAngle(Number): Starting angle of the arc

• endAngle(Number): Ending angle of the arc

4



graphix Tutorial Grace

• anticlockwise(Boolean): Draw the arc anticlockwise if set to true. This is set to false by default.

Chaining Methods:

• setRadius(Number)

• setStartAngle(Number)

• setEndAngle(Number)

• setAnticlockwise(Boolean)

3.8 Text

Create: graphics.addText

Attributes:

• content(String): The content of the string

• font(String): Size and font of the text (eg. ”12px Arial”)

Chaining Methods:

• setContent(String)

• setFont(String)

3.9 Line

Create: graphics.addLine

Attributes:

• start(Point): Location of the starting point of the line

• end(Point): Location of the ending point of the line

Chaining Methods: Attributes:

• setStart(Point)

• setEnd(Point)

3.10 Custom Shape

This shape consists of a set of points that you add in order to make a custom shape. Instead of configuring

preset attributes, you just add points to the shape.

Create: graphics.addCustomShape Methods:

• addPoint(Point): Add this point to shape the object

The addPoint method returns the object, so that you can chain together addPoint requests. For example:

import ”graphix” as g

def graphics = g.create(300, 300)

graphics.addCustomShape.colored(”red”).addPoint(40@40).addPoint(0@40).addPoint(40@0).draw

5



graphix Tutorial Grace

3.11 Buttons

A button is a combination of a text object and a shape object, containing all the common attributes of the

other shape objects.

By default, the button will be a light grey rectangle with the text “button.” To change the text, use the

setText method. This will change only the text itself. If you want to change other text attributes such as

the color, size, and font, create a text object with the desired attributes, and then set the text object of the

button with the setTextObj request.

For convenience, several other attributes and methods are available to set the height, width, and color of

the button. These affect the default shape (rectangle) of the button. If a custom shape is specified, these

settings are ignored.

To change the default shape of the button, you can create a shape object with the desired attributes, and

then install the shape object into the button using the setShape request.

Some caveats:

• When the default shape object is used, the graphics library centers the text in the button automatically.

However, if you change the default shape object, you should also create a custom text object and use

the “location” attribute or “at” method on the text object to set its location relative to the reference

point of the shape object. Otherwise, the text may not appear centered on the button as desired.

• If you are assigning a click handler to the button and you are using a custom shape, be sure to set

filled on the shape to true. The button click handler works only on the visible parts of the text and

shape. Therefore, it will work much better if the shape is filled. Otherwise, you will need to click on

the edges of the shape or the actual text, since the empty space between the edge of the shape and the

text will not trigger the handler.

Attributes:

• buttonText(String): text string used in the button

• textObj(Object): Text object created with addText command detailed above

• buttonShape(Object): Shape object created with one of the shape commands detailed above

• color(String): Set the color of the shape

• width(Number): Set the width of the shape

• height(Number): Set the height of the shape

• size(Point): Set the width and height of the shape

Chaining Methods:

• setText(String)

• setTextObj(Object)

• setShape(Object)

• colored(String)

• setWidth(Number)

• setHeight(Number)

• setSize(Point)

6



graphix Tutorial Grace

import ”graphix” as g

def graphics = g.create(200, 200)

def easyButton = graphics.addButton.setText(”click me”).at(10@10).draw

def text = graphics.addText.colored(”red”).setContent(”click me too”).at(−30@(−5))

def circle = graphics.addCircle.setRadius(50).colored(”lightblue”).filled(true)

def fancyButton = graphics.addButton.setShape(circle).setTextObj(text).at(70@70).draw

3.12 Input Box

An input box (created with addInputBox) allows you to create an input box that can be used to accept

strings from the user. There are a number of attributes that can be adjusted with the input box, but, similar

to the shapes objects, all attributes have default values and can be considered optional.

Attributes:

• value(String): The text in the input box.

• width(Number): Width of the input box

• height(Number): Height of the input box

• size(Point): Width and height of the input box

• fontSize(Number): Size of the font

• fontFamily(String): Name of font family (e.g. ”Arial”)

• fontColor(String): Color of the font used in input text

• backgroundColor(String): Color used in background of input box

• borderColor(String): Color used in border of input box

• onSubmitDo(Block): Code block to execute when return key is pressed

Chaining Methods:

• setWidth(Number)

• setHeight(Number)

• setSize(Point)

• setFontSize(Number)

• setFontFamily(String)

• setFontColor(String)

• setBackgroundColor(String)

• setBorderColor(String)

Other Methods:

• focus: This will set the curser (focus) on the input box. This is automatically done when an input

box is created, but the focus can be on only one input box at a time, so you will need to either create

the input box that should have the focus last, or set the focus explicitly after all input boxes have been

created.

7



graphix Tutorial Grace

• draw: Just as with the shape objects, the draw method must be requested to draw the input box.

4 Drawing a Shape

To draw a shape on the graphics window, first create it, then configure it, and then draw it. The following

code creates the output down in Figure 1.

import ”graphix” as g

def graphics = g.create(200, 200)

def circle = graphics.addCircle

circle.color := ”red”

circle.radius := 20

circle.location := 30@30

circle.fill := true

circle.draw

Figure 1: Creating a red circle

5 Adding a Click Handler

Adding a click handler to a shape defines a block of code that will be executed when the shape is clicked.

For instance, let’s say that we want the red circle to turn blue when it is clicked, and we want to add a

message to the user. Then you would add something like this:

import ”graphix” as g

2 def graphics = g.create(200, 200)

def circle = graphics.addCircle

4 circle.color := ”red”

circle.onClickDo {
6 print(”clicked circle”)

circle.color := ”blue”

8 circle.draw

}
10 circle.draw

The circle.draw request on line 8 is used to update the circle object after its color has been changed. This is

necessary because, although the request circle.color := ”blue” updates the state of the circle object, the image

on the canvas won’t change color until the circle is re-drawn. The request circle.draw makes this happen.

The following requests on shapes can be used to set-up handlers; they all take a block as an argument.

8



graphix Tutorial Grace

• onClickDo

• onMouseUpDo

• onMouseDownDo

• onPressMoveDo

• onMouseOverDo

There are also handlers for events on the graphics object itself, rather than on a particular shape:

• onMouseDownDo: Triggers when the mouse is pressed on the graphics object

• onMouseUpDo: Triggers when the mouse is released on the graphics object

• onMouseMoveDo: Triggers when the mouse is moved on the graphics object

• onMouseExitDo: Triggers when the mouse is moved from the graphics object

6 Timed Events and Ticker Events

The graphics object, but not the individual shapes, understands requests to set up one-time or repeating

timers.

6.1 Timed Events—One-time Timers

• after(timeDelay) do(block): executes block once, timeDelay milliseconds in the future.

• clearTimedEvent: clears any delayed blocks.

Timed events are useful when you want to execute a block of code after a delay of some fixed time. The

method after(timeDelay) do (block) can be requested on the graphics object; timeDelay is measured in millisec-

onds, and is the minimum delay that will be observed; the actual delay may be longer. For example.

import ”graphix” as g

import ”sys” as sys

def graphics = g.create(300, 300)

def circle = graphics.addCircle.at(100@200).colored(”red”).filled(true)

circle.onClickDo {
def clickTime = sys.elapsed

graphics.after 1000 do { print(”click delayed for {sys.elapsed − clickTime}”) }
}
circle.draw

If you have set up multiple timed events and want to remove them all, request the clearTimedEvent

method on the graphics object.

6.2 Ticker Events—Repeating Timers

• every(interval) do(block): executes block repeatedly, approximately every interval miliseconds.

• clearTicker: clears all repeating events

9



graphix Tutorial Grace

These methods deal with Tick events; they are useful if you want to make an animation. The request

graphics.every(interval) do(block) establishes a block of code that will execute repeatedly at a rate determined

by the interval argument, which specifies the desired interval between frames in millisecond. The request

graphics.clearTicker will clear all ticker events.

7 Adding sound

The graphix module also supports basic sounds. Sounds are preloaded in the browser and cannot be cus-

tomized at this time. To play a sound, request the play method of the graphics object. For example:

import ”graphix” as g

def graphics = g.create(200, 200)

def rectangle = graphics.addRectangle.at(125@180).colored(”blue”).filled(true)

rectangle.onClickDo {
print(”clicked rectangle”)

graphics.play(”bicycle bell”)

}
rectangle.draw

The following sounds are available: note1, note2, note3, note4, note5, note6, note7, note8, bicycle bell, snap,

whoosh, shutter.

10


	Introduction
	Graphics
	Shapes
	Common Attributes
	Circle
	Rectangle
	Rounded Rectangle
	PolyStar
	Ellipse
	Arc
	Text
	Line
	Custom Shape
	Buttons
	Input Box

	Drawing a Shape
	Adding a Click Handler
	Timed Events and Ticker Events
	Timed Events—One-time Timers
	Ticker Events—Repeating Timers

	Adding sound

