
Software Reliability:
Failures, Errors and Risks

CS 305 — Ethics

1

Ethical Issue

• Computer systems are so complex, we
can’t hope to make them perfect.

• How can we distinguish between:
• errors in a system that are acceptable as trade-

offs for its benefits, and

• errors that are due to inexcusable
carelessness, incompetence, or dishonesty?

2

Reliability of Voting Machines
Proceedings of EVT/
WOTE 2009.
USENIX/ACCURATE/
IAVoSS,
August 2009.

YouTube version:

http://
www.youtube.com/
watch?v=lsfG3KPrD1I

3

Can DREs Provide Long-Lasting Security?

The Case of Return-Oriented Programming and the AVC Advantage

Stephen Checkoway
UC San Diego

J. Alex Halderman
U Michigan

Ariel J. Feldman
Princeton

Edward W. Felten
Princeton

Brian Kantor
UC San Diego

Hovav Shacham
UC San Diego

Abstract

A secure voting machine design must withstand new at-

tacks devised throughout its multi-decade service life-

time. In this paper, we give a case study of the long-

term security of a voting machine, the Sequoia AVC

Advantage, whose design dates back to the early 80s.

The AVC Advantage was designed with promising secu-

rity features: its software is stored entirely in read-only

memory and the hardware refuses to execute instructions

fetched from RAM. Nevertheless, we demonstrate that an

attacker can induce the AVC Advantage to misbehave

in arbitrary ways — including changing the outcome of

an election — by means of a memory cartridge contain-

ing a specially-formatted payload. Our attack makes es-

sential use of a recently-invented exploitation technique

called return-oriented programming, adapted here to the

Z80 processor. In return-oriented programming, short

snippets of benign code already present in the system

are combined to yield malicious behavior. Our results

demonstrate the relevance of recent ideas from systems

security to voting machine research, and vice versa. We

had no access either to source code or documentation be-

yond that available on Sequoia’s web site. We have cre-

ated a complete vote-stealing demonstration exploit and

verified that it works correctly on the actual hardware.

1 Introduction

A secure voting machine design must withstand not only

the attacks known when it is created but also those in-

vented through the design’s service lifetime. Because

the development, certification, and procurement cycle for

voting machines is unusually slow, the service lifetime

can be twenty or thirty years. It is unrealistic to hope

that any design, however good, will remain secure for so

long.1

In this paper, we give a case study of the long-term

security of a voting machine, the Sequoia AVC Advan-

tage. The hardware design of the AVC Advantage dates

back to the early 80s; recent variants, whose hardware

differs mainly in featuring a daughterboard enabling au-

dio voting for the blind [3], are still used in New Jersey,

Louisiana, and elsewhere. We study the 5.00D version

The AVC Advantage voting machine we studied.

(which does not include the daughterboard) in machines

decommissioned by Buncombe County, North Carolina,

and purchased by Andrew Appel through a government

auction site [2].
The AVC Advantage appears, in some respects, to of-

fer better security features than many of the other direct-

recording electronic (DRE) voting machines that have

been studied in recent years. The hardware and software

were custom-designed and are specialized for use in a

DRE. The entire machine firmware (for version 5.00D)

fits on three 64kB EPROMs. The interface to voters

lacks the touchscreen and memory card reader common

in more recent designs. The software appears to con-

tain fewer memory errors, such as buffer overflows, than

some competing systems. Most interestingly, the AVC

Advantage motherboard contains circuitry disallowing

instruction fetches from RAM, making the AVC Advan-

tage a true Harvard-architecture machine.2

Nevertheless, we demonstrate that the AVC Advan-

tage can be induced to undertake arbitrary, attacker-

chosen behavior by means of a memory cartridge con-

taining a specially-formatted payload. An attacker who

has access to the machine the night before an election can

use our techniques to affect the outcome of an election by

replacing the election program with another whose vis-

ible behavior is nearly indistinguishable from the legiti-

mate program but that adds, removes, or changes votes

as the attacker wishes. Unlike those attacks described

1

http://www.youtube.com/watch?v=lsfG3KPrD1I
http://www.youtube.com/watch?v=lsfG3KPrD1I
http://www.youtube.com/watch?v=lsfG3KPrD1I
http://www.youtube.com/watch?v=lsfG3KPrD1I
http://www.youtube.com/watch?v=lsfG3KPrD1I
http://www.youtube.com/watch?v=lsfG3KPrD1I

Feldman, A. J.,
Halderman, J. A., and
Felten, E. W. 2006.
Security analysis of the
Diebold AccuVote-TS
voting machine. In
Proc. 2007 USENIX/
ACCURATE Electronic
Voting Technology
Workshop (EVT ’07).

YouTube version:

http://
www.youtube.com/
watch?
v=aZws98jw67g

4

To appear in P

r

o

c

.

o

f

t

h

e

2

0

0

7

U

S

E

N

I

X

/

A

C

C

U

R

A

T

E

E

l

e

c

t

r

o

n

i

c

V

o

t

i

n

g

T

e

c

h

n

o

l

o

g

y

W

o

r

k

s

h

o

p

(

E

V

T

’

0

7

)

,

August 2007

For an extended version of this paper and videos of demonstration attacks, see http://itpolicy.princeton.edu/voting.

Security Analysis of the Diebold AccuVote-TS Voting Machine

Ariel J. Feldman*, J. Alex Halderman*, and Edward W. Felten*,†

*Center for Information Technology Policy and Dept. of Computer Science, Princeton University

†Woodrow Wilson School of Public and International Affairs, Princeton University

{ajfeldma,jhalderm,felt
e

n

}@cs.princeton.edu

Abstract
This paper presents a fully independent security study

of a Diebold AccuVote-TS voting machine, including its

hardware and software. We obtained the machine from a

private party. Analysis of the machine, in light of real elec-

tion procedures, shows that it is vulnerable to extremely

serious attacks. For example, an attacker who gets physi-

cal access to a machine or its removable memory card for

as little as one minute could install malicious code; mali-

cious code on a machine could steal votes undetectably,

modifying all records, logs, and counters to be consis-

tent with the fraudulent vote count it creates. An attacker

could also create malicious code that spreads automati-

cally and silently from machine to machine during normal

election activities—a voting-machine virus. We have con-

structed working demonstrations of these attacks in our

lab. Mitigating these threats will require changes to the

voting machine’s hardware and software and the adoption

of more rigorous election procedures.

1 Introduction

The Diebold AccuVote-TS and its newer relative the

AccuVote-TSx are together the most widely deployed

electronic voting platform in the United States. In the

November 2006 general election, these machines were

used in 385 counties representing over 10% of registered

voters [12]. The majority of these counties—including

all of Maryland and Georgia—employed the AccuVote-

TS model. More than 33,000 of the TS machines are in

service nationwide [11].

This paper reports on our study of an AccuVote-TS,

which we obtained from a private party. We analyzed the

machine’s hardware and software, performed experiments

on it, and considered whether real election practices would

leave it suitably secure. We found that the machine is

vulnerable to a number of extremely serious attacks that

undermine the accuracy and credibility of the vote counts

it produces.

Figure 1: The Diebold AccuVote-TS voting machine

Computer scientists have been skeptical of voting sys-

tems of this type, Direct Recording Electronic (DRE),

which are essentially general-purpose computers running

specialized election software. Experience with computer

systems of all kinds shows that it is exceedingly difficult

to ensure the reliability and security of complex software

or to detect and diagnose problems when they do occur.

Yet DREs rely fundamentally on the correct and secure

operation of complex software programs. Simply put,

many computer scientists doubt that paperless DREs can

be made reliable and secure, and they expect that any

failures of such systems would likely go undetected.

Previous security studies of DREs affirm this skepti-

cism (e.g., [7, 18, 22, 30, 39]). Kohno, Stubblefield, Ru-

bin, and Wallach studied a leaked version of the source

code for parts of the Diebold AccuVote-TS software and

found many design errors and vulnerabilities [22]. Hursti

later examined the hardware and compiled firmware of

AccuVote-TS and TSx systems and discovered problems

with the software update mechanism that could allow ma-

licious parties to replace the programs that operate the

http://www.youtube.com/watch?v=aZws98jw67g
http://www.youtube.com/watch?v=aZws98jw67g
http://www.youtube.com/watch?v=aZws98jw67g
http://www.youtube.com/watch?v=aZws98jw67g
http://www.youtube.com/watch?v=aZws98jw67g
http://www.youtube.com/watch?v=aZws98jw67g
http://www.youtube.com/watch?v=aZws98jw67g
http://www.youtube.com/watch?v=aZws98jw67g

Bug-free Software
• Should software manufacturers be able

to disclaim responsibility for damages
caused by defective software?
• Mortenson v. Timberline Software

• What about systems containing
embedded software (cars, medical
devices, æroplanes)?

• What about pure hardware systems?
5

Mortenson Company, Inc., v.
Timberline Software Corporation

May 2000: Supreme Court of the state of
Washington upheld a lower court ruling that
validated a shrinkwrap software license.

• In this case, Mortenson (a contractor)
purchased bid-making software from
Timberline that was governed by a shrinkwrap
license agreement. The license agreement
contained the following clause that purported
to limit consequential damages.

6

LIMITATION OF REMEDIES AND LIABILITY

NEITHER TIMBERLINE NOR ANYONE ELSE WHO HAS BEEN
INVOLVED IN THE CREATION, PRODUCTION OR DELIVERY OF
THE PROGRAMS OR USER MANUALS SHALL BE LIABLE TO
YOU FOR ANY DAMAGES OF ANY TYPE, INCLUDING BUT NOT
LIMITED TO, ANY LOST PROFITS, LOST SAVINGS, LOSS OF
ANTICIPATED BENEFITS, OR OTHER INCIDENTAL, OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE SUCH PROGRAMS, WHETHER ARISING
OUT OF CONTRACT, NEGLIGENCE, STRICT TORT, OR UNDER
ANY WARRANTY, OR OTHERWISE, EVEN IF TIMBERLINE HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES OR
FOR ANY OTHER CLAIM BY ANY OTHER PARTY. TIMBERLINE'S
LIABILITY FOR DAMAGES IN NO EVENT SHALL EXCEED THE
LICENSE FEE PAID FOR THE RIGHT TO USE THE PROGRAMS.

7

Mortenson used Timberline's software to
prepare a construction bid. A defect in the
program produced an erroneous bid price
that was off by $1.95 million. Mortenson
sued Timberline for breach of implied and
express warranties. Timberline contended
that the license agreement clause limiting
consequential damages would prevent
Mortenson from recouping damages.

8

Washington State's Supreme Court
affirmed a lower court ruling which found
that
• “the license terms were part of the contract,”

and
• “the limitation of remedies clause was not

unconscionable and, therefore, enforceable.”

In a dissenting opinion, Judge Sanders
stated:

9

“Although the majority states ‘this is a case about contract
formation, not contract alteration,’ Majority at 17, the
majority abandons traditional contract principles governing
offer and acceptance and relies on distinguishable cases
with blind deference to software manufacturers’ preferred
method of conducting business. Instead of creating a new
standard of contract formation—the majority's nebulous
theory of ‘layered contracting’—I would look to the
accepted principles of the Uniform Commercial Code
(U.C.C.) and the common law to determine whether
Timberline's licensing agreement is enforceable against
Mortenson. Because the parties entered a binding and
enforceable contract prior to the delivery of the software, I
would treat Timberline's license agreement as a proposal
to modify the contract requiring either express assent or
conduct manifesting assent to those terms.”

10

Responsibilities of software makers

• Stand behind their product?

• Notify customers of known errors?

• Best practice?

• Best effort?

• No liability?

• Charging for bug fixes?

11

Mars Climate Orbiter

• Loss of orbiter due to mix-up between
British and Metric units.

• Not because of poor specification:
• “a poorly specified interface allowed this error to

remain undetected…”
Quinn, p392

12

13

Mars Climate Orbiter

Mishap Investigation Board

Phase I Report

November 10, 1999

14

6

Executive Summary

This Phase I report addresses paragraph 4.A. of the letter establishing the Mars Climate
Orbiter (MCO) Mishap Investigation Board (MIB) (Appendix). Specifically, paragraph
4.A. of the letter requests that the MIB focus on any aspects of the MCO mishap which
must be addressed in order to contribute to the Mars Polar Lander’s safe landing on Mars.
The Mars Polar Lander (MPL) entry-descent-landing sequence is scheduled for
December 3, 1999.

This report provides a top-level description of the MCO and MPL projects (section 1), it
defines the MCO mishap (section 2) and the method of investigation (section 3) and then
provides the Board’s determination of the MCO mishap root cause (section 4), the MCO
contributing causes (section 5) and MCO observations (section 6). Based on the MCO
root cause, contributing causes and observations, the Board has formulated a series of
recommendations to improve the MPL operations. These are included in the respective
sections. Also, as a result of the Board’s review of the MPL, specific observations and
associated recommendations pertaining to MPL are described in section 7. The plan for
the Phase II report is described in section 8. The Phase II report will focus on the
processes used by the MCO mission, develop lessons learned, and make
recommendations for future missions.

The MCO Mission objective was to orbit Mars as the first interplanetary weather satellite
and provide a communications relay for the MPL which is due to reach Mars in
December 1999. The MCO was launched on December 11, 1998, and was lost sometime
following the spacecraft's entry into Mars occultation during the Mars Orbit Insertion
(MOI) maneuver. The spacecraft's carrier signal was last seen at approximately 09:04:52
UTC on Thursday, September 23, 1999.

The MCO MIB has determined that the root cause for the loss of the MCO spacecraft was
the failure to use metric units in the coding of a ground software file, “Small Forces,”
used in trajectory models. Specifically, thruster performance data in English units instead
of metric units was used in the software application code titled SM_FORCES (small
forces). A file called Angular Momentum Desaturation (AMD) contained the output data
from the SM_FORCES software. The data in the AMD file was required to be in metric
units per existing software interface documentation, and the trajectory modelers assumed
the data was provided in metric units per the requirements.

During the 9-month journey from Earth to Mars, propulsion maneuvers were periodically
performed to remove angular momentum buildup in the on-board reaction wheels
(flywheels). These Angular Momentum Desaturation (AMD) events occurred 10-14
times more often than was expected by the operations navigation team. This was because
the MCO solar array was asymmetrical relative to the spacecraft body as compared to
Mars Global Surveyor (MGS) which had symmetrical solar arrays. This asymmetric
effect significantly increased the Sun-induced (solar pressure-induced) momentum
buildup on the spacecraft. The increased AMD events coupled with the fact that the
angular momentum (impulse) data was in English, rather than metric, units, resulted in

15

7

small errors being introduced in the trajectory estimate over the course of the 9-month
journey. At the time of Mars insertion, the spacecraft trajectory was approximately 170
kilometers lower than planned. As a result, MCO either was destroyed in the atmosphere
or re-entered heliocentric space after leaving Mars’ atmosphere.

The Board recognizes that mistakes occur on spacecraft projects. However, sufficient
processes are usually in place on projects to catch these mistakes before they become
critical to mission success. Unfortunately for MCO, the root cause was not caught by the
processes in-place in the MCO project.

A summary of the findings, contributing causes and MPL recommendations are listed
below. These are described in more detail in the body of this report along with the MCO
and MPL observations and recommendations.

Root Cause: Failure to use metric units in the coding of a ground software file, “Small
Forces,” used in trajectory models

Contributing Causes: 1. Undetected mismodeling of spacecraft velocity changes
2. Navigation Team unfamiliar with spacecraft
3. Trajectory correction maneuver number 5 not performed
4. System engineering process did not adequately address
 transition from development to operations
5. Inadequate communications between project elements
6. Inadequate operations Navigation Team staffing
7. Inadequate training
8. Verification and validation process did not adequately address
 ground software

MPL Recommendations:
• Verify the consistent use of units throughout the MPL spacecraft

design and operations
• Conduct software audit for specification compliance on all data

transferred between JPL and Lockheed Martin Astronautics
• Verify Small Forces models used for MPL
• Compare prime MPL navigation projections with projections by

alternate navigation methods
• Train Navigation Team in spacecraft design and operations
• Prepare for possibility of executing trajectory correction

maneuver number 5
• Establish MPL systems organization to concentrate on trajectory

correction maneuver number 5 and entry, descent and landing
operations

• Take steps to improve communications

16

17

5. Mars Climate Orbiter (MCO) Contributing Causes
and Mars Polar Lander (MPL) Recommendations
Section 6 of NPG 8621 (Draft 1) provides key definitions for NASA mishap
investigations. NPG 8621 (Draft 1) defines a contributing cause as: “A factor, event or
circumstance which led directly or indirectly to the dominant root cause, or which
contributed to the severity of the mishap. Based on this definition, the Board determined
that there were 8 contributing causes that relate to recommendations for the Mars Polar
Lander.

MCO Contributing Cause No. 1: Modeling of Spacecraft
Velocity Changes

Angular momentum management is required to keep the spacecraft’s reaction wheels (or
flywheels) within their linear (unsaturated) range. This is accomplished through thruster
firings using a procedure called Angular Momentum Desaturation (AMD). When an
AMD event occurs, relevant spacecraft data is telemetered to the ground, processed by
the SM_FORCES software, and placed into a file called the Angular Momentum
Desaturation (AMD) file. The JPL operations navigation team used data derived from
the Angular Momentum Desaturation (AMD) file to model the forces on the spacecraft
resulting from these specific thruster firings. Modeling of these small forces is critical
for accurately determining the spacecraft’s trajectory. Immediately after the thruster
firing, the velocity change (ΔV) is computed using an impulse bit and thruster firing time
for each of the thrusters. The impulse bit models the thruster performance provided by
the thruster manufacturer. The calculation of the thruster performance is carried out both
on-board the spacecraft and on ground support system computers. Mismodeling only
occurred in the ground software.

The Software Interface Specification (SIS), used to define the format of the AMD file,
specifies the units associated with the impulse bit to be Newton-seconds (N-s). Newton-
seconds are the proper units for impulse (Force x Time) for metric units. The AMD
software installed on the spacecraft used metric units for the computation and was
correct. In the case of the ground software, the impulse bit reported to the AMD file was
in English units of pounds (force)-seconds (lbf-s) rather than the metric units specified.
Subsequent processing of the impulse bit values from the AMD file by the navigation
software underestimated the effect of the thruster firings on the spacecraft trajectory by a
factor of 4.45 (1 pound force=4.45 Newtons).

During the first four months of the MCO cruise flight, the ground software AMD files
were not used in the orbit determination process because of multiple file format errors
and incorrect quaternion (spacecraft attitude data) specifications. Instead, the operations
navigation team used email from the contractor to notify them when an AMD
desaturation event was occurring, and they attempted to model trajectory perturbations on

Ethical Responsibilities of Software Engineers

17

JCSC 20, 1 (October 2004)

160

The Code establishes a priority in meeting the obligations described in the code. In
all decisions the public interest should be the software engineer's primary concern. To
reinforce the priority of public well being, the Code explicitly identifies the public good
to take priority over loyalty to the employer or profession. Indeed, some of the few
serious objections to the Code arose because of this strong position on the public good.

The Joint Code includes these guides to decision-making, but does not include
examples that illustrate their use. The next sections of this paper provide three such
examples. In the case studies that follow we include a short analysis based on specific
clauses in the code, and based on the Code's advice about making professional judgments.
Computer science faculty are encouraged to adapt these examples in their classrooms, and
to develop new examples based on different case studies. The three cases here were
adapted from Computer Ethics by Deborah Johnson [6], and are used with permission of
the author. The first case was influenced by an earlier paper by Michael C. McFarland.
[7]

2. Case Study about Testing: George and the Jet
George Babbage is an experienced software developer working for Acme Software

Company. Mr. Babbage is now working on a project for the U.S. Department of Defense,
testing the software used in controlling an experimental jet fighter. George is the quality
control manager for the software. Early simulation testing revealed that, under certain
conditions, instabilities would arise that could cause the plane to crash. The software was
patched to eliminate the specific problems uncovered by the tests. After these repairs, the
software passed all the simulation tests.

George is not convinced that the software is safe. He is worried that the problems
uncovered by the simulation testing were symptomatic of a design flaw that could only
be eliminated by an extensive redesign of the software. He is convinced that the patch that
was applied to remedy the specific tests in the simulation did not address the underlying
problem. But, when George brings his concerns to his superiors, they assure him that the
problem has been resolved. They further inform George that any major redesign effort
would introduce unacceptable delays, resulting in costly penalties to the company.

There is a great deal of pressure on George to sign off on the system and to allow
it to be flight tested. It has even been hinted that, if he persists in delaying the system, he
will be fired. What should George do next?

2.1 Particularly relevant clauses in the Joint SE Code
Principle 1. PUBLIC Software engineers shall act consistently with the public

interest. In particular, software engineers shall, as appropriate:

1.03. Approve software only if they have a well-founded belief that it is safe, meets
specifications, passes appropriate tests, and does not diminish quality of life, diminish
privacy or harm the environment. The ultimate effect of the work should be to the public
good.

D. Gotterbarn and K. W. Miller. Computer ethics in the undergraduate curriculum: case studies
and the joint software engineer’s code. J. Comput. Sci. Coll., 20(2):156–167, Dec. 2004.

Therac-25 Incidents
• Marietta, Georgia, June 1985

• breast-cancer patient burned on collarbone

• Oncology center personnel contacted AECL

• Patient suffered crippling injuries, sues AECL and center

• Hamilton, Ontario, July 1985
• Patient burned. Died of cancer Nov 1985

• AECL investigated, unable to reproduce malfunction

• Yakima, Washington, Dec 1985
• Radiation burns in parallel stripe pattern

• AECL claimed that Therac-25 could not have administered an
overdose, and that no similar incidents had been reported.

18

Therac-25 Incidents
• Tyler, Texas: March 1986

• Male patient getting 9th in a series of
treatments
• Video camera and intercom not operating

• Operator corrects “X” to “E”

• patient receives massive overdose and dies

• Hospital shuts down Therac-25

• AECL engineers said that it was impossible for
overdose to be caused by the Therac-25

19

Therac-25 Incidents

• Tyler, Texas: April 1986
• A different male patient

• Operator again corrects “X” to “E”

• patient receives massive overdose and dies

20

Who’s at fault?

• Radiation Technician?

• Hospital Director?

• Programmers who wrote the code?

21

Who’s at fault?

22

at fault? not at fault?

Radiation
Technician

1 2

Hospital
Director

3 4

Programmers
5 6

What should have been done differently?

1. Design was not fail-safe
• no single point of failure can lead to catastrophe

• economized by omitting hardware interlocks that had
been present in previous generations

2. No subsystem for overdose detection
3. Reusing code does not necessarily make a

system safer
4. Communicate!

• with your customers, engineers, operators, …

23

Best Practices

• Best Practices help,
but are not a panacea
• ‘Best’ depends on

context

• “Depending on the
context, sometimes a
practice is ‘best’ and
sometimes it’s not”

Scott Ambler

24

25

26

27

Risks Digest
http://catless.ncl.ac.uk/Risks/index.27.html

Volume 27 Issue 83 (Friday 11 April 2014)
• For once. a good-news story about social media (Mark Brader)
• Problems with Big Data (Gary Marcus and Ernest Davis)
• Clapper Acknowledges Backdoor Searches (Ellen Nakashima)
• "Beware: The cloud's Ponzi schemes are here" (David Linthicum via Gene Wirchenko)
• OpenSSL Heartbleed vulnerability (Alex Hern)
• TA14-098A: OpenSSL 'Heartbleed' vulnerability (US-CERT)
• Experts Find a Door Ajar in an Internet Security Method (Nicole Perlroth)
• "The Heartbleed OpenSSL flaw is worse than you think" (Roger A. Grimes via Gene

Wirchenko)
• NSA monitors Wi-Fi on US planes 'in violation' of privacy laws (RT USA via Dewayne

Hendricks)
• Yahoo breaks every mailing list in the world including the IETF's (John Levine via

NNSquad)
• Technology's Man Problem (Claire Cain Miller via Lauren Weinstein)
• Details of how Turkey is intercepting Google Public DNS (Bortzmeyer via NNSquad)

http://catless.ncl.ac.uk/Risks/27.83.html
http://catless.ncl.ac.uk/Risks/27.83.html
http://catless.ncl.ac.uk/Risks/27.83.html#subj1
http://catless.ncl.ac.uk/Risks/27.83.html#subj1
http://catless.ncl.ac.uk/Risks/27.83.html#subj2
http://catless.ncl.ac.uk/Risks/27.83.html#subj2
http://catless.ncl.ac.uk/Risks/27.83.html#subj3
http://catless.ncl.ac.uk/Risks/27.83.html#subj3
http://catless.ncl.ac.uk/Risks/27.83.html#subj4
http://catless.ncl.ac.uk/Risks/27.83.html#subj4
http://catless.ncl.ac.uk/Risks/27.83.html#subj5
http://catless.ncl.ac.uk/Risks/27.83.html#subj5
http://catless.ncl.ac.uk/Risks/27.83.html#subj6
http://catless.ncl.ac.uk/Risks/27.83.html#subj6
http://catless.ncl.ac.uk/Risks/27.83.html#subj7
http://catless.ncl.ac.uk/Risks/27.83.html#subj7
http://catless.ncl.ac.uk/Risks/27.83.html#subj8
http://catless.ncl.ac.uk/Risks/27.83.html#subj8
http://catless.ncl.ac.uk/Risks/27.83.html#subj8
http://catless.ncl.ac.uk/Risks/27.83.html#subj8
http://catless.ncl.ac.uk/Risks/27.83.html#subj9
http://catless.ncl.ac.uk/Risks/27.83.html#subj9
http://catless.ncl.ac.uk/Risks/27.83.html#subj9
http://catless.ncl.ac.uk/Risks/27.83.html#subj9
http://catless.ncl.ac.uk/Risks/27.83.html#subj10
http://catless.ncl.ac.uk/Risks/27.83.html#subj10
http://catless.ncl.ac.uk/Risks/27.83.html#subj10
http://catless.ncl.ac.uk/Risks/27.83.html#subj10
http://catless.ncl.ac.uk/Risks/27.83.html#subj11
http://catless.ncl.ac.uk/Risks/27.83.html#subj11
http://catless.ncl.ac.uk/Risks/27.83.html#subj12
http://catless.ncl.ac.uk/Risks/27.83.html#subj12

