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Abstract

We describe a reliability algorithm being con—
sidered for DDM, a distributed database system
under development at Computer Corporation of Amer—
ica. The algorithm 1s designed to tolerate clean
site failures in which sites simply stop ruaning,
The algorithm allows the system to reconfigure
itself to run correctly as sites fail and recover
The algorithm solves the subproblems of atomic com—
mit and replicated data handling in an integrated
manner,

1, The Reliability Problem

Database systems use the concept of transac-—
tion to define correct behavior when many users
share a database., A database system (dbs) makes
two guarantees concerning transactions (1) If a
transaction i1s unable to complete, all of its
effects on the database are undone (2) Con-
currently executing transactions will not interfere
with each other. A distributed dbs (ddbs) may sup—
port replicated data, in which case a third guaran-
tee 1s added (3) The copies of each logical data
item will behave like a single copy for purposes of
(1) and (2).

The reliability problem for a dbs 1s to imple-
ment transactions in the presence of failures. We
ident1fy two main subproblems. One, atomic commit,
1s the problem of attaining guarantee (1). The
second subproblem involves the ainteraction of
replicated data with guarantee (2) and is illus-
trated by the following example. Consider a data-

base with logical data items X and Y and copies Xg»

xb’ yc’ and Vq° T1 1s a transaction that reads X

aad wraites Y, T2 reads Y and wraites X. Concurrency
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control is by two phase locking (2PL) ([B61,2,
EGLT]. Replicated data 1s handled by the ’‘intui-
tive' algorithm to read a logical data item, a
transaction may read any copy, to write, a transac-
tion wrates all copies that are up. The following
execution obeys these rules, yet 1s ancorrect,
because the multiple copies do not behave like a
single, logical data item.

ry(x,) -> d-fails > w;(y,.)
rz(yd) -> a-fails =) 'Z(xb)

('rl(x.)' denotes a read of x, on behalf of Tl‘

'd~fails’ denotes the failure of the site storimg

ya» etc. The arrows indicate the order in which

events happen.)

Many reliability algorithms are known for cen—
tralized dbs's (cf [BGH, Gr, GMBLL, HR, Ve]), but
only a few complete reliability algorithms are
known for distributed dbs’'s (ddbs’'s). Many aspects
of ddbs reliability have been studied, 1ncluding
atomic commit [ADEH, Ba, DS2, Ea, FLP, HS, La2, LS,
ML, Re, Sk1,2, SkSt], site recovery [ABG, BHS],
resilient concurrency control for replicated data
[ABDG, AD, Ea, Gi, MPM, Th, TGGL], site status mon-
itoring [HS, Wa), Byzantine gemerals [Dol,2, DR,
DS1,2,3, FFL, LSP, PSL], and network partition [FNM,
PR, St]l. Resilience amalysis of reliability algo-
rithms includes [Co, CB]

This paper presents a reliability algorithm
being considered for DDM, a ddbs under developmeat
by Computer Corporation of America [CDFLNR, CFLNR].
DDM 1s a general purpose ddbs that supports a high
level, entity-relationship data model called DAPLEX
[Sh]. Transactions are Ada programs with embedded
high level data manipulation statements. The logi-
cal database can be fragmented, and each fragment
stored at an arbitrary set of sites. Distrabution
and replication are invisible to the user At com-
pile time, the system translates data manipulation
statements (which, or course, reference the logical
database) into statements that reference fragments.
At run time, the system binds fragment references
to specific fragment copies. A transaction can
execute provided at least one copy of each refer-
enced fragment is available,

The paper has seven sections Section 2
defines the types of failures our algorithm 1s
designed to handle and the system arxchitecture.
Sections 3-6 describe the algorithm itself. Sec-
tion 7 is the conclusion



2, System Nodel

2.1 Failure Assumptions

The sites of a distributed system can fail ain
many ways. The simplest site failures are clean
feilures in which a site simply stops running., The
hardest failures are traitorous failures in which a
site continues to run, but performs 1incorrect
actions. Most real failures 1lie between those
extremes., After a fault occurs, the site runs
incorrectly until the fault 1s detected, whereupon
the site stops.

We assume that all faults are detected before
serious damage 1s done so that from the system
standpoint all site failures are clean Also, when
a failed site recovers, it ’'knows’ that it failed
and can 1nitiate a recovery procedure. (These
assumptions are aimplicit 1in all centralized dbs
reliability algorathms [GMBLL].)

While a site 1s down, other sites must be able
to detect this fact [FLP], In early days of the
Arpanet, the network implemented failure detection
internally, but today’s networks do not offer this
service., As a practical matter, the only mechanism
available for detecting site failures is timeouts.
For purposes of this paper, we assume that some
failure detection mechanism exists, but do not
specify which one. We assume that the mechanism is
foolproof if the mechanism declares a site down,
then indeed the site has failed, (This assumption
is reasonable in the case of the early Arpanet
mechanism, It 1s less reasonable for timeouts.)

Most network errors, e.g., lost, duplicate, or
garbled messages, are handled by standard network
software and are not considered here. From our
standpoint, the only network failures are parti-
tions in which two or more running sites are unable
to communicate, Our algorithm 1s not designed to
handle partitions.

To summarize The reliability algorithm
described 1n this paper 1s designed to handle an
arbitrary number of clean site failures It

sssumes that site failures are detectable by other
sites, It 1s not designed to handle network parti-
tions,

2.2 System Architecture

The system consists of four levels of virtual
machine,

DDBS Functions

Process Incarnations

Processes

Sites

The bottom level contains gites (i.e., computers)
connected by & computer—-to-computer network, Next
are processes connected by a process—to-process
network, A process is a concurrent program running
at a single site, On top of this we implement pro-—
cess incarnations connected by a corresponding net-
work., A process incarnation 1s one ’'lifetime’ of a
process starting when the process recovers from
failure and ending when 1t fails again. The top
level supports standard ddbs functions data

managers (DNs) and transactions managers (TMs).

The bottom two levels are standard and we do
not describe their implementation, Section 2.3
defines the behavior of the process level. Sec~
tions 3-6 describe the remaining levels

We model a computation as a partial order of

events, using Lamport’s happens-before partial
order [Lall

The logical database is a set of
files, each of which may be stored at any number
(21) of sites. The copies of a logical file are
called physical files.

A transaction 18 a program that starts wath
Begin, ends with End, and contains Read and Update
commands referencing logical files.,

2 3 Processes

A process exists in two states, up and gJown.
An up process 1s one that is runming correctly.
When a process fails, 1t enters the down state
where it does nothing. (A process is also down
before it is initiated.) Later, the process can
recover and return to the up state. When a process
recovers, it ’'knows’ that it failed and executes a
specified recovery procedure. Each process has
some gtable gtorage whose contents are unaffected
by failures.

We posit the existence of a failure detection
mechanism that lets an up process determine the
state of another process.

Processes interact by sending messages through
the network. If process p sends message M to pro-
cess q there are three possible outcomes (1) q
receives M. (2) q fails and p 13 notified that q
has failed. (3) p fails. Note that if q does not
receive M, p 1s aware that a failure occurred
(either p failed, q failed, or both),

3. Process Incarnation

The process incarnation level synchronizes
process failures and recoveries. This level lets
higher levels act as 1f failures and recoveries
happen sequentially in a well-defined order.

We define the behavior of this level in Sec-
tion 3.1 and describe its implementation in Section
3.2, Section 3.3 treats the special case of total
failure.

3.1 Fonctiomality

A process incarnation (or simply, incarmation)
exists in four states with the following transi-
tions,

dormant ——) recovering —) in —) out
¢ 4 t

A dormpapt incarnation does nothing, A

incarnation can interact with other parts of the
system (e.g., to bring its database up to date) but
cannot process user transactions., An jn incarma-
tion is fully operational. An out incarmation is
‘dead’ and does nothing, Once an incarnation is
out 1t never again participates in the system. An
incarnation goes out when 1ts process fails or is
brought down for reasons such as maintenance.
Incarnations of a given process are totally
ordered, each incarnation remains dormant uantil the
preceding omnes are out. Incarnations of a given
process share the same stable storage to pass



information from one incarnmation to the next,

Transitions to in or out are governed by
status transactions, Include and Exclude. A status
transaction may be invoked by any 3in incarnation
and informs all 1in 1ncarnations of the state
change. Include(1) informs all in 1incarnations
that 1 1s in and tells 1 all status information
known to the 1invoker., Exclude(1) tells all in
incarnations that i 1s out. An incarnation is in
(resp. out) once any incarnation knows the state
change.

The system executes status transactions seri-
alizably. More precisely, the system forces a

total order over status transactions, say

$1:,82,0 <28, Each incarnation i executes a (pos-—
sibly empty) subsequence 8,58 4qs000s8 where sy is
Include(1),

database

J
'j is before or is Exclude(1), and all

operations executed by 1 come between 8

and sJ in the happens-before partial order. Sec—
tion 3.2 explains how we achieve this property.

The transition from dormant to recovering does
not mneed a status transaction. A dormant incarna-
tion can enter the recovering state any time after
1ts previous incarnation is out.

Incarnations of different processes ainteract
by sending messages through the network. If incar-

nation 1 sends message M to j, there are four pos-
sible outcomes (1) 3 receives M. (2) 3 is
Excluded. (3) 1 1s Excluded. (4) Total failure —-
the processes of all in incarnations fail.

Let us consider the above
the standpoint of an individual process, p. When p
recovers, 1ts next incarnation, 1, begins to exe-
cute in the recovering state, Incarnation i may
remain 1n this state for some time. Eventually,
when 1 decides to be Included, 1t finds an an
incarnation, 1', and requests that 1’ invoke
Include(1). (If no 1n i1ncarnation exists, this is
a total failure, See Section 3.3.) Incarnation 1’
invokes Include(1), thereby moving i to the an
state. When p fails, some in aincarnmation, 1’,
invokes Exclude(1).

functionality from

Each incarnation maintains a status database
telling the status of all incarnations known to it.
The database 1s updated by status transactions and
by the receipt of messages from recovering incarna—
tions.

The incernation level provides the
functions for higher levels of the system.

followang

- Retrieve from status database.

— ¥Watch for a specified state change. The hagher
level 1s interrupted when the status database 1s
updated in the specified manner,

— Broadcast message M to a set of recipients. The
recipients are incarnations and may be in any
state. Each in recipient 1s expected to gen—
erate a response, The broadcast completes when
all 1in recipients have acknowledged M, and all
other recipients have either been Excluded or
not yet Included.

tran—
Con—

Broadcasts are synchronized with status
sactions to achieve the following property.

sider a broadcast, b, i1nvoked by incarnation 1, and

10

let be the sequence of status tran-

81,31+1,. -;SJ

sactions executed by 1. The broadcast can be
inserted into the sequence, e g., as
‘1'31+1’""sx+k’b'sx+k+1""'83 such that 1 gets

acknowledgements from all recipients whose Include

precedes b and whose Exclude follows b (or does not
appear) Section 3.2 explains how we achieve this
property.

3.2 Implementation

We now describe the implementation of the
incarnation level in terms of the process level.

Each process has an incarnation number stored
on stable storage which 1s incremented each time
the process recovers, The combination of a process
name and an incarnation number uniquely identifies
an incarnation,

Each message sent botween incarnations carries

the incarnation numbers of the sender and intended
recipient. Call these the send-number and
receive—number, respectively. If a process
receives a message with an o0ld send—-number, this

indicates that the message has been adrift in the
network for a long time, and is no longer applica-

ble. In this case, the recipient ignores the mes-—
sage. If a message has an old receive-anumber, this
indicates that the recipient process failed and

recovered without the sender mnoticing the failure.
In this case the recipient sends a response indi-
cating the failure.

A process, p, may discover that another pro-
cess has failed either directly via the system's
failure detection mechanism or aindirectly by the
mechanism of the previous paragraph. When p das—
covers the failure 1t invokes an Exclude transac—
tion, unless the Exclude is already underway.

Status transactions execute using a variant of

Skeen’s atomic broadcast protocol [Sk1,2, SkSt].
We describe the Include transaction, Exclude is
similar

Include(1) invoked by incarnation j

Step 1.

¢ Incarnation j broadcasts 'Prepare—to—Include(1)’
to all 1n incarnations including itself,

¢ Each recipient treats the message as a request
for an Include lock on 1. The recipient grants
the lock and acknowledges the message unless 1t
1s already holding an Include or Exclude lock omn
any incarnation, Include locks also conflict
with Broadcast locks, defained shortly.
Deadlocks are, of course, possible here. A
non-preemptive deadlock avoidance scheme, like
Wait-Die [RSL], 1s a suitable way of bhandling
these deadlocks.

¢ This step completes when all recipients have
acknowledged the message or failed.

Step 2.

¢ Incarnation 3 sends 1ts status database to 1,

and broadcasts ‘Include(1)’ to all in incarna-
tions including atself and i.

¢ Each recipient updates its status database, and

releases the lock set in Step 1.



If 3 fails before completing the transaction,
a variant of Skeen’s distributed termination proto—
¢ol [Sk1,2, SkSt] 1s run, Define incarnation k to
be 1incomplete relative to the transactionm if k 1s
holding the Include lock set by the tramsaction,
and k's process has not failed. An incomplete
incarnation simply reinvokes the transaction from
the beginning. The messages sent in Step 1 indi-
cate that this 1s a reinvocation, A recipient
holding a lock from an earlier invocation lets the
new lock preempt the earlier one. A recipient that
completed the earlier transaction acknowledges the
message immediately without setting a lock.

The status transaction algorithm and termina-
tion protocol achieve the following properties.
(1) If any incarnation completes the transaction,
then every in incarnation completes the transaction
or fails before the transaction completes. (2)
Status transactions are totally ordered.

Broadcasts execute with a weaker protocol that
synchronizes them relative to status transactions
but does not attempt termination 1f the invoker
fails

Broadcast M to set I invoked by incarmation j
Step 1
¢ Incarnation J locally sets a Broadcast lock on
I. This lock conflicts with an Include lock on
any member of the set I.

¢ Incarnation J broadcasts M to all in members of

¢ Each recipient acknowledges M.
not set locks,

Recipients do

¢ This step completes when all recipients have
acknowledged the message or have been Excluded.

Step 2

¢ Incarnation j releases its Broadcast lock.

3.3 Recovery from Total Failure

A total failure has occerred when all in
incarnations have failed

Normally, when a process recovers from failure
1ts next incarnation begins to execute and finds an
an incarnation to Include 1t, If the incarnation
cannot find an in incarnation, 1t assumes a total
failure has occurred, and the new incarnation stops
running. The previous incarnation resumes, and
runs the LAST SURVIVORS algorithms described below.
(See also [Sk3].)

The LAST SURVIVORS algorithm calculates the
set of incarnations that failed last., An incarna-
tion 1s 1n this set 1f it has béen Included, but
not Excluded. The algorithm, run by incarmation 1,
maintains four sets.

S= {incarnations j that 1 has heard from
while running the algorithm}

ALL= {incarnations k | some 3 1n S has
Included k}

OUT= {incarnations k | some j in § has
Excluded k}

IN = ALL - OUT

= {incarnations k | some j in S has Included
k and no 3’ in S has Excluded k}

The algorithm initializes these variables to
s = {1}

ALL = {k | k's state 1s 1n or out in 1's status
database)}

OUT = {k | k’s state is out 1n i’'s status
database)

IN = ALL - OUT

Recovering processes exchange messages indi-
cating the current values of S, ALL, and OUT. When
i receives such a message, containing say S', ALL’,
and OUT', 1t updates 1ts variables.

S =8U0s’

ALL = ALL U ALL’
OUT = OUT U OUT!’
IN = ALL - OUT

It can be proved that when S2IN, then IN is the
desired set of last survivors, call this set LAST.
Also, all incarnations that run the algorithm cal-
culate the same value of LAST.

When LAST 1s calculated, i updates its status
database to show all members of LAST to be in, and
all other non—dormant incarnations ouwt. If i is in
LAST, it resumes normal operation, Otherwise, i
was not a last survivor and stops running. To
resume operation, 1’s mnext incarnation must be
Included in the normal way.

4 Data Managers

Data managers (DMs) store and manage the data—
base. This section describes DM operation under
normal conditions Section 6 considers DM failures
and recoveries.

Each DM stores a single physical file. When
no confusion 1s possible we blur the distinction
between a DM and the file it stores. For each log-
1cal file X, the set of DMs that store the copies
of X forms a logacal DM for X.

The state of a DM (or, equivalently, the file
1t stores) 1s the state of 1ts incarnation., An jin
file has two substates, online and offline. On

online file 1s up—to—date and can be used for tran~

saction processing An offline file 1s not up-to-
date, offline 1s a transient state through which a
DM passes during recovery. A recovering DM 1s
always offline. For other DM states the substate
1s irrelevant,

An online DM x processes the following opera—
tions. Ready.

¢ Retrieve a portion of x on behalf of transaction
t.

® Updatet. Modify x on behalf of transaction t.
The update 1s not permanent at this time and may
be undone by a subsequent Abortt. The operation
also creates an update log (similar to a REDO

log [6r]) containing enough information to per—
form the update on other copies of the file. If



transaction t updates x more than once, the
update logs are collected into a single log.
The update log may be distributed to the other
copies of the file in the background while tran-
saction t executes, or when t ends.

* Endt. If transaction t has updated logical file

X, the DM obtains the update log and applies it
to the database. The update is not yet per-—

manent, Otherwise, the operation has no effect.
* Conmitt. Install t's updates permanently in the
database.
* Abortt. Undo t's updates.

The DM performs these operations under the
command of the transaction manager (TN) controlling
transaction t. When the DM completes an operation
it returns a positive response to the TM. Occa-
sionally, the DM may reject a Read, Update, or Ead
operations, e.g., because of deadlock, When this
happens the DM returns a negative response to the
TN who then aborts the transaction (see Section §).
Commits and Aborts can never be rejected. Once o
DN performs an operation on behalf of tramsaction
t, the DM Watches t's TM., Section 5 explains what
happens if the TN fails, The Watch is turned off
when t commits or aborts.
distributed

Concurrency control is by basic

two phase locking (2PL method 12 of [BGl1]). Locks
are held until Commit or Abort.
Each DM maintains a recovery log containing

enough information to bring an offline copy up-to-
date. The recovery log contains (1) A gommjitted
tzansaction list (CIL)

identifiers for all transactions that have
ted at the DM. (2) An aborted trapsaction
(ATL) analogous to the CTL. (3) A pending transac—
tion 1list (PIL) identifying transactions that have
executed at the DM but are not yet committed or
aborted. (4) The update logs for all transactions
whose End operation has been executed at the DM.

consisting of transaction
commit-

An offline DM x processes a single operation,
Rollforward. The DM obtains the recovery log
stored by some online member of 1ts logical DM. DM
x applies the wupdate log to 1ts database and
updates 1ts CITL, ATL, and PTL accordingly,

5. Transaction Managers

Transactions managers (TMs) control transac—
tion executions., This section describes TN opera—
tions under normal condations. Section 6 considers
TM failures and recoveries.

Each transaction, t, issues all of its opera-
tions to a single TM. The TM binds the logical
files referenced by t to physical copies that are
available when t executes, The TM also coordinates
atomic commit and abort. TMs are grouped into log-—

TMs analogous to logical DNs. The members of
s logical TM serve as backups for each other during

atomic ocommit, and store replicated copies of com—
mitted, aborted, and pending transaction 1lists
(CTLs, ATLs, and PTLs).

TMs exist in online and offline substates,
defined as for DMs (see Section 5).

An online TM supports the following activi-

ties.

12

File . For each logical file, X,
referenced by transaction t, the TM selects a phy-
sical copy, x. The set of physical files seclected
for t is called its materjalizatjon.

ali [} ing. The TM watches each
file in t's materialization using the Watch func-
tion of the incarnation level (see Sectiom 3). I1f
any file is Excluded before Phase 2 of atomic com—
mit (define below), the TM aborts t.

Abort. The TM executes an Abort
analogous to the status transactions of the incar—
nation level (see Section 3).

Step 1.

¢ The TN broadcasts ’'Prepare—to-Abort(t)’' to the
members of its logical TM using the incarnation
level Broadcast.

¢ Each recipient tries to set an Abort lock on t,
Abort lock on t conflict with each other and
with Commit locks on t (defined shortly). A
Wait-Die scheme [RSL] can be used to preveat
deadlocks,

¢ This step ends when the Broadcast completes,
that is, all recipients have acknowledged the
lock or been Excluded.

Step 2.

¢ The TH sends 'Abort(t)’ to all ip members of its
logical TN and all jn DNs who wore sent any
operations for t.

¢ Each TM recipient updates its ATL and PTL,
releases the lock set in Step 1.

and

If the TH fails before completing the Abort
transaction, a termination protocol like that of
Section 3 is invoked.

The TM can abort a transaction at any time
until Phase 2 of atomic commit begins. Thereafter,
the commit algorithm governs all aborts,

Atomic commit., We use a variant of three
phase commit [Sk1l, Sk2, SkSt].

Phase 1.

¢ For each logical file X that t updated, the TN
broadcasts End, to all copies of X using the

incarnation level Broadcast function.
¢ Each DM processes Endt as described in Section 4
and responds positively or negatively to the TN,

¢ This phase ends when all recipients  have
responded or been Excluded. There are two pos-—
sible outcomes. If any DM responded mnegatively,
or if any DM in t's materialization has been
Excluded, the TM aborts t. Otherwise it coatin—
ues the commit protocol,

Phases 2 and 3 constitute a Commit transaction
virtually identical to the Abort transaction,

Phage 2.

¢ The TM broadcasts ’‘Prepare—to—Commit(t)’ to the
members of its logical TN using the incarnation
level Broadcast.



¢ EBach recipient tries to set a Commit lock on t.
Commit 1locks on t conflict with each other and
with Abort locks on t.

¢ This phase ends when the Broadcast completes,
that is, all recipients have acknowledged the
lock or been excluded.

Phase 3.
¢ The TH sends 'Commit(t)’ to all jn members of
its logical TM and all jn DNs who were sent

End’s in Phase 1.

¢ Each TM recipient updates its CIL and PIL, and
releases the lock set in the previous step.

If the TH fails (and is excluded) before com—
mitting or aborting transaction t, there are three
cases, (1) Some in member of the logical TN has
received the 'Prepare’ message but not the ‘Commit’
or 'Abort’, (2) No jin member has received the
'Prepare’. (3) All jip members have received the
'Commit’ or 'Abort’. Case (1) is solved by a ter-
mination protocol virtually idemtical to the one in
Section 3. Cases (2) and (3) require DM interven-
tion, When a DN that processed an operationm for t
notices the TM failure, it contacts another member,
T', of the logical TN. If T’ has not received the
‘Prepare’, T' attempts to abort t by inmvoking the
Abort transaction, If T' bhas received the 'Commit’
or 'Abort’, T' completes the protocol by executing
the last step or phase.

An offljne TN supports a single functionm,
Rollforward. The TM obtains the CTL, ATL, and PIL
stored by some online member of its logical TM, and
updates its own lists accordingly.

We now describe TN behavior
operations issued by transactionms,

in response to

* Begint. The TK assigns transaction t a globally

unique transaction identifier. All messages
sent by the TN on t’'s behalf carry this identif-
ier,

1] Rendt(x). The TH issues keldt(x), where

the copy of X in t's materialization, The data
returned by DM x is passed to t. If x reojects
the Read, the TM aborts t.

Similar to Read.

x is

* Update (X).

* Abortt. The TM invokes the Abort transactionm to
abort t.
[ Endt. The TN invokes atomic commit.

6. Failures and Recoveries

When a DM or TN fails or recovers, other parts
of the system must react. This section describes

system behavior in response to failures and
recoveries.
6.1 DM Fajlures

When DM x fails, the incarnation level will
Exclude it, This has an effect on transactions

that access x. If transaction t wupdates
file X, t cannot commit until x is Excluded.

logical
(This

is enforced by the Broadcast of End, to all copies
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of X; see Section 5.) If t reads x, it will be
aborted if x is Excluded before t reaches Phase 2
of commit, (This is enforced by materialization
watching, see Section 5.) These conditions are used
to avoid the replicated dats anomaly illustrated im
the Introduction.

6.2 IM Failures

When a TM, T, fails and 1s excluded, the sys-—
tem may have to abort transactions that were con—

trolled by T. This 1s governed by the termination
protocol described in Section 5.
6.3 DM Recoveries

When a DM x recovers, it is in the offline

state and cannot process database operations. DN x
moves to the online state by running & variant of
Atar et al.’'s recovery algorithm [ABG].

Step 1. Set aside a copy of the status dats-
base. (This is needed for total failure, see Sec—
tion 6.5.)

Step 2. The incarnation level Includes x.

Step 3. DM x executes the Rollforward opera—
tion to brimg itself up-to—date. (See Section 4.)
Rollforward requires an onling copy of the logical
file. If no copy exists, this is & total
failure case and is handled in Sectionm 6.5.

Step 4 DM x sets its substate to online and
discards the database saved in Step 1.

If DM x was down for a long time, the Rollfor-
ward might take a long time to complete. During
this period no transaction that wupdates logical
file X can commit, To shorten this period, DM x
can execute Rollforward before being Included.
This will bring x ‘almost’ up-to-date and allow the
Rollforward in Step 3 to complete more rapidly.

6.4 IM Recoveries

The algorithm of Section 6.3 works for TM
recoveries too, except the Rollforward operation is
the one defined in Section 5., That is, it brings
the CTL, ATL, and PTL at the recovering TM up-to—
date.

6.5 Recovery from DM Total Fasilure

A DM total failure occurs where all online
members of a logical DN have failed. Recovery from
DM total failure is similar to recovery from total
failure described in Sectiom 3.3.

As DMs recover, they eoxecute the LAST SUR-
VIVORS algorithm of Section 3.3. The algorithm
gets its initial values from the status database
saved in Step 1 of the DN recovery procedure (see
Section 6.3) and restricts all values to members of
the logical DM. VWhen the algorithm terminates, it
has identified the last surviving DMs. Each DM
then resolves any pending transactions. For each
pending transaction t, the DN obtains t's status
from any member of t's logical TN.

An important special case of DM total failure
is the case of nonreplicated data. If x is the
only copy of logical file X, every failure of x is
a total failure., In this case, the LAST SURVIVORS
algorithm terminates immediately, and x need only
resolve pending transactions.



6.6 Recovery from TM Total Fajluge

TM total failures are analogous to the DM case
and are handled similarly. When the last survivors
are found, pending transactions are resolved by
running the commit termination protocol (see Sec-
tion 5) for each ome.

7. Conclusion

Replication 18 the key factor in making a ddbs
more reliable than a centralized dbs, replicated
data management and replicated transaction manage-
ment, A ddbs reliability algorithm is, first and
foremost, an expert at handling replication.

Our algorithm makes the
concerning replicated data.

following guarantees

1. The copies of each logical file behave 1like a
single copy from the standpoint of logical
correctness.

2, A transaction can execute provided at least one
copy of each logical file 1t references 1is
available,

3. When a copy of a file recovers it can be rein-
tegrated into the system provided at least ome
other copy 1s already available,

If all copies of a file faal,
become savailable again when
copies recover.

the file will
'enough’ of the

Our algorithm makes similar guarantees
cerning replicated transaction management.

con—
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