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Abstract 

We doscrlbo a rolrability algorithm borng con- 
eldered for DDM, a dlstrlbutod database system 
under dovolopmont at Computer Corporation of Amor- 
ioa. The algorithm IS designed to tolerate oloan 
site failures In which sltos simply stop running. 
The algorithm allows the system to rooonfiguro 
itsolf to run oorroctly as sitos fail and rocovor 
The algorithm solves the subproblems of atomic com- 
mit and roplioatod data handling in an intograted 
mannor. 

1. The Reliability Problom 

Database systems uso the oonoopt of trrnsao- 
&R to dofino correct bohavior when many usors 
share a database. A databoso system (dbs) makes 
two gu*rantoos concerning transactions (1) If a 
transaction is unablo to complete, all of its 
effects on the database at0 undone (2) Con- 
currently executing transactions rill not rntorforo 
with each other. A distrzbutod dbs (ddbs) may sup- 
port replicated data, In which oaso a third guaran- 
too 1s added (3) The copies of each logical data 
item xl11 behave llko a single copy for purposes of 
(1) and (2). 

The rollablllty problem for a dbs 1s to implo- 
mont transaotrons in tho presence of fatlures. We 
ldontlfy two man subprobloms. One, atomic commit - -* 
18 the problem of attaining guarantee (1). The 
second subproblom involves the rntoractlon of 
replicated data rith guarantee (2) and is illus- 
tratod by the following oxamplo. Considor a drta- 
base wltk 1Oglcsl data ltoms X and I and GOPies x,# 

se Yes and Yd’ Tl 1s a transaction that roads X 

and writes I, T2 roads Y snd wrltos X. Concurrency 
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control is by two phase locking (2PL) [BGl,2, 
RGLTI . Roplioatod data IS hmdlod by the ‘intui- 
tive’ algorithm to read a lOglca1 data itom, a 
transaction may road any copy, to rrlto, a transac- 
tion rrltos all copies that aro up. The following 
exsoutlon obeys thoso rulos, yot 1s inoorroot, 
because tho multiplo copios do not behave like l 
srnglo. logical data item. 

rl(xa) -> d-falls -> rl(y,) 

r,(y,) -> a-fails -> u2(xbb) 

(‘rl(xa)’ donotos a road of xa on behalf of Tl, 

‘d-fails’ denotos tho failure of the site storing 

yd, etc. The arrows xndicato the order in which 

ovonts happen. ) 

Bany rolsablllty algorithms aro known for eon- 
tralrzod dbs’s (of [BGE. Gr, GRBLL. RR, Vo]), but 
only a few complete rollablllty algorithms are 
known for distributed dbs’s (ddbs’s). Rany aspoots 
of ddbs reliability have been studied, including 
atomic commit hiDEB, Ba, DS2, Ea. FLP, ES, La2, LS. 
RL. Be, Sk1.2, SkStl, slto recovery [ABG, ES], 
resilient concurrency control for roplicatod data 
[AEDG, AD, Ea, Gi. RPB, Th, TGGLj, sit.0 status mon- 
itoring [ES. Wal, Byzantine generals lDol.2. DR. 
D$,2H:j FFL, LSP, PSLI, and network partition [Ey. 

Reslllonoo analysis of reliability rlgo- 
riihms I&zludos [Co, CB] 

This paper presents a reliability algorithm 
bolng conssderod for DDM, a ddbs under dovelopmont 
by Computer Corporation of America [CDFLNR, CFLNR]. 
DDB is a general purpose ddbs that supports a high 
level, entity-relationship data modol called DAPLFX 
[Shl. Transactrons are Ada progrsms with omboddod 
high level data manipulation statomonts. The logi- 
oal database can be fragmented, and each fragment 
storod at an arbitrary sot of sltos. Distribution 
and replication are invlsiblo to the usor At com- 
pile time, the system tre+nslatos data manipulation 
statements (which, or course, roforonoo the logical 
database) into statomonts that roforonco fragmontr. 
At run timo, the system binds fragment roforonoss 
to specific fragment oopios. A transaction can 
oxocute provided at loast ono copy of each rofor- 
oncod fragment is available. 

The papor has sovon sections Soction 2 
def inos the types of failures our algorithm 1s 
designed to handle and the system archltootoro. 
Soctlons 3-6 doscribo the algorithm itsolf. Soc- 
tlon I 1s the conclusion 
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2. System Yodel 16n6gors (DNs) 6nd tr6ns6ctions m6n6gors (‘~XS). 

1.A F6lluro Assumutions 

The sites of 6 distributed system can fall in 
many rays. The simplest site failures are olsan 
friluror in rhlch 6 ssto simply stops running. The 
h6rdost failures 6ro tr6itorons f6lloroq in which 6 
site continues to run, but performs incorrect 
6ctions. Most real faslaros 110 between tho6o 
oxtromos. After 6 f6ult occurs, the site runs 
incorrectly until the fault 1s detected, whereupon 
the rrto stops. 

We assume th6t all faults 6ro detected before 
serious d6mago 1s done so th6t from the systm 
strndpolnt all site fallares aro clo6n Also, when 
6 failed site recov6r6, it ‘knows’ that it failed 
6nd can Inrtiato a recovery procedure. (Those 
6ssumptlons are rmplicit In 611 centralized dbs 
rollabIlIty algorithms [GULL].) 

While a site LS down, other sites must be able 
to detect thrs fact [FLPI. In early d6ys of the 
Arp6not. the network implemented failure detection 
;;~;;:llY# but today’s networks do not offer this 

. As a proctlc61 matter, the only mechanism 
6v6il6ble for detecting site f6iluros is timeouts. 
For purposes of this prpor. we 6ssumo thrt some 
friluro detection moch6nism exists, but do not 
specify which one. We 6ssumo that the mooh6nism ir 
foolproof if the moch6nism declares 6 site down, 
then indeed the site has failed. (This 666umption 
is roclsonrblo in the ~680 of the early Arpanot 
mechanism. It IS loss rorsorurblo for timeouts.) 

The bottom tro lovols 6ro standard 6nd we do 
not describe their lmplemontatron. Section 2.3 
defines the boh6vlor of the process level. SOC- 
tionr 3-6 describe the remaining lovols 

We model a computation as 6 part161 order of 
events, u6ing Lmport’s hauuons-Before p6rti61 
order CL611 

fllOS 
The logic61 datsb6so is a sot of jo6ic~ 

86oh 
m;f sites. 

of which may be stored at any number 
The copies of 6 logic61 file 6ro 

called phvsic61 filer. 

A tr6nsaotion IS a program that 6t6rts rrth 
Begin, ends with End, and contains Bead and Update 
commands roforonclng logical files. 

12 Procoss0s 

A process oxlsts xn two states, m and a. 
An gg prooo66 1s one that IS running correctly. 
When a process falls, it enters the m st6to 
whore it door nothing. (A process is 6180 dam 
before it is initiated.) LItor, the process c6n 
recover and return to the m st6to. When 6 process 
recovers. it ‘knows’ that it failed 6nd oxoontos 6 
specified recovery procedure. Each process h6s 
some _rt6blo 6torsnb whose contents are -un&ffoctod 
by friluros. 

We posit tho oxictoncr of a f6ilnro detection 
mechanism that lots 6n pp process determine the 
state of 6nothor process. 

Most network errors, e.g., lost, duplicate, or Procossos intor6ct by sending moss6gos through 
g6rblod messages, are h6ndlod by standard network the network. If process p sends moss6go Y to pro- 
software and are not considered hero. From our 008s q there are three possible outcomes (1) q 
st6ndpolnt. the only network failures are p6rti- receives Y. (2) q fails 6nd p 16 notified th6t q 
tionr in which two or more running sites are unrblo h6s failed. (3) p f6il6. Note th6t if q door not 
to oonmunioato. Our algorithm IS not doslgnod to receive Y. p is 6varo that a friluro occurred 
h6ndlo partitions. (either p failed, q failed, or both). 

To summarize The rolI6bllity algorithm 
described in this paper IS designed to handle an 
6rbItrary n-bet of clean site failures It 3. Process Incarnation 
“‘D‘lo6 that site failures are detectable by other 
s1tos. It 1s not doslgnod to handle network parti- The process Incarnation level synohronlzos 
tions. procosr fa~luros and recoveries. This level lots 

higher lovols act 66 if farluros and recoveries 
happen sequentially in a roll-defined order. 

2.1 Svstom Atchltectllre 

The system consists of four levels of virtual 
m6ohIno. 

We define the behavior of this level in Soc- 
tion 3.1 and describe its ~mplomontrtion in Section 
3.2. Section 3.3 treats the special case of tot61 
failure. 

DDBS Funotsons 

Process Incarnation6 

2.2 Eunctionnlity 

A process rncorn6tron (or simply, ino6rn6tion) 
exists in four st6tos with the following tr6nsi- 
tions. 

Proco6so6 dormant -) recovering -> in --> out 
4 4 t 

sites A porm6nt incarnation door nothing. A ~ocov~ 
inc6rn6tion c6n intor6ct with other p6rts of the 
svstom (0.~. to brinn its d6t6b6so UD to d6to) but 

The bottom level contains rltrr (i.e.. computers) 
connected by a computer-to-computer network. Next 
are proc86so6 connected by a process-to-process 
network. A process is a concurrent program running 
at a single site. On top of this wo implement O~O- 

3 ln o;rnations connooiod by a corresponding not- 
. A urocess IncarnatIon IS one ‘llfotimo’ of a 

process itatting when the process recovers from 
f6iluro 6nd ending when rt fail6 again. The top 
lovol support6 st6nd6rd ddbs functions d6t6 

o&not ‘pr&;ss user-transactions. h h in&m- 
tion is fully oporation61. An & ino6rn6tion is 
‘dead’ and door nothing. Once an incarnation is 
m it novor ag6in participator in the systm. An 
incarnation goes & when Its proco6c f6ils or is 
brought down for reasons such as m6intolunoo. 
Inc6rnations of 8 given process are totally 
ordered. each inoorn6tion rom6in6 Porm6pt until the 
preceding ones are m. Incarnations of a given 
process share the same st6blo storage to pass 
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information from one lncarnatlon to the next. 

Transltlons to a or OPt are governed by 
status tronsactrons, Include and Exclude. A status 
transaotlon may be Invoked by any 1-n lncarnatlon 
and informs all m incarnations of the state 
change. Include(i) inf orma all m incarnations 
that I is & and tells I all status information 
known to the invoker. Exclude(r) tells all & 
incarnatsons that i IS &. An incsrnatlon is & 
(resp. g&) once any mcarnation knows the state 
change. 

The system executes status transactions seri- 
l lizably. More precisely, the system forces a 

total order over status transactions, say 

Sl’S2’. .rsn. Each incarnation i executes a (pos- 

sibly empty) subsequence s~,s~+~,...,s 
J 

where si is 

Include(l), sJ is before or is Exclude(l), and all 

database operations executed by 1 come between si 

and sJ in the happens-before partial order. Sec- 

tion 3.2 explains how we achieve this property. 

The transition from dormant to recovering does 
not need a status transaction. A dormant lncarna- 
tion can enter the reooverina state any trme after 
its previous incarnation is qp&. 

Incarnations of different processes interact 
by sending messages through the network. If inoar- 
nation 1 sends message B to J, there are four pos- 
sible outcomes (1) J receives M. (2) J is 
Excluded. (3) I IS Excluded. (4) Total failure -- 
the processes of all b incarnations fail. 

Let us consider the above functionality from 
the standpoint of an lndlvrdual process, p. When p 
reoovers, Ito next lncarnatron, 1, begins to exe- 
cute in the reooverlng state. Incarnation i may 
remain in this state for some time. Eventually, 
when I decides to be Included, it finds an u 
inoarnatlon, i’, and requests that 1’ invoke 
Include(i). (If no m rnoarnatron exrsts, this is 
a total failure. See Section 3.3.) Incarnation I’ 
invokes Include(i), thereby moving i to the 2 
state. When p fails, some m incarnation, 1’. 
invokes Exclude(i). 

Each incarnation maintains a status database 
telling the status of all incarnations known to it. 
The database 1s updated by status transactions and 
by the receipt of messages from reooverlng incarna- 
tions. 

The incarnation level provides the followrng 
functions for higher levels of the system. 

- Retrieve from status database. 

- u for a specified state change. The higher 
level is interrupted when the status database 1s 
updated in the specified manner. 

- Broadcast message Y to a set of recipients. The 
recipients are incarnations and may be in any 
state. Each m recipient is expected to gen- 
erate a response. The broadcast completes when 
all g recipients have acknowledged Y, and all 
other recipients have either been Excluded or 
not yet Included. 

Broadcasts are synohronlxed with status tran- 
sactions to achieve the following property. Con- 

sider a broadcast, b. invoked by incarnatlon 1, and 

0 

let s~,s~+~.. .,sJ be the seqwnoe of status tran- 

sactions executed by 1. The broadcast can be 

inserted into the sequence, e g., 

sl,sl+l ,..., sl+k,b,sl+k+l ,..., sJ such that I ge:: 

acknowledgements from all recipients whose Include 

precedes b and whose Exclude follows b (or does not 
appear) Section 3.2 explains how we achieve this 
property. 

9.2 Imulementation 

We now describe the implementation of the 
incarnation level in terms of the process level. 

Each process has an lncarnatron number stored 
on stable storage which IS incremented each time 
the process recovers. The combination of a process 
name and an incarnation number uniquely identifies 
an incarnation. 

Each message sent between incarnations carries 
the incarnation numbers of the sender and intended 
recipient. Call these the send-number and 
receive-number, respectively. If a process 
receives a message with an old send-number, this 
indicates that the message has been adrift in the 
network for a long time, and is no longer applioa- 
ble. In this oase, the recipient ignores the mes- 
sage. If a message has an old receive-number, this 
indicates that the recipient process failed and 
reoovered without the sender noticing the failure. 
In this case the recipient sends a response rndi- 
catlng the failure. 

A process, p, may discover that another pro- 
cess has failed either directly via the systm’s 
failure detection mechanrsm or indirectly by the 
mechanism of the previous paragraph. When p dir- 
covers the failure it invokes an Exclude transac- 
tion, unless the Exclude is already underway. 

Status transactions execute using a variant of 
Skeen’ s atomic broadcast protocol CSkl.2, SkSt]. 
We describe the Include transaction. Exclude is 
similar 

Include(l) invoked bv incarnation J 

1. ster, 

Incarnation J broadcasts ‘Prepare-to-Include(I)’ 
to all m incarnations including itself. 

Each recipient treats the message as a request 
for an Include lock on 1. The recipient grants 
the lock and ackuowledges the message unless it 
1s already holding an Include or Exclude look on 
any inoarnation. Include locks also conflict 
with Broadcast locks, defined shortly. 
Deadlocks are, of course, possible here. A 
non-preemptive deadlock avoidance scheme, like 
Wait-Die [BSLI, IS a suitable way of handling 
these deadlocks. 

This step completes when all recipients have 
acknowledged the message or failed. 

SteD 2. 

6 Incarnation J sends its status database to 1, 
and broadcasts ‘Include(i)’ to all m incarna- 
trons including itself and i. 

6 Each recipient updates its status database, and 
releases the lock set in Step 1. 



If J falls before completing the ttansactlon. 
a variant of Skoen’s distributed termination proto- 
d iSk1,2, SkStl IS run. Define incarnation k to 
be lnoomolete relative to the transaction if k IS 
holdrng the Include lock set by the transaction, 
and k’s process has not failed. An rncomplete 
incarnation simply reinvokes the transaction from 
the beginning. The messages sent 1x1 Step 1 andi- 
cate that this is a reinvocation. A reclplent 
holding a lock from an earlier invocation lets the 
new lock preempt the earlier one. A recipient that 
completed the earlier transaction acknowledges the 
message immediately without setting a lock. 

The status transactaon algorithm and termina- 
tion protoool achieve the following properties. 
(1) If any incarnation completes the transaction, 
then every & incarnation completes the transaotlon 
or falls before the transaction completes. (2) 
Status transactions are totally ordered. 

Broadcasts execute with a weaker protocol that 
synchronizes them relative to status transactions 
;;:,oes not attempt termination rf the invoker 

Broadcast @ to set I invoked &f inoarnatron 1 

o Incarnation J locally sets a Broadcast lock on 
I. Thas look conflicts with an Include lock on 
any member of the set I. 

e Incarnation J broadcasts I! to all s members of 
I. 

e Each recipient acknowledges Y. Recipients do 
not set locks. 

& This step completes when all recipients have 
aoknowl 

l Inoarna 

dged the message or have been Excluded. 

ion J releases its Broadcast lock. 

2.2 Recovery from Total Failure 

A total failure has occurred when all u 
incarnations have failed 

Normally, when a process recovers from failure 
its next incarnation begins to execute and finds an 
AR incarnation to Include it. If the incarnation 
cannot find an m incarnation, it assumes a total 
failure has occurred, and the new incarnation stops 
running. The previous incarnation resumes, and 
runs the m SURVIVORS algorithms described below. 
(See also [Sk31 .) 

The LAST SURVIVORS algorithm calculates the 
set of incarnations that failed last. An rncarna- 
tion IS in this set if it has bden Included, but 
not Excluded. The algorithm, run by incarnation 1, 
maintains four sets. 

s= (incarnations J that 1 has heard from 
while running the algorithm) 

ALL= (incarnations k 1 some J in S has 
Included k) 

OUT= (lnoarnatlons k 1 some J in S has 
Excluded kl 

IN = ALL - OUT 

1 

= (incarnations k 1 some J in S has Included 

k and no J' in S has Excluded k) 

The algorithm initializes these variables to 

S = (1) 

ALL = (k 1 k’s state IS a or gg& m i’s status 
database) 

OUT = {k 1 k’s state is GR& in i’s status 
database) 

IN = ALL - OUT 

Recovering processes exchange messages indi- 
eating the current values of S, ALL. and OUT. When 
i receives such a message, containing say S’, ALL’, 
and OUT’, it updates its variables. 

S =SUS 

ALL=ALLUALL’ 

OUT = OUT U OUT’ 

IN =ALL-OUT 

It can be proved that when S ZIN, then IN is the 
desired set of last survivors, call this set LAST. 
Also, all incarnations that run the algorithm cal- 
culate the same value of LAST. 

When LAST is calculated, i updates its status 
database to show all members of LAST to be in. and 
all other non-dormant incarnations SRI. If i is in 
LAST. it resumes normal operation. Otherwise, i 
was not a last survivor and stops rlmnrng. To 
resume operation, i’s next incarnatlon must be 
Included in the normal way. 

4 Data Yanagers 

base. 
Data managers (DRs) store and manage the data- 

This section describes DR operation under 
normal conditions Section 6 conssders DM failures 
and recoverzes. 

Each DR stores a single physroal file. When 
no oonfusion IS possible we blur the dlstrnotaon 
between a DM and the file it stores. For each log- 
ical file X, the set of DMs that store the copies 
of X forms a loarcal m for X. 

The state of a DM (or, equivalently, the file 
rt stores) is the state of its incarnation. An & 
file has two substates, online and offline. On 
online file is up-to-date and can be used for tran- 
saction processing 
date, 

An offline file is not up-to- 
offline is a transient state through which a 

DM passes during recovery. 
always offline. 

A recovering DM is 
For other DR states the substate 

is irrelevant. 

An online DR x processes the following opera- 
tions. Beadt. 

o Retrieve a portion of x on behalf of transaotion 
t. 

o Updatet. Modify x on behalf of transaction t. 

The update 1s not permanent at this time and may 

be undone by a subsequent Abortt. The operation 

also creates an uodate log (similar to a REDO 

log [Grl) contarnlng enough information to per- 
form the update on other copies of the file. If 



trsnsrction t updstrs x more than once, the 
update logs are collected into s single log. 
The updste 108 ray be distributed to the othor 
copi of the fslo in the background rhrle tran- 
ssctlon t l secntos, or rhsn t ends. 

l Endt. If transactron t hss updated logicsl file 

XI the DB obtains the update log and spplios it 
to the database. The npdsto is not yot por- 
mnent . Otherrise, the operation has no offoot. 

6 Coalmitt. Install t’s updates prrmanontly in tho 

databarr. 

l Abortt. Undo t’s updates. 

The DJl performs those oparstions under tho 
command of the transaction msnsger (TB) controlling 
transaction t. Wbon the DH completes an operation 
it returns a posltlvo rosponso to the TB. Occs- 
sionally, the DB may rorrct a Road, Updsto, or End 
operations, e.g., bocaaso of deadlock. When this 
happens the DB returns a nogstivo response to tho 
Ill rho thon aborts tho trsnssotion (sea Sootion 5). 
Commits and Aborts can novor bo rojoctod. Once A 
DB porforms an operation on bohslf of trsnsaction 
t, the DN Watchor t’s TB. Soction 5 oxplains rhst 
hsppons if the TB fails. Tho Watch is turned off 
when t commits or sborts. 

Concurrency control is by bssic distributed 
tuo phase locking (2PL mothod 12 of [BGlJ). Locks 
&se hold until Commit or Abort. 

Bsch DN aaintsins s recovogX Jpg oontsining 
enough informstion to bring an offlinr copy up-to- 
data. Th~nro~(~)contsins (11 A gommitted 
ti*n**cti consisting of transsotion 
idontiflors for sll trsnssotions that hsvo oommit- 
ted at tho DN. (21 An fibortod tullrlotioo Ill 
(fi) analogous to tho CTL. (3) A pending trsnsw- 
&g &g& (pTL) identifyingn;:sn;:ftions that hsve 
executed at the DM but are commit tod or 
sbortod. (4) The update logs for 811 transactions 
uhose End operation has boon executed at the DB. 

An offline DM x prooossos a singlo operation, 
Pollforrard. Tbo DB obtains the recovery log 
stored by some online member of its logical DB. DH 

appl1os the update log to its database and 
tpdstes its GIL, AIL, and PTL accordingly. 

5. Transaction Msnsgors 

Transsotions managers (TBs) control transsc- 
tion executions. This section describes TB opors- 
tions under normal conditions. Sootion 6 considers 
Ill fsiluros and rooovorios. 

Bach transaction, t, issues all of its opera- 
tionr’ to a single IN. The TM binds tho logical 
files roferonood by t to physical oopios that are 
l vsilablo when t oxocutes. Tho TB also coordinstos 
stomio commit and sbort. Tys are grouped into b 
Fprl m ;mn4logous to logical DBs. The meabors of 
s logical ‘Ill serve as baokps for oaoh other during 
Atomic commit, snd storo rrplicstod copies of oom- 
rittod, sborted, and pending transaction lists 
(ClLs, ATLs, and PTLs). 

TBs exist sn onlino snd offlino substatos, 
dofinod as for DBs (soo Soction 6). 

An online TB supports tho following activl- 
tios. 

EU.tbirrdillr. For eaah logical file, X, 
roforenced by trsnsaction t, the TB solocts a phy- 
sicsl copy, x. The set of physical files soloctod 
for t is csllod its matorislixstion. 

&ntori 1 rati n watching Tho TB rstchos each 
file in t’slmato~ialisation’using the Wstoh funo- 
tion of tho rncsrnatlon lovol (800 Sootion 3). If 
any file is Excluded boforo Phsso 2 of atomic oom- 
mit (dofino bolor), the TB aborts t. 

A&g&. Tho TB exooutes 8n &,~g& &ranssctiQp 
l n*logous to tho status transactions of tho incar 
n8tion level (see Section 3). 

Tho TB brosdoasts ‘Propsre-to-Abort(t)’ to tho 
members of its logicsl TB using tho incsrnation 
love1 Broadcsst. 

Each recipient trios to set an Abort lock on t. 
Abort lock on t conflict with each other and 
rith Commit locks on t (defined shortly). A 
Wart-Die scheme [BSLI csn bo used to provont 
deadlocks. 

This stop onds rhon tho Broadcsst oompletos, 
that is, all recipients have aohnonlodgod the 
lock or been Excluded. 

The TB sends ‘Abort(t)’ to all & mombors of its 
logic81 ‘Ill and ~11 h DBs rho wore sent any 
opor*tions for t. 

Each TB recipient updates its ATL and PTL, and 
roleasos tho lock sot in Step 1. 

If the TB fails before oomploting the Abort 
trans*ction, s torminstion protocol like that of 
Section 3 is invoked. 

The TB can abort s transaction at any time 
until Phase 2 of atomic aommit begins. Thereafter, 
the commit algorithm governs all aborts. 

Atomic co-it. We uso a variant of throo 
phase commit [Ski, Sk2, SkStl. 

Phase 1. 

For each logical file X that t updated, the IB 

broadcasts Endt to all copros of X using tho 

lnoarnation level Broadcast function. 

Each DB processes Endt es described in Section 4 

and rosponds positivoly or negatively to tho TB. 

This phrso onds vhon sll recipients have 
responded or boen Excluded. There sro tro pos- 
siblo outcomes. If sny DB responded negatively, 
or if any DB in t’s materislization has been 
Excluded, tho TB aborts t. Othoruise it contin- 
ues tho commit protoool. 

Phases 2 and 3 constitute a Co-it transaction 
virtually identical to the Abort transaction. 

E.&i&Q 2. 

o ‘lho III broadcasts ‘Preparc-to-Commit(t)’ to tho 
members of its logical TB using tho inosrnation 
love1 Broadcast. 
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Bach tooipiont trio‘ to l ot a Conit look on t. 
Cuamit looka on t oonfliot with each othrr and 
vith Abort looko on t. 

This phase ends rhon the Broadoart oomplotoo, 
that io, all recipients have l ohtorlodgod tho 
look or boon excluded. 

Tho Ty rondo ‘Commit(t)’ to all & l omboro of 
ito logioal l’M and all & DNr rho wore rent 
End’8 in Phase 1. 

Baoh TN rooipiont updater itr Cn and PTL, aud 
rrlraooo the look l ot in the previouo stop. 

If the lU fails (and io excluded) before oom- 
Bitting or aborting tranraotion t, there are three 
0~000. (1) Somo & member of thr logioal Iy hao 
roooivrd tho ‘Prepare’ wrragr but not the ‘Commit’ 
or ‘Abort’. (2) No ie member haa received the 
‘Propore’. (3) All& l omboro have roooived the 
‘commit’ or ‘Abort’. Car8 (1) io l olvod by a tor- 
rination protocol virtually idontioal to the one in 
Sootion 3. Caror (2) and (3) require DN intorvon- 
tion. When a DN that proooaord an operation for t 
notiooo tho TN failure, it contacts another mombor. 
T’, of the logical TN. If T’ has not received tho 
‘Prepare’, T’ l ttompto to abort t by invoking the 
Abort tranoaotion. If T’ haa reooivod the ‘Commit’ 
or ‘Abort’, T’ oomplotoo the protoool by oxoouting 
tho last otop or phase. 

An offline lY supports a ring10 funotion, 
Rollforward. The TN obtains tho Cl’L, A’& and PTL 
rtorod by 8010 onlin, mombor of itr logioal ‘I& and 
updatoo its own liotr accordingly. 

We now doooribo TN bohavior in rooponoo to 
oporotlono srouod by tranraotionr. 

l 

l 

l 

l 

l 

of 

Bogint . Tho TN assigns tranaaotion t a globolly 

unique tranoaction idontifior. All meooagor 
ront by tho TN on t’s behalf carry this idontif- 
ior. 

Roadt(X). Tho TN isop Boadt(x), rhoro x io 

tho copy of X in t’s motorialization. Tho data 
rotomod by DN x is paoood to t. If x rojooto 
tho Road, tho TN aborts t. 

Updatot(X). Similar to Road, 

Abortt. Tho TN invoker tho Abort tranraotion to 

obort t. 

Rnd,. Tho TN invokes atomic oommlt. 

6. Failures and Booovorioo 

Whon a DN or TN fail8 or rocovoro, other parts 
tho system must roaot. This ooctxon doooriboo 

l yotom behavior 
rooovorieo. 

in rooponro to foiluroo and 

4.1 I!!! FIilPror 

Whon DN x fails, tho incarnation lovol will 
Rxoludo it. Thro hao an offoot on tranoaotiona 
that access x. If transaction t updatoo logical 
filo X, t oannot oommit until x is Exoludod. (Thi‘ 

ir onforood by tho Broadoaot of Bndt to all oopior 

of .X(: l oo Sootioa 5.) If t roads x. it fill bo 
abortid if x io Bxoludod~boforo t roaohio Phaoo 2 
of oouit. (This is rnforood by materialization 
watching, soo Sootlon 5.) Thoro oonditionr l ro uood 
to avoid the roplioatod data anomaly illuotratod in 
tho Introduction. 

Whon a TN, T, fails and IO oxcludod, the oyr- 
tom may havo to abort tranraotiono that wore con- 
trolled by T. This 1s govornod by tho tormination 
protocol dorcribod in Sootion 5. 

6.9 I IL,covorirr 

Whon a DN x rooovoro, it is in tho pfflinr 
l tato and cannot prooooo database operations. DN x 
movoo to tho onlinr rtato by ruuning a variant of 
Atar et al.“ rooovory algorithm [ABQI. 

baor &RR 1. Sot aoido a copy of tho status data- 
. (This io noodod for total failure, soo Seo- 

tion 6.5.) 

SLsp 2. Tho inoarnation lovol Include8 x. 

&RR 2. DN x oxocutoo tho Pollforward oprra- 
tion to bring itrolf up-to-dato. (So0 Sootion 4.1 
:;;;forrard roquireo an pnlinp oopy of tho logical 

. If no onllno oopy oxiota, thio io a total 
failure Q... aad is handled in Sootion 6.5. 

w 4 DN x rots its oubrtato to online and 
diocardo tho databaoo oavod in Stop 1. 

If DN x was down for a long time, tho Pollfor- 
ward might tako a long timo to complete. During 
this poriod no tranaaotion that updatoo logical 
file X oan commit. To shorten this poriod, DN x 
con oxooutr Rollforrard boforo boing Inoludod. 
Thro fill bring x ‘almost’ up-to-date and allow tho 
Rollforward in Stop 3 to ooaploto more rapldly. 

Tho algorithm of Sootion 6.3 works for ‘IN 
rooovoriro too, rxcopt the Rollforward oporation is 
the one defined in Sootion 5. That is, it brings 
tho CL ATL, and PTL at tho rocovoring TN up-to- 
dato. 

5.3 Jtooovory from DN Total Pailurq 

A DN total falluro oocurs whore all online 
momboro of a logical DN havo failod. Rooovory from 
Dy total failure io similar to rroovory from -total 
failuro doooribod in Sootion 3.3. 

As DNo reoovor, thoy oxocuto tho LAST SUR- 
VIVORS algorithm of Section 3.3. The algorithm 
gotr its initial valuoo from tho status databaoo 
l avod in Stop 1 of tho DN rocovory proooduro (soa 
Section 6.3) and rootriots all valor8 to members of 
tho logioal DN. When the algorithm torminatos, it 
has idontifiod tho last surviving DNo. Eaoh DN 
thon rooolvoo any ponding tranoootlono. For oaoh 
pending tranoaotron t, tho DN obtains t’s status 
from any mombor of t’s logical Ty. 

An important special caoo of DN total failure 
is the oaoo of nonrcplioatod data. If x is tho 
only oopy of logical file X. ovory failuro of x is 
a total failure. In this ceoo, tho LAST SDRVIVORS 
algorithm torminatro r-odiatrly, and x noed only 
rooolvo pending transactions. 
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4.4 Po~ovorY $bQN TL! z!m.l Failoto 

‘IN total failures are analogous to the DR case 
and are handlod similarly. When the last survivors 
aro found, pending tranraations aro resolved by 
running tho commit termination protocol (roe Soo- 
tion 5) for oath ono. 

I. Conclnslon 

Roplloatron IS tho key factor in making a ddbr 
more reliable than a oontralizod dbs, roplioatod 
data managomont and roplloatod transaction manage- 
mont . A ddbr reliability algorithm is, first and 
foremost, an oxport at handling replication. 

Our algorithm maker tho following guarantees 
concorning replicated data. 

1. The copzor of each logzoal file bohavo like a 
single copy from the standpoint of logrcal 
oorrootnors. 

2. A transaction can oxocuto provided at loast ono 
COPY of each logical filo it references 1s 
available. 

3. When a copy of a file rooovors it can be rein- 
tegrated into the syotom provzdod at least one 
other copy zs alroady available. 

4. If all copies of a file fail, the file roll 
become available again when ‘enough’ of the 
copies rocovor. 

Our algorithm makes similar guarantees con- 
Corning roplicatod transaction managomont. 
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