
A Rooovory Algorlthr for s Distributed Databaso System*

Nathan Goodmm
Da10 Skoon

Arvolc Chan
Umoshuar Dayal

Stophon Fox
Dan101 Rlos

Comput or Corporation of Amorioa
Four Cambridge Contor

Cambrldgo, RA 02142

Abstract

We doscrlbo a rolrability algorithm borng con-
eldered for DDM, a dlstrlbutod database system
under dovolopmont at Computer Corporation of Amor-
ioa. The algorithm IS designed to tolerate oloan
site failures In which sltos simply stop running.
The algorithm allows the system to rooonfiguro
itsolf to run oorroctly as sitos fail and rocovor
The algorithm solves the subproblems of atomic com-
mit and roplioatod data handling in an intograted
mannor.

1. The Reliability Problom

Database systems uso the oonoopt of trrnsao-
&R to dofino correct bohavior when many usors
share a database. A databoso system (dbs) makes
two gu*rantoos concerning transactions (1) If a
transaction is unablo to complete, all of its
effects on the database at0 undone (2) Con-
currently executing transactions rill not rntorforo
with each other. A distrzbutod dbs (ddbs) may sup-
port replicated data, In which oaso a third guaran-
too 1s added (3) The copies of each logical data
item xl11 behave llko a single copy for purposes of
(1) and (2).

The rollablllty problem for a dbs 1s to implo-
mont transaotrons in tho presence of fatlures. We
ldontlfy two man subprobloms. One, atomic commit - -*
18 the problem of attaining guarantee (1). The
second subproblom involves the rntoractlon of
replicated data rith guarantee (2) and is illus-
tratod by the following oxamplo. Considor a drta-
base wltk 1Oglcsl data ltoms X and I and GOPies x,#

se Yes and Yd’ Tl 1s a transaction that roads X

and writes I, T2 roads Y snd wrltos X. Concurrency

l This rosearch was Jointly supported by tho Do-
fonso Advanced Rosoarch PrOJect Agency Of the
Dopartmont of Dofonse and the Naval Eloctronro
System Command and was monitored by the Naval
ElO~t+OniC SyStepl Command under Contract NO.
N00039-82-C-0226.

PemusmOn to copy wtthout fee all or part of thm matenal IS granted
prOvlded that the copies are not made or dmtnbuted for dlnct
commercml advantage, the ACM copyright nouce and the title Of the
publlcatlon and us date appear, and notice IS given that copymg IS by
P,XIIUSSIOII Of the Association for Computmg Machinery TO copy
Othorwme, Or to repubbsh, requues a fee and/or specific pernnssiou

control is by two phase locking (2PL) [BGl,2,
RGLTI . Roplioatod data IS hmdlod by the ‘intui-
tive’ algorithm to read a lOglca1 data itom, a
transaction may road any copy, to rrlto, a transac-
tion rrltos all copies that aro up. The following
exsoutlon obeys thoso rulos, yot 1s inoorroot,
because tho multiplo copios do not behave like l
srnglo. logical data item.

rl(xa) -> d-falls -> rl(y,)

r,(y,) -> a-fails -> u2(xbb)

(‘rl(xa)’ donotos a road of xa on behalf of Tl,

‘d-fails’ denotos tho failure of the site storing

yd, etc. The arrows xndicato the order in which

ovonts happen.)

Bany rolsablllty algorithms aro known for eon-
tralrzod dbs’s (of [BGE. Gr, GRBLL. RR, Vo]), but
only a few complete rollablllty algorithms are
known for distributed dbs’s (ddbs’s). Rany aspoots
of ddbs reliability have been studied, including
atomic commit hiDEB, Ba, DS2, Ea. FLP, ES, La2, LS.
RL. Be, Sk1.2, SkStl, slto recovery [ABG, ES],
resilient concurrency control for roplicatod data
[AEDG, AD, Ea, Gi. RPB, Th, TGGLj, sit.0 status mon-
itoring [ES. Wal, Byzantine generals lDol.2. DR.
D$,2H:j FFL, LSP, PSLI, and network partition [Ey.

Reslllonoo analysis of reliability rlgo-
riihms I&zludos [Co, CB]

This paper presents a reliability algorithm
bolng conssderod for DDM, a ddbs under dovelopmont
by Computer Corporation of America [CDFLNR, CFLNR].
DDB is a general purpose ddbs that supports a high
level, entity-relationship data modol called DAPLFX
[Shl. Transactrons are Ada progrsms with omboddod
high level data manipulation statomonts. The logi-
oal database can be fragmented, and each fragment
storod at an arbitrary sot of sltos. Distribution
and replication are invlsiblo to the usor At com-
pile time, the system tre+nslatos data manipulation
statements (which, or course, roforonoo the logical
database) into statomonts that roforonco fragmontr.
At run timo, the system binds fragment roforonoss
to specific fragment oopios. A transaction can
oxocute provided at loast ono copy of each rofor-
oncod fragment is available.

The papor has sovon sections Soction 2
def inos the types of failures our algorithm 1s
designed to handle and the system archltootoro.
Soctlons 3-6 doscribo the algorithm itsolf. Soc-
tlon I 1s the conclusion

Q 1983 ACM 0-89791-097-4/83/003/0008 $00 75

2. System Yodel 16n6gors (DNs) 6nd tr6ns6ctions m6n6gors (‘~XS).

1.A F6lluro Assumutions

The sites of 6 distributed system can fall in
many rays. The simplest site failures are olsan
friluror in rhlch 6 ssto simply stops running. The
h6rdost failures 6ro tr6itorons f6lloroq in which 6
site continues to run, but performs incorrect
6ctions. Most real faslaros 110 between tho6o
oxtromos. After 6 f6ult occurs, the site runs
incorrectly until the fault 1s detected, whereupon
the rrto stops.

We assume th6t all faults 6ro detected before
serious d6mago 1s done so th6t from the systm
strndpolnt all site fallares aro clo6n Also, when
6 failed site recov6r6, it ‘knows’ that it failed
6nd can Inrtiato a recovery procedure. (Those
6ssumptlons are rmplicit In 611 centralized dbs
rollabIlIty algorithms [GULL].)

While a site LS down, other sites must be able
to detect thrs fact [FLPI. In early d6ys of the
Arp6not. the network implemented failure detection
;;~;;:llY# but today’s networks do not offer this

. As a proctlc61 matter, the only mechanism
6v6il6ble for detecting site f6iluros is timeouts.
For purposes of this prpor. we 6ssumo thrt some
friluro detection moch6nism exists, but do not
specify which one. We 6ssumo that the mooh6nism ir
foolproof if the moch6nism declares 6 site down,
then indeed the site has failed. (This 666umption
is roclsonrblo in the ~680 of the early Arpanot
mechanism. It IS loss rorsorurblo for timeouts.)

The bottom tro lovols 6ro standard 6nd we do
not describe their lmplemontatron. Section 2.3
defines the boh6vlor of the process level. SOC-
tionr 3-6 describe the remaining lovols

We model a computation as 6 part161 order of
events, u6ing Lmport’s hauuons-Before p6rti61
order CL611

fllOS
The logic61 datsb6so is a sot of jo6ic~

86oh
m;f sites.

of which may be stored at any number
The copies of 6 logic61 file 6ro

called phvsic61 filer.

A tr6nsaotion IS a program that 6t6rts rrth
Begin, ends with End, and contains Bead and Update
commands roforonclng logical files.

12 Procoss0s

A process oxlsts xn two states, m and a.
An gg prooo66 1s one that IS running correctly.
When a process falls, it enters the m st6to
whore it door nothing. (A process is 6180 dam
before it is initiated.) LItor, the process c6n
recover and return to the m st6to. When 6 process
recovers. it ‘knows’ that it failed 6nd oxoontos 6
specified recovery procedure. Each process h6s
some _rt6blo 6torsnb whose contents are -un&ffoctod
by friluros.

We posit tho oxictoncr of a f6ilnro detection
mechanism that lots 6n pp process determine the
state of 6nothor process.

Most network errors, e.g., lost, duplicate, or Procossos intor6ct by sending moss6gos through
g6rblod messages, are h6ndlod by standard network the network. If process p sends moss6go Y to pro-
software and are not considered hero. From our 008s q there are three possible outcomes (1) q
st6ndpolnt. the only network failures are p6rti- receives Y. (2) q fails 6nd p 16 notified th6t q
tionr in which two or more running sites are unrblo h6s failed. (3) p f6il6. Note th6t if q door not
to oonmunioato. Our algorithm IS not doslgnod to receive Y. p is 6varo that a friluro occurred
h6ndlo partitions. (either p failed, q failed, or both).

To summarize The rolI6bllity algorithm
described in this paper IS designed to handle an
6rbItrary n-bet of clean site failures It 3. Process Incarnation
“‘D‘lo6 that site failures are detectable by other
s1tos. It 1s not doslgnod to handle network parti- The process Incarnation level synohronlzos
tions. procosr fa~luros and recoveries. This level lots

higher lovols act 66 if farluros and recoveries
happen sequentially in a roll-defined order.

2.1 Svstom Atchltectllre

The system consists of four levels of virtual
m6ohIno.

We define the behavior of this level in Soc-
tion 3.1 and describe its ~mplomontrtion in Section
3.2. Section 3.3 treats the special case of tot61
failure.

DDBS Funotsons

Process Incarnation6

2.2 Eunctionnlity

A process rncorn6tron (or simply, ino6rn6tion)
exists in four st6tos with the following tr6nsi-
tions.

Proco6so6 dormant -) recovering -> in --> out
4 4 t

sites A porm6nt incarnation door nothing. A ~ocov~
inc6rn6tion c6n intor6ct with other p6rts of the
svstom (0.~. to brinn its d6t6b6so UD to d6to) but

The bottom level contains rltrr (i.e.. computers)
connected by a computer-to-computer network. Next
are proc86so6 connected by a process-to-process
network. A process is a concurrent program running
at a single site. On top of this wo implement O~O-

3 ln o;rnations connooiod by a corresponding not-
. A urocess IncarnatIon IS one ‘llfotimo’ of a

process itatting when the process recovers from
f6iluro 6nd ending when rt fail6 again. The top
lovol support6 st6nd6rd ddbs functions d6t6

o¬ ‘pr&;ss user-transactions. h h in&m-
tion is fully oporation61. An & ino6rn6tion is
‘dead’ and door nothing. Once an incarnation is
m it novor ag6in participator in the systm. An
incarnation goes & when Its proco6c f6ils or is
brought down for reasons such as m6intolunoo.
Inc6rnations of 8 given process are totally
ordered. each inoorn6tion rom6in6 Porm6pt until the
preceding ones are m. Incarnations of a given
process share the same st6blo storage to pass

9

information from one lncarnatlon to the next.

Transltlons to a or OPt are governed by
status tronsactrons, Include and Exclude. A status
transaotlon may be Invoked by any 1-n lncarnatlon
and informs all m incarnations of the state
change. Include(i) inf orma all m incarnations
that I is & and tells I all status information
known to the invoker. Exclude(r) tells all &
incarnatsons that i IS &. An incsrnatlon is &
(resp. g&) once any mcarnation knows the state
change.

The system executes status transactions seri-
l lizably. More precisely, the system forces a

total order over status transactions, say

Sl’S2’. .rsn. Each incarnation i executes a (pos-

sibly empty) subsequence s~,s~+~,...,s
J

where si is

Include(l), sJ is before or is Exclude(l), and all

database operations executed by 1 come between si

and sJ in the happens-before partial order. Sec-

tion 3.2 explains how we achieve this property.

The transition from dormant to recovering does
not need a status transaction. A dormant lncarna-
tion can enter the reooverina state any trme after
its previous incarnation is qp&.

Incarnations of different processes interact
by sending messages through the network. If inoar-
nation 1 sends message B to J, there are four pos-
sible outcomes (1) J receives M. (2) J is
Excluded. (3) I IS Excluded. (4) Total failure --
the processes of all b incarnations fail.

Let us consider the above functionality from
the standpoint of an lndlvrdual process, p. When p
reoovers, Ito next lncarnatron, 1, begins to exe-
cute in the reooverlng state. Incarnation i may
remain in this state for some time. Eventually,
when I decides to be Included, it finds an u
inoarnatlon, i’, and requests that 1’ invoke
Include(i). (If no m rnoarnatron exrsts, this is
a total failure. See Section 3.3.) Incarnation I’
invokes Include(i), thereby moving i to the 2
state. When p fails, some m incarnation, 1’.
invokes Exclude(i).

Each incarnation maintains a status database
telling the status of all incarnations known to it.
The database 1s updated by status transactions and
by the receipt of messages from reooverlng incarna-
tions.

The incarnation level provides the followrng
functions for higher levels of the system.

- Retrieve from status database.

- u for a specified state change. The higher
level is interrupted when the status database 1s
updated in the specified manner.

- Broadcast message Y to a set of recipients. The
recipients are incarnations and may be in any
state. Each m recipient is expected to gen-
erate a response. The broadcast completes when
all g recipients have acknowledged Y, and all
other recipients have either been Excluded or
not yet Included.

Broadcasts are synohronlxed with status tran-
sactions to achieve the following property. Con-

sider a broadcast, b. invoked by incarnatlon 1, and

0

let s~,s~+~.. .,sJ be the seqwnoe of status tran-

sactions executed by 1. The broadcast can be

inserted into the sequence, e g.,

sl,sl+l ,..., sl+k,b,sl+k+l ,..., sJ such that I ge::

acknowledgements from all recipients whose Include

precedes b and whose Exclude follows b (or does not
appear) Section 3.2 explains how we achieve this
property.

9.2 Imulementation

We now describe the implementation of the
incarnation level in terms of the process level.

Each process has an lncarnatron number stored
on stable storage which IS incremented each time
the process recovers. The combination of a process
name and an incarnation number uniquely identifies
an incarnation.

Each message sent between incarnations carries
the incarnation numbers of the sender and intended
recipient. Call these the send-number and
receive-number, respectively. If a process
receives a message with an old send-number, this
indicates that the message has been adrift in the
network for a long time, and is no longer applioa-
ble. In this oase, the recipient ignores the mes-
sage. If a message has an old receive-number, this
indicates that the recipient process failed and
reoovered without the sender noticing the failure.
In this case the recipient sends a response rndi-
catlng the failure.

A process, p, may discover that another pro-
cess has failed either directly via the systm’s
failure detection mechanrsm or indirectly by the
mechanism of the previous paragraph. When p dir-
covers the failure it invokes an Exclude transac-
tion, unless the Exclude is already underway.

Status transactions execute using a variant of
Skeen’ s atomic broadcast protocol CSkl.2, SkSt].
We describe the Include transaction. Exclude is
similar

Include(l) invoked bv incarnation J

1. ster,

Incarnation J broadcasts ‘Prepare-to-Include(I)’
to all m incarnations including itself.

Each recipient treats the message as a request
for an Include lock on 1. The recipient grants
the lock and ackuowledges the message unless it
1s already holding an Include or Exclude look on
any inoarnation. Include locks also conflict
with Broadcast locks, defined shortly.
Deadlocks are, of course, possible here. A
non-preemptive deadlock avoidance scheme, like
Wait-Die [BSLI, IS a suitable way of handling
these deadlocks.

This step completes when all recipients have
acknowledged the message or failed.

SteD 2.

6 Incarnation J sends its status database to 1,
and broadcasts ‘Include(i)’ to all m incarna-
trons including itself and i.

6 Each recipient updates its status database, and
releases the lock set in Step 1.

If J falls before completing the ttansactlon.
a variant of Skoen’s distributed termination proto-
d iSk1,2, SkStl IS run. Define incarnation k to
be lnoomolete relative to the transaction if k IS
holdrng the Include lock set by the transaction,
and k’s process has not failed. An rncomplete
incarnation simply reinvokes the transaction from
the beginning. The messages sent 1x1 Step 1 andi-
cate that this is a reinvocation. A reclplent
holding a lock from an earlier invocation lets the
new lock preempt the earlier one. A recipient that
completed the earlier transaction acknowledges the
message immediately without setting a lock.

The status transactaon algorithm and termina-
tion protoool achieve the following properties.
(1) If any incarnation completes the transaction,
then every & incarnation completes the transaotlon
or falls before the transaction completes. (2)
Status transactions are totally ordered.

Broadcasts execute with a weaker protocol that
synchronizes them relative to status transactions
;;:,oes not attempt termination rf the invoker

Broadcast @ to set I invoked &f inoarnatron 1

o Incarnation J locally sets a Broadcast lock on
I. Thas look conflicts with an Include lock on
any member of the set I.

e Incarnation J broadcasts I! to all s members of
I.

e Each recipient acknowledges Y. Recipients do
not set locks.

& This step completes when all recipients have
aoknowl

l Inoarna

dged the message or have been Excluded.

ion J releases its Broadcast lock.

2.2 Recovery from Total Failure

A total failure has occurred when all u
incarnations have failed

Normally, when a process recovers from failure
its next incarnation begins to execute and finds an
AR incarnation to Include it. If the incarnation
cannot find an m incarnation, it assumes a total
failure has occurred, and the new incarnation stops
running. The previous incarnation resumes, and
runs the m SURVIVORS algorithms described below.
(See also [Sk31 .)

The LAST SURVIVORS algorithm calculates the
set of incarnations that failed last. An rncarna-
tion IS in this set if it has bden Included, but
not Excluded. The algorithm, run by incarnation 1,
maintains four sets.

s= (incarnations J that 1 has heard from
while running the algorithm)

ALL= (incarnations k 1 some J in S has
Included k)

OUT= (lnoarnatlons k 1 some J in S has
Excluded kl

IN = ALL - OUT

1

= (incarnations k 1 some J in S has Included

k and no J' in S has Excluded k)

The algorithm initializes these variables to

S = (1)

ALL = (k 1 k’s state IS a or gg& m i’s status
database)

OUT = {k 1 k’s state is GR& in i’s status
database)

IN = ALL - OUT

Recovering processes exchange messages indi-
eating the current values of S, ALL. and OUT. When
i receives such a message, containing say S’, ALL’,
and OUT’, it updates its variables.

S =SUS

ALL=ALLUALL’

OUT = OUT U OUT’

IN =ALL-OUT

It can be proved that when S ZIN, then IN is the
desired set of last survivors, call this set LAST.
Also, all incarnations that run the algorithm cal-
culate the same value of LAST.

When LAST is calculated, i updates its status
database to show all members of LAST to be in. and
all other non-dormant incarnations SRI. If i is in
LAST. it resumes normal operation. Otherwise, i
was not a last survivor and stops rlmnrng. To
resume operation, i’s next incarnatlon must be
Included in the normal way.

4 Data Yanagers

base.
Data managers (DRs) store and manage the data-

This section describes DR operation under
normal conditions Section 6 conssders DM failures
and recoverzes.

Each DR stores a single physroal file. When
no oonfusion IS possible we blur the dlstrnotaon
between a DM and the file it stores. For each log-
ical file X, the set of DMs that store the copies
of X forms a loarcal m for X.

The state of a DM (or, equivalently, the file
rt stores) is the state of its incarnation. An &
file has two substates, online and offline. On
online file is up-to-date and can be used for tran-
saction processing
date,

An offline file is not up-to-
offline is a transient state through which a

DM passes during recovery.
always offline.

A recovering DM is
For other DR states the substate

is irrelevant.

An online DR x processes the following opera-
tions. Beadt.

o Retrieve a portion of x on behalf of transaotion
t.

o Updatet. Modify x on behalf of transaction t.

The update 1s not permanent at this time and may

be undone by a subsequent Abortt. The operation

also creates an uodate log (similar to a REDO

log [Grl) contarnlng enough information to per-
form the update on other copies of the file. If

trsnsrction t updstrs x more than once, the
update logs are collected into s single log.
The updste 108 ray be distributed to the othor
copi of the fslo in the background rhrle tran-
ssctlon t l secntos, or rhsn t ends.

l Endt. If transactron t hss updated logicsl file

XI the DB obtains the update log and spplios it
to the database. The npdsto is not yot por-
mnent . Otherrise, the operation has no offoot.

6 Coalmitt. Install t’s updates prrmanontly in tho

databarr.

l Abortt. Undo t’s updates.

The DJl performs those oparstions under tho
command of the transaction msnsger (TB) controlling
transaction t. Wbon the DH completes an operation
it returns a posltlvo rosponso to the TB. Occs-
sionally, the DB may rorrct a Road, Updsto, or End
operations, e.g., bocaaso of deadlock. When this
happens the DB returns a nogstivo response to tho
Ill rho thon aborts tho trsnssotion (sea Sootion 5).
Commits and Aborts can novor bo rojoctod. Once A
DB porforms an operation on bohslf of trsnsaction
t, the DN Watchor t’s TB. Soction 5 oxplains rhst
hsppons if the TB fails. Tho Watch is turned off
when t commits or sborts.

Concurrency control is by bssic distributed
tuo phase locking (2PL mothod 12 of [BGlJ). Locks
&se hold until Commit or Abort.

Bsch DN aaintsins s recovogX Jpg oontsining
enough informstion to bring an offlinr copy up-to-
data. Th~nro~(~)contsins (11 A gommitted
ti*n**cti consisting of transsotion
idontiflors for sll trsnssotions that hsvo oommit-
ted at tho DN. (21 An fibortod tullrlotioo Ill
(fi) analogous to tho CTL. (3) A pending trsnsw-
&g &g& (pTL) identifyingn;:sn;:ftions that hsve
executed at the DM but are commit tod or
sbortod. (4) The update logs for 811 transactions
uhose End operation has boon executed at the DB.

An offline DM x prooossos a singlo operation,
Pollforrard. Tbo DB obtains the recovery log
stored by some online member of its logical DB. DH

appl1os the update log to its database and
tpdstes its GIL, AIL, and PTL accordingly.

5. Transaction Msnsgors

Transsotions managers (TBs) control transsc-
tion executions. This section describes TB opors-
tions under normal conditions. Sootion 6 considers
Ill fsiluros and rooovorios.

Bach transaction, t, issues all of its opera-
tionr’ to a single IN. The TM binds tho logical
files roferonood by t to physical oopios that are
l vsilablo when t oxocutes. Tho TB also coordinstos
stomio commit and sbort. Tys are grouped into b
Fprl m ;mn4logous to logical DBs. The meabors of
s logical ‘Ill serve as baokps for oaoh other during
Atomic commit, snd storo rrplicstod copies of oom-
rittod, sborted, and pending transaction lists
(ClLs, ATLs, and PTLs).

TBs exist sn onlino snd offlino substatos,
dofinod as for DBs (soo Soction 6).

An online TB supports tho following activl-
tios.

EU.tbirrdillr. For eaah logical file, X,
roforenced by trsnsaction t, the TB solocts a phy-
sicsl copy, x. The set of physical files soloctod
for t is csllod its matorislixstion.

&ntori 1 rati n watching Tho TB rstchos each
file in t’slmato~ialisation’using the Wstoh funo-
tion of tho rncsrnatlon lovol (800 Sootion 3). If
any file is Excluded boforo Phsso 2 of atomic oom-
mit (dofino bolor), the TB aborts t.

A&g&. Tho TB exooutes 8n &,~g& &ranssctiQp
l n*logous to tho status transactions of tho incar
n8tion level (see Section 3).

Tho TB brosdoasts ‘Propsre-to-Abort(t)’ to tho
members of its logicsl TB using tho incsrnation
love1 Broadcsst.

Each recipient trios to set an Abort lock on t.
Abort lock on t conflict with each other and
rith Commit locks on t (defined shortly). A
Wart-Die scheme [BSLI csn bo used to provont
deadlocks.

This stop onds rhon tho Broadcsst oompletos,
that is, all recipients have aohnonlodgod the
lock or been Excluded.

The TB sends ‘Abort(t)’ to all & mombors of its
logic81 ‘Ill and ~11 h DBs rho wore sent any
opor*tions for t.

Each TB recipient updates its ATL and PTL, and
roleasos tho lock sot in Step 1.

If the TB fails before oomploting the Abort
trans*ction, s torminstion protocol like that of
Section 3 is invoked.

The TB can abort s transaction at any time
until Phase 2 of atomic aommit begins. Thereafter,
the commit algorithm governs all aborts.

Atomic co-it. We uso a variant of throo
phase commit [Ski, Sk2, SkStl.

Phase 1.

For each logical file X that t updated, the IB

broadcasts Endt to all copros of X using tho

lnoarnation level Broadcast function.

Each DB processes Endt es described in Section 4

and rosponds positivoly or negatively to tho TB.

This phrso onds vhon sll recipients have
responded or boen Excluded. There sro tro pos-
siblo outcomes. If sny DB responded negatively,
or if any DB in t’s materislization has been
Excluded, tho TB aborts t. Othoruise it contin-
ues tho commit protoool.

Phases 2 and 3 constitute a Co-it transaction
virtually identical to the Abort transaction.

E.&i&Q 2.

o ‘lho III broadcasts ‘Preparc-to-Commit(t)’ to tho
members of its logical TB using tho inosrnation
love1 Broadcast.

12

Bach tooipiont trio‘ to l ot a Conit look on t.
Cuamit looka on t oonfliot with each othrr and
vith Abort looko on t.

This phase ends rhon the Broadoart oomplotoo,
that io, all recipients have l ohtorlodgod tho
look or boon excluded.

Tho Ty rondo ‘Commit(t)’ to all & l omboro of
ito logioal l’M and all & DNr rho wore rent
End’8 in Phase 1.

Baoh TN rooipiont updater itr Cn and PTL, aud
rrlraooo the look l ot in the previouo stop.

If the lU fails (and io excluded) before oom-
Bitting or aborting tranraotion t, there are three
0~000. (1) Somo & member of thr logioal Iy hao
roooivrd tho ‘Prepare’ wrragr but not the ‘Commit’
or ‘Abort’. (2) No ie member haa received the
‘Propore’. (3) All& l omboro have roooived the
‘commit’ or ‘Abort’. Car8 (1) io l olvod by a tor-
rination protocol virtually idontioal to the one in
Sootion 3. Caror (2) and (3) require DN intorvon-
tion. When a DN that proooaord an operation for t
notiooo tho TN failure, it contacts another mombor.
T’, of the logical TN. If T’ has not received tho
‘Prepare’, T’ l ttompto to abort t by invoking the
Abort tranoaotion. If T’ haa reooivod the ‘Commit’
or ‘Abort’, T’ oomplotoo the protoool by oxoouting
tho last otop or phase.

An offline lY supports a ring10 funotion,
Rollforward. The TN obtains tho Cl’L, A’& and PTL
rtorod by 8010 onlin, mombor of itr logioal ‘I& and
updatoo its own liotr accordingly.

We now doooribo TN bohavior in rooponoo to
oporotlono srouod by tranraotionr.

l

l

l

l

l

of

Bogint . Tho TN assigns tranaaotion t a globolly

unique tranoaction idontifior. All meooagor
ront by tho TN on t’s behalf carry this idontif-
ior.

Roadt(X). Tho TN isop Boadt(x), rhoro x io

tho copy of X in t’s motorialization. Tho data
rotomod by DN x is paoood to t. If x rojooto
tho Road, tho TN aborts t.

Updatot(X). Similar to Road,

Abortt. Tho TN invoker tho Abort tranraotion to

obort t.

Rnd,. Tho TN invokes atomic oommlt.

6. Failures and Booovorioo

Whon a DN or TN fail8 or rocovoro, other parts
tho system must roaot. This ooctxon doooriboo

l yotom behavior
rooovorieo.

in rooponro to foiluroo and

4.1 I!!! FIilPror

Whon DN x fails, tho incarnation lovol will
Rxoludo it. Thro hao an offoot on tranoaotiona
that access x. If transaction t updatoo logical
filo X, t oannot oommit until x is Exoludod. (Thi‘

ir onforood by tho Broadoaot of Bndt to all oopior

of .X(: l oo Sootioa 5.) If t roads x. it fill bo
abortid if x io Bxoludod~boforo t roaohio Phaoo 2
of oouit. (This is rnforood by materialization
watching, soo Sootlon 5.) Thoro oonditionr l ro uood
to avoid the roplioatod data anomaly illuotratod in
tho Introduction.

Whon a TN, T, fails and IO oxcludod, the oyr-
tom may havo to abort tranraotiono that wore con-
trolled by T. This 1s govornod by tho tormination
protocol dorcribod in Sootion 5.

6.9 I IL,covorirr

Whon a DN x rooovoro, it is in tho pfflinr
l tato and cannot prooooo database operations. DN x
movoo to tho onlinr rtato by ruuning a variant of
Atar et al.“ rooovory algorithm [ABQI.

baor &RR 1. Sot aoido a copy of tho status data-
. (This io noodod for total failure, soo Seo-

tion 6.5.)

SLsp 2. Tho inoarnation lovol Include8 x.

&RR 2. DN x oxocutoo tho Pollforward oprra-
tion to bring itrolf up-to-dato. (So0 Sootion 4.1
:;;;forrard roquireo an pnlinp oopy of tho logical

. If no onllno oopy oxiota, thio io a total
failure Q... aad is handled in Sootion 6.5.

w 4 DN x rots its oubrtato to online and
diocardo tho databaoo oavod in Stop 1.

If DN x was down for a long time, tho Pollfor-
ward might tako a long timo to complete. During
this poriod no tranaaotion that updatoo logical
file X oan commit. To shorten this poriod, DN x
con oxooutr Rollforrard boforo boing Inoludod.
Thro fill bring x ‘almost’ up-to-date and allow tho
Rollforward in Stop 3 to ooaploto more rapldly.

Tho algorithm of Sootion 6.3 works for ‘IN
rooovoriro too, rxcopt the Rollforward oporation is
the one defined in Sootion 5. That is, it brings
tho CL ATL, and PTL at tho rocovoring TN up-to-
dato.

5.3 Jtooovory from DN Total Pailurq

A DN total falluro oocurs whore all online
momboro of a logical DN havo failod. Rooovory from
Dy total failure io similar to rroovory from -total
failuro doooribod in Sootion 3.3.

As DNo reoovor, thoy oxocuto tho LAST SUR-
VIVORS algorithm of Section 3.3. The algorithm
gotr its initial valuoo from tho status databaoo
l avod in Stop 1 of tho DN rocovory proooduro (soa
Section 6.3) and rootriots all valor8 to members of
tho logioal DN. When the algorithm torminatos, it
has idontifiod tho last surviving DNo. Eaoh DN
thon rooolvoo any ponding tranoootlono. For oaoh
pending tranoaotron t, tho DN obtains t’s status
from any mombor of t’s logical Ty.

An important special caoo of DN total failure
is the oaoo of nonrcplioatod data. If x is tho
only oopy of logical file X. ovory failuro of x is
a total failure. In this ceoo, tho LAST SDRVIVORS
algorithm torminatro r-odiatrly, and x noed only
rooolvo pending transactions.

13

4.4 Po~ovorY $bQN TL! z!m.l Failoto

‘IN total failures are analogous to the DR case
and are handlod similarly. When the last survivors
aro found, pending tranraations aro resolved by
running tho commit termination protocol (roe Soo-
tion 5) for oath ono.

I. Conclnslon

Roplloatron IS tho key factor in making a ddbr
more reliable than a oontralizod dbs, roplioatod
data managomont and roplloatod transaction manage-
mont . A ddbr reliability algorithm is, first and
foremost, an oxport at handling replication.

Our algorithm maker tho following guarantees
concorning replicated data.

1. The copzor of each logzoal file bohavo like a
single copy from the standpoint of logrcal
oorrootnors.

2. A transaction can oxocuto provided at loast ono
COPY of each logical filo it references 1s
available.

3. When a copy of a file rooovors it can be rein-
tegrated into the syotom provzdod at least one
other copy zs alroady available.

4. If all copies of a file fail, the file roll
become available again when ‘enough’ of the
copies rocovor.

Our algorithm makes similar guarantees con-
Corning roplicatod transaction managomont.

a. Boforonoor

MBDGI Alsborg P.A., 6.6. Bolford, J.D. Day, and E.
Grapa . ‘Ynltr-copy Boszlloncy Techniques,’
v Data Yanaaemont (J.B. Rcthnlo.

Bornstorn,
197& pp. 128-176.

D.W. Shipman, ods.1, IEEE.

[ABG] Attar B., P.A. BornsteIn, and N. Goodman.
‘Site Initialization, Recovery, and Back-up
in a Distributed Database System,’ pioc. 6th
m m, Feb. 1982, pp. 185-202.

[AD] iz:borg, P.A., ands;;;;,aY. ‘A Principle
Resilient of Distributed

Resources,’ &. 2nd w. Conf. Software
B&, Oct. 1976.

MDEBI Andlor. S., I. Ding, K. Esvaran, C. Hausor,
W. Kim, J. Yehl. R. Williams. ‘System D A
Distributed System for Availability,’ &&q.

[Bal
E~E,s;P;. 1?82. pp. 33-44.

. . A ‘Nonstop’ Operating Sys-
tom, ’ in Tho m an@ Praotico d Rolzablo

odr.). Svrtor Doriun, (Ssoriarok and Swarz,
Digital Prorr, 1982, pp. 453-460.

[Boll Bomstoin, P.A., and N. Goodman. ’ Con-
currency Control in Distrrbutod Database
Systoas.’ &J Comuotrnp SIUVOVQ 13, 2(Juno
19ai), pp. 185-221.

IBG21 Bomrtoin, P.A., and N. Goodman. ‘A
Sophirtioato’r Introduction to Distributed
Databaro Concurrency Control,’ m. &jl
m, Sopt. 1982, pp. 62-76.

[BOB] Bornrtoin, P.A., N. Goodman and V. Radzil-
lacer. ‘Roaovory Algorithms for Database
Systems, ’ &~g. m m Connrers, Sept.
1983.

[Co1 Cooper, B.C. ‘Analysis of Distributed Com-
mit Protocols, ’ &gg. @ SIGROD Conf. 9~
Yanaaoront ef D&R, ACN, Juno 1982, pp.
175-183.

[

1

CBI Chong, W.K. l d 6.6. Bolford. ‘The Rosi-
lioncy of Fully Replicated Dzstrlbutod Data-
bases, ’ && m Borkolov Workshou, Fob.
1982, pp. 23-44.

CDFLNRI Chan, A.,
A. Nori,

S. Danberg, S. For, W-T.K. Lan,
and D. Rios. ‘Storage and Access

Structures to Support a Semantic Data
Model, ’ &. &&.h m, aOpt. 1982. PP.
122-130.

[CFLNRI Chan, A , S. Fox, T.A. Landers, A. Norl,
and D. Bier. ‘The Implemontatlon of an
Intogratod Concurronov Control and Rocovory
Scheme, ’ &QQ. m UGROD Conf. 2~ Manaao-
mont of Data, Juno 1982. pp. 184-191.

[Doll D. Dolov. ‘Unanimity in an Unknown and
Unreliable Environment,’ b. 22nd &?$.M$

undations 9$ Comvutor Soionce,

[Do21 Dolov. D. @The Byzantine Generals Strike

[DRI
Again,’ a. $n~la;rrthms, 3, 1 (1982).
Dolov, D. . Relschuk. ‘Bounds on
Information Exchange for Byzantine Agroo-

1982, pp. 132-140.
mutrng, ACM, Aug.

IDS11 Dolov, D. and H.R. Strong. ‘Polynomial
Algorithms for Yultrplo Processor Agreo-
mont,’ w. 14th m SIGACI SvmR. 9~ Thoorv
gj Commatang, Nay 1982. pp. 401-407.

[DS21 Dolov, D. and H.R. Strong. ‘Distributed
Commit rith Boundod Waiting,’ &RR &&
2. 9~ Reliability z Dlrtrlbutod Softnarq

Database ,%stemr, IEEE, July 1982.
[DS31 Dolov. D. and RR. Strong.

for Agreement
‘Roqulrmonts

in a Dirtrzbutod System,’
&. 2nd Int’l Svmu. on Dlrtrlbutod &&g=
w, Borlln, Sept. 1982.

[Eal Eagor . , D.L. ‘Robust Concurrency Control in
a Distributed Database,’ Univ. of Toronot TR
CSBG #135, 00t. 1981.

[EGLTI Esraran, K P , J.N. Gray, B.A. Lcrio, and

[FFLI

[ml

1611

I.L. Tralger. ‘The Nbtlons of Consistency
and Predicate Locks in a Database System,’
Commun. m, Vol. 19, No 11, Nov 1976. pp.
624-633.
Fischer, Y J., R. Forlor, and N.A. Lpnch.
‘A SzmplY and Bfflozont Bvzantlne Generals
Algorithm,’ m. 2nd SvmR.- q~ Relrabzlrtq
&p Distributed Softrare & Database &g=
&tams. IEEE, July 1982.
Flsohor, Y.J., B A. Lynch, and M.S. Pator-
son. ‘Impossibllzty of Distributed Con-
sensus rith One Faulty Process,’ &,gg. m
m SIGACT-SIGROD m. 9~ Prmciulos of
Database Ssvtoms, ACM, Mar. 1983.
Fzschor. Y.J. and A Michael. ‘Sacrificing
Serzalizablllty to Attain High Availability
of Data in an Unreliable Notvork,’ m. &
m a-SIGyoD &II&. m PrlnclDlos of
Database Svrtoms, ACM, Mar. 1982, pp. 10-75.
Gzfford, D.K. ‘Woightod Voting for Ropli-
catod Data,’ &gg. 7th Svmp. qp Oueratzna
Svstoms Prlnciules, ACR. Dec. 1979. pp.
150-159.

[Grl Gray, J.N. ‘Notes on Database Operating
Systems, ’ in m Svrtoms 3~ Advanced
Course Springer-Vorlag, 1979.

[GBBLLlGray.‘J.N., P. &Jones, Y. Blasgon, B.
Lindsay. R. Lcrie, T. Price, F. Putzulo, and
I. Traigor. ‘The Rooovory Manager of the
System R Database Manager,’ AQI Commtinp
Survovr, 13. 2 (Juno 19811, pp. 223-242.

[ERl] Harder, T., and A. Reuter. ‘Principles of
TransactIon Oriented Database Recovery -- A
Taxonomy,’ Univ. Kalserslautorn TR SOISZ.

[ES1 Hsmmor, Y.H., and D.W. Shipman. ‘Roliabrl-
ity Mechanisms for SDD-1 A System for Drs-
tributod Databases,’ ACM Trans- on Pw - -* -

5, NO. 5 (DOG. igao), PP. 431-

[La11 Lamport, L. ‘Time, Clocks, and the Ordering
of Events zn a Distributed System.’ cAQ(,
21. 7 (July 1978). pp. 558-565

14

[La21

PSLI

me1

mL1

[Shl

Luport, L. ‘The Implementation of Reliable
Distributed Multiprocess Syst6ms.’ COmDBtOt
Notr ks 12 (19781, pp. 95-114.
Lamp:ft,‘L., lt. Shostak, and Y. Pease. ‘The
Byzantine Generals Problem,’ ACM Tranq. 91!

r nrrmminn Lantxuanes & $vstems, Vol. 4.
:o: 3 (July 1982). pp. 382-401.
Yenasco, D.A., G.J. Pop&, and B.B. Muntz.
‘A Locking Protoool for Resource Coordina-
tion in Distributed Databases,’ u &ggg.
on Pa aba
1980),tpp.‘f03%%:’

Vol. 5. No. 2, (June

Parker, D.S., and R.A Rsmas. ‘A Dlstri-
buted Pile System Architecture Supporting
High Availability, ’ &g~. m m;- SeptI
1982. DD. 161-184.
Pease. Y., B. Shostak. and L. Lampor t .
‘Roaching Agreement in the Pressnoe of
Faults,’ JACY. 27, 2 (1980), pp. 228-234.
Reed., D.P. ‘Implemontlng Atomic Actions, ’
en; 7th a &qp. B Omratinn Systems

lDl0‘. ACM, Dec. 1979.
Rosenkrantz, D.J., R.E. Stearns, and P.M.
Lor1s. ‘System Level Concurrency Control
for Distributed Database Systems, ’ M
m. s Database &&. ,
Shruman. D. W. ‘The Functional Data Yodel
and tho.Data Langoago DAPLRX,’ 4Cll Traa. 91!
Databaso &g&. , Vol. 6, No. 1, (Yar. 1981).
pp. 140-173.

ml1

Wk21

Lsk31

mst1

ml

[=I

IV11

[Wal

Skoon, D. ‘NonblookinS Cwit Protocols,’

oA’Quorum Based Commit Protocol,’
Borkolep a, Fob. 1982, pp.

‘Determining the Last Process to

Stonebraker. ‘A Formal
Model of Crash Rooovery in a Distributed
System.’ a. m Berkrlop porkshop, 1981,

‘Consistency of Redundant Data-
Weakly Couplod Distribatod Com-

puter Conferrncing System,’ w. m Bsrko-
b porkshop 1981, pp. 143-153.
Traiger. 1.L:. J. Gray, C.A. Galtier, and
B.G. Lindsay. ‘Transactions and Consistency
in Distributod Database Systems,’ ACM Tranc.
pp Databaa Qvster&, Vol. 7, No. 3, (Sept.
1982). pp. 323-342.
Verhofstad, J.&S. ‘Ro~overy Tochniquos for
Databaso Systems,’ a $omuutinp j%rvevs,
10, 2 (19781, pp. 167-196.
Walter. B. ‘A Robust and Efficient Protocol
for Checking the Availability of Remote
Sitor,’ .&g. a hrkob &g&&p, Fob.
1982, pp. 45-68.

