142

CHAPTER 4 INTERPROCESS COMMUNICATION

432

Java object serialization

In Java RMI, both objects and primitive data values may be passed as arguments and
results of method invocations. An object is an instance of a Java class. For example, the
Java class equivalent to the Person struct defined in CORBA IDL might be:

public class Person implements Serializable {

private String name;

private String place;

private int year;

public Person(String aName, String aPlace, int aYear) {
name = aName;
place = aPlace;
year = aYear;

}

// followed by methods for accessing the instance variables

/

The above class states that it implements the Serializable interface, which has no
methods. Stating that a class implements the Serializable interface (which is provided in
the java.io package) has the effect of allowing its instances to be serialized.

In Java, the term serialization refers to the activity of flattening an object or a

connected set of objects into a serial form that is suitable for storing on disk or

transmitting in a message, for example as an argument or result of an RMIL
Deserialization consists of restoring the state of an object or a set of objects from their
serialized form. It is assumed that the process that does the deserialization has no prior
knowledge of the types of the objects in the serialized form. Therefore, some
information about the class of each object is included in the serialized form. This
information enables the recipient to load. the appropriate class when an object is
deserialized.

The information about a class consists of the name of the class and a version
number. The version number is intended to change when major changes are made to the
class. It can be set by the programmer or calculated automatically as a hash of the name
of the class, its instance variables, methods and interfaces. The process that deserializes
an object can check that it has the correct version of the class.

Java objects can contain references to other objects. When an object is serialized,
all the objects that it references are serialized together with it to ensure that when the '
object is reconstructed, all of its references can be fulfilled at the destination. References
are serialized as handles — in this case, the handle is a reference to an object within the
serialized form, for example the next number in a sequence of positive integers. The
serialization procedure must ensure that there is a 1-1 correspondence between object
references and handles. It must also ensure that each object is written once only — on the
second or subsequent occurrence of an object, the handle is written instead of the object.

To serialize an object, its class information is written out, followed by the types
and names of its instance variables. If the instance variables belong to new classes, then
their class information must also be written out, followed by the types and names of their
instance variables. This recursive procedure continues until the class information and
types and names of instance variables of all of the necessary classes have been written

SECTION 4.3 EXTERNAL DATA REPRESENTATION AND MARSHALLING 143

Figure 4.9 Indication of Java serialized form
Serialized values Explanation
Person | 8-byte version number hO class name, version number
3 int year java.lang.String java.lang.String | number, type and name of
name: place: instance variables
1934 |5 Smith 6 London h1 values of instance variables

The true serialized form contains additional type markers; h0 and h1 are handles

out. Each class is given a handle, and no class is written more than once to the stream of
bytes — the handles being written instead where necessary.

The contents of the instance variables that are primitive types, such as integers,
chars, booleans, bytes and longs, are written in a portable binary format using methods
of the ObjectOutputStream class. Strings and characters are written by its method called
writeUTF using Universal Transfer Format (UTF), which enables ASCII characters to
be represented unchanged (in one byte), whereas Unicode characters are represented by
multiple bytes. Strings are preceded by the number of bytes they occupy in the stream.

As an example, consider the serialization of the following object:

Person p = new Person("Smith", "London”, 1934);

The serialized form is illustrated in Figure 4.9, which omits the values of the handles and
of the type markers that indicate the objects, classes, strings and other objects in the full
serialized form. The first instance variable (1934) is an integer that has a fixed length;
the second and third instance variables are strings and are preceded by their lengths.

To make use of Java serialization, for example to serialize the Person object,
create an instance of the class ObjectQutputStream and invoke its writeObject method,
passing the Person object as argument. To deserialize an object from a stream of data,
open an ObjectInputStream on the stream and use its readObject method to reconstruct
the original object. The use of this pair of classes is similar to the use of
DataOutputStream and DatalnputStream illustrated in Figures 4.5 and 4.6.

Serialization and deserialization of the arguments and results of remote
invocations are generally carried out automatically by the middeware, without any
participation by the application programmer. If necessary, programmers with special
requirements may write their own version of the methods that read and write objects. To
find out how to do this and to get further information about serialization in Java, read
the tutorial on object serialization [java.sun.com I[]. Another way in which a
programmer may modify the effects of serialization s by declaring variables that should
not be serialized as transient. Examples of things that should not be serialized are
references to local resources such as files and sockets.

The use of reflection O The Java language supports reflection — the ability to enquire
about the properties of a class, such as the names and types of its instance variables and
methods. It also enables classes to be created from their names, and a constructor with
given argument types to be created for a given class. Reflection makes it possible to do

144

CHAPTER 4 INTERPROCESS COMMUNICATION

433

serialization and deserialization in a completely generic manner. This means that there
is no need to generate special marshalling functions for each type of object as described
above for CORBA. To find out more about reflection, see Flanagan [1997].

Java object serialization uses reflection to find out the class name of the object to
be serialized and the names, types and values of its instance variables. That is all that is
needed for the serialized form.

For deserialization, the class name in the serialized form is used to create a class.
This is then used to create a new constructor with argument types corresponding to those
specified in the serialized form. Finally, the new constructor is used to create a new
object with instance variables whose values are read from the serialized form.

Remote object references

When a client invokes a method in a remote object, an invocation message is sent to the
server process that hosts the remote object. This message needs to specify which
particular object is to have its method invoked. A remote object reference is an identifier
for a remote object that is valid throughout a distributed system. A remote object
reference is passed in the invocation message to specify which object is to be invoked.
Chapter 5 explains that remote object references are also passed as arguments and
returned as results of remote method invocations, that each remote object has a single
remote object reference and that remote object references can be compared to see
whether they refer to the same remote object. We now discuss the external
representation of remote object references.

Remote object references must be generated in a manner that ensures uniqueness
over space and time. In general, there may be many processes hosting remote objects,
so remote object references must be unique among all of the processes in the various
computers in a distributed system. Even after the remote object associated with a given
remote object reference is deleted, it is important that the remote object reference is not
reused, because its potential invokers may retain obsolete remote object references. Any
attempt to invoke a deleted object should produce an error rather than allow access to a
different object.

There are several ways to ensure that a remote object reference is unique. One way
is to construct a remote object reference by concatenating the Internet address of its
computer and the port number of the process that created it with the time of its creation
and a local object number. The local object number is incremented each time an object’
is created in that process.

The port number and time together produce a unique process identifier on that
computer. With this approach, remote object references might be represented with a

Figure 4.10 Representation of a remote object reference

32 bits 32 bits 32 bits 32 bits

. . interface of
Internetaddress | port number |time object number .
remote object

SECTION 4.4 CLIENT-SERVER COMMUNICATION 145

Figure 4.11

4.4

Request-reply communication

Client Server

doOperation Request
* message Lo getRequest
: select object
(wai) execute
. Reply method
R message sendReply

(continuation) /"

format such as that shown in Figure 4.10. In the simplest implementations of RMI,
remote objects live only in the process that created them and survive only as long as that
process continues to run. In such cases, the remote object reference can be used as an
address of the remote object. In other words, invocation messages are sent to the Internet
address in the remote reference and to the process on that computer using the given port
number.

To allow remote objects to be relocated in a different process on a different
computer, the remote object reference should not be used as the address of the remote
object. Section 17.2.4 discusses a form of remote object reference that allows objects to
be activated in different servers throughout its lifetime.

The last field of the remote object reference shown in Figure 4.10 contains some
information about the interface of the remote object, for example the interface name.
This information is relevant to any process that receives a remote object reference as an
argument or result of a remote invocation, because it needs to know about the methods
offered by the remote object. This point is explained again in Section 5.2.5.

Client-server communication

This form of communication is designed to support the roles and message exchanges in
typical client-server interactions. In the normal case, request-reply communication is
synchronous because the client process blocks until the reply arrives from the server. It
can also be reliable because the reply from the server is effectively an acknowledgement
to the client. Asynchronous request-reply communication is an alternative that may be
useful in situations where clients can afford to retrieve replies later — see Section 6.5.2.
The client-server exchanges are described in the following paragraphs in terms of
the send and receive operations in the Java API for UDP datagrams, although many
current implementations use TCP streams. A protocol built over datagrams avoids
unnecessary overheads associated with the TCP stream protocol. In particular:

o acknowledgements are redundant, since requests are followed by replies;

