CS 311 Homework 5 Solutions
due 16:40, Thursday, 28" October 2010

Homework must be submitted on paper, in class.

Question 1. [30 pts.; 15 pts. each]

Prove that the following languages are not regular using the pumping lemma.

a. L ={0"1"0" | m,n > 0}.

Answer.

To prove that L is not a regular language, we will use a proof by contradiction. Assume
that L is regular. Then by the Pumping Lemma for Regular Languages, there exists a
pumping length, p for L such that for any string s € L where |s| > p, s = xyz subject
to the following conditions:

(a) [yl >0
(b) |zy| < p, and
(c) Vi > 0,zy'z € L.

Choose s = 0P10P. Clearly, |s| > p and s € L. By condition (b) above, it follows that
x and y are composed only of zeros. By condition (a), it follows that y = 0¥ for some
k > 0. Per (c), we can take ¢ = 0 and the resulting string will still be in L. Thus,
zyz should be in L. zy°z = zz = 0®=*10P. But, this is clearly not in L. This is a
contradiction with the pumping lemma. Therefore our assumption that L is regular is
incorrect, and L is not a regular language.

b. L = {wtw | w,t € {0,1}}.

Answer.

To prove that L is not a regular language, we will use a proof by contradiction. Assume
that L is a regular language. Then by the Pumping Lemma for Regular Languages,
there exists a pumping length p for L such that for any sring s € L where |s| > p,
s = xyz subject to the following conditions:

(a) |yl >0
(b) |zy| < p, and
(c) Vi > 0,zy'z € L.

Choose s = 0P11071. Clearly s € L with w = 01 and ¢ = 1, and |s| > p. By condition
(b), it is obvious that zy is composed only of zeros, and further, by (a) and (b), it
follows that y = 0% for some k& > 0. By condition (c), we can take any i and xy‘z will
be in L. Taking i = 2, then zy?z € L. zy*z = zyyz = 0PT%110P1. There is no way
that this string can be divided into wtw as required to be in L, thus zy?z ¢ L. This is
a contradiction with condition (c¢) of the pumping lemma. Therefore the assumption
that L is a regular language is incorrect and thus L is not a regular language.

Question 2. [20 pts]

Convert the following DFA into a regular expression using state elimination. Be sure to show
intermediate steps of the process.

Answer.

First we introduce a new start and final state, with ¢ transitions to and from the original
start and final states.

()

Now we remove state q2, and reconnect state ql to q0, including the regular expression for
the path through 2 along with the original path from ql to qO.

Now remove ql, adding the regular expression for the path through ql to the self-loop on
qO.

b + a(b + aa*b)

i
XD—=(»)

Finally, remove state q0, connecting the start and final state with the regular expression for
the self-loop on 0. This regular expression represents all the strings that this NFA accepts.

[>® (b + a(b + aa*b))*>@

Question 3. [20 pts.; 10 pts. each]

Write context free grammars that generate the following languages. In each case use the
alphabet ¥ = {0, 1}.

a. {a#ty | [z # [yl}-

Answer.

To construct this grammar, we will build a balanced string of arbitrary length, and
then force the generation to choose between a path that forces either the left or the
right side to be arbitrarily longer than the other side.

S — XSX|XLIRX
L — #|XL

R — #|RX

X — 01

b. {w | w contains at least two occurences of the substring 101}

This language is straightforward. Force the inclusion of two occurences of the substring
101 right in the first rule. Then allow arbitrary other substrings to be placed in all
other positions.

S — Al101A101A
A — AA|0|1e
Question 4. [30 pts; 15 pts. each]

Construct PDAs that recognize the following languages:

a. L={aVV |i>j}

Answer.

This machine will count the number of as by pushing them on the stack. Then it will
start comparing bs from the input with as on the stack. When all the bs are consumed,
then the machine will drain the stack and accept if there are still as on the stack. So
long as there are as on the stack, then the string of bs must be shorter.

b. L={xcy|x,y € {a,b}* and Az #yl}

This machine will push everything onto the stack until it reads the c¢. Then it will
attempt to match the stack against the input, consuming input so long as it matches.
The machine will accept if it sees one set of mis-matched characters, or if either part is
longer than the other. In all other cases, the machine will get stuck without accepting.

