
CS 311 Homework 1
due 16:00, Thursday, 7th October 2010

Homework must be submitted on paper, in class.

Question 1. [20 pts.; 5 pts. each]

Draw state diagrams for DFAs recognizing the following languages over the alphabet {0, 1}.
remember to indicate the initial state and the final state(s), and to label all the transitions.

a. { w | w contains the symbol 1 at least three times.}.

Answer.

b. { w | w has all the 0 symbols precede all the 1 symbols.}. Hint: What does the question
state about how many times each symbol must appear? (end of hint).

Answer.

For help with this problem, consider what strings should be rejected. All strings where
a 0 is preceded by a 1 should be rejected. Now consider several examples:

• 000111 would not be rejected.

• 111000 would be rejected, because there is at least one 0 that is preceded by a 1.

• 000 would not be rejected. No 0 symbol is preceded by a 1 symbol.

• 111 would not be rejected. No 0 symbol, of which there are none, are preceded
by a 1 symbol.

• ε would not be rejected, for the same reason.

1



With this in mind, it is easy to see what the DFA should accept.

c. { w | w contains the substring 110 exactly once}.

Answer.

In this graphic, pay attention to the transistion from q2 to q3. Here we see the ac-
ceptance of the first occurrence of 110. Now notice the transtion from q4 to q5. The
machine has seen a second occurrence of 11 and is stuck forever accepting 1’s or it must
fail. I find these graphics helpful in understanding how these machines work. Layout
of these graphics becomes important for more sophisticated machines — you can see
sections of the machine that perform different tasks and how those tasks interconnect.

d. { w | w does not contain 110}.

2



Answer.

Question 2. [12 pts.; 4 pts. each]

Given M = 〈{0, 1, 2, 3, 4}, {a, b}, δ, 0, {4}〉 where δ is given by the table below:

a b

0 1 0
1 2 0
2 4 3
3 1 4
4 4 4

a. Draw the state diagram for this DFA.

Answer.

b. Informally describe the language that M accepts.

3



Answer.

Working back from the final state, you can see that there are two ways to arrive. The
first way, by way of states q1 or q3 and then through q2 requires the string aaa. The
second way, through state q2 and then q3 requires the string aabb. Once in state q4,
the machine remains there on any input. The machine accepts any string that contains
either aaa or aabb.

c. For each of the following three strings, determine whether the string is accepted. List
the sequence of states r0, r1, . . . , rn (from the formal definition) through which the
machine moves as it reads the string. (Hint, the final state rn should correspond to
your determination of whether the machine accepts or not!).

• bbabaabb,

Answer.

r0 = q0 = 0
r1 = δ(0, b) = 0
r2 = δ(0, b) = 0
r3 = δ(0, a) = 1
r4 = δ(1, b) = 0
r5 = δ(0, a) = 1
r6 = δ(1, a) = 2
r7 = δ(2, b) = 3
r8 = δ(3, b) = 4 ∈ {4}. Accept.

• abaabaaa, and

Answer.

r0 = q0 = 0
r1 = δ(0, a) = 1
r2 = δ(1, b) = 0
r3 = δ(0, a) = 1
r4 = δ(1, a) = 2
r5 = δ(2, b) = 3
r6 = δ(3, a) = 1
r7 = δ(1, a) = 2
r8 = δ(2, a) = 4 ∈ {4}. Accept.

• aabab.

Answer.

r0 = q0 = 0
r1 = δ(0, a) = 1

4



r2 = δ(1, a) = 2
r3 = δ(2, b) = 3
r4 = δ(3, a) = 1
r5 = δ(1, b) = 0 /∈ {4}. Fail.

Question 3. [8 pts.]

It is common to use computers to warn us of mistakes we might otherwise miss. (One such
mistake to leave unbalanced parentheses (like this!).

It is not possible to determine whether parentheses are balanced using a DFA. Discuss
informally why this is so.

Answer.

The difficulty in balancing parentheses lies in the nesting. Accepting one pair of balanced
parentheses is easy, as is accepting concatenated pairs of balanced parentheses. But how do
you accept nested pairs like (())? Here is the diagram of a DFA that will accept nested pairs
to one level.

It will accept (), (()), (()())() and so forth. But what if you need more levels of nesting? Bal-
ancing parentheses is a counting task. The machine must count how many open-parentheses
have been encountered. For each level of nesting, another state is required. Because you
cannot know in advance how many levels of nesting are required, you must provide an infinite
number of states. But a DFA by definition has a finite number of states. So we cannot use
a DFA to count parentheses. In fact we use another type of machine, a stack based machine
called a pushdown automata, to handle these tasks.

Question 4. [10 pts.]

Develop a formal definition for the DFA M , defined as the union of the DFA’s described in
Question 1a and 1b. Use the 5-tuple notation with a transition table.

Answer.

First we formally define the two machines:

5



Question 1a

Ma = 〈Qa,Σa, δa, q0a, Fa〉
where Qa = {0, 1, 2, 3}

Σa = {0, 1}
q0a = 0

Fa = {3}

and, δa is represented by the transition table:

δa 0 1

0 0 1
1 1 2
2 2 3
3 3 3

Question 1b

Mb = 〈Qb,Σb, δb, q0b, Fb〉
where Qb = {0, 1, 2}

Σb = {0, 1}
q0b = 0

Fb = {0, 1}

and, δb is represented by the transition table:

δb 0 1

0 0 1
1 2 1
2 2 2

From the formal definition of the union of two languages, we know L(Mu) = L(Ma)∪L(Mb)
if

Mu = 〈Q,Σ, δ, q0, F 〉
where

Q = Qa ×Qb = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1),

(1, 2), (2, 0), (2, 1), (2, 2), (3, 0), (3, 1), (3, 2)}
Σ = {0, 1}
q0 = (q0a, q0b) = (0, 0)

F = {(x, y)) | x ∈ Qa ∨ y ∈ Qb}
= {(0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (2, 1), (3, 0), (3, 1), (3, 2)}

6



and, δ is represented by the transition table:

δ 0 1

(0, 0) (0, 0) (1, 1)
(0, 1) (0, 2) (1, 1)
(0, 2) (0, 2) (1, 2)
(1, 0) (1, 0) (2, 1)
(1, 1) (1, 2) (2, 1)
(1, 2) (1, 2) (2, 2)
(2, 0) (2, 0) (3, 1)
(2, 1) (2, 2) (3, 1)
(2, 2) (2, 2) (3, 2)
(3, 0) (3, 0) (3, 1)
(3, 1) (3, 2) (3, 1)
(3, 2) (3, 2) (3, 2)

The table is generated by methodically stepping through the states of each machine using
the state pairs. Here is the diagram of this machine:

Note that this diagram is of the complete transition table. No state elimination has been
done purely for pedagogical reasons. Examining this diagram, you can see the way this
machine works. In the first row are three states that are never reached — they have no
transitions leading into them. In the second row, we have one unreachable state, (0,1), and
three states that represent acceptance for Ma. These three states also represent counting the

7



number of 1 symbols seen so far. Overall, the second row represents Ma when that machine
has seen its first 1 symbol. In the third row we have another unreachable state, (0,2), and
three states that again represent the counting of 1 symbols seen. The third row represents
the failure state for Ma, a 0 symbol seen after a 1 symbol. This row must count off enough
1 symbols to reach acceptance for Mb.

Question 5. [10 pts.]

In the lecture, Prof. Black gave you the formal definition of DFA, and also defined how to
construct a DFA that represents the union of 2 DFAs. However, in the lecture he did not
prove that this construction is correct. Prove that w ∈ L(Ma)⇒ w ∈ L(Ma ∪Mb). (This is
one piece of the proof of the closure of regular languages under union.)

Answer.

To prove that w ∈ L(Ma)⇒ w ∈ L(Ma ∪Mb),

Let

Ma = 〈Qa,Σa, δa, q0a, Fa〉
Mb = 〈Qb,Σb, δb, q0b, Fb〉

By the definition of DFA acceptance

If w = w1w2w3 · · ·wn

then w ∈ L(Ma) ⇒ ∃R, n.R = {r0, r1, rn, . . . , rn}
where r0 = q0a,

∀i.0 < i ≤ n.

ri = δa(ri−1, wi),

ri ∈ Qa.

rn = δa(rn−1, wn), and

rn ∈ Fa

Now let

Mu = Ma ∪Mb.

8



By the definition of the union of DFA’s we get

Mu = 〈Qu,Σ, δu, q0u, Fu〉
where Qu = {(r, s) | r ∈ Qa ∧ s ∈ Qb}

δu((r, s), w) = (δa(r, w), δb(s, w))

q0u = (q0a, q0b)

Fu = {(x, y) | x ∈ Fa ∧ y ∈ Fb}

And with

w = w1w2w3 · · ·wn

then by the definition of DFA acceptance we get

t0 = q0u

∀i.0 < i ≤ n

ti = δu((ri−1, si−1), wi)

= (δa(ri−1, wi), δb(si−1, wi)).

Thus, tn = δu((rn−1, sn−1), wn)

= (δa(rn−1, wn), δb(sn−1, wn))

= (rn, δb(sn−1, wn))

Since rn ∈ Fa, then by the definition of Fu, tn ∈ Fu.

9


