4.2

THE HALTING PROBLEM

In this section we prove one of the most philosophically important theorems of
the theory of computation: There is a specific problem that is algorithmically
unsolvable. Computers appear to be so powerful that you may believe that all
problems will eventually yield to them. The theorem presented here demon-
strates that computers are limited in a fundamental way.

What sort of problems are unsolvable by computer? Are they esoteric,
dwelling only in the minds of theoreticians? No! Even some ordinary prob-
lems that people want to solve turn out to be computationally unsolvable.

In one type of unsolvable problem, you are given a computer program and
a precise specification of what that program is supposed to do (e.g., sort a list
of numbers). You need to verify that the program performs as specified (i.e.,
that it is correct). Because both the program and the specification are mathe-
matically precise objects, you hope to automate the process of verification by
feeding these objects into a suitably programmed computer. However, you will
be disappointed. The general problem of software verification is not solvable by
computer.

In this section and Chapter § you will encounter several computationally un-
solvable problems. Our objectives are to help you develop a feel for the types of
problems that are unsolvable and to learn techniques for proving unsolvability.

Now we turn to our first theorem that establishes the undecidability of a spe-
cific language: the problem of determining whether a Turing machine accepts a
given input string. We call it Aty by analogy with Appa and Acrg. But, whereas



174 CHAPTER 4 / DECIDABILITY

Apra and Acpg were decidable, Aty is not. Let

Aty = {{M,w)| M isa TM and M accepts w}.

THEOREM 4.11

At is undecidable.

Before we get to the proof, let’s first observe that Aty is Turing-recognizable.
Thus this theorem shows that recognizers #re more powerful than deciders. Re-
quiring a2 TM to halt on all inputs restricts the kinds of languages that it can
recognize. The following Turing machine U recognizes Atwm.

U = “On input (M, w), where M is a TM and w is a string:
1. Simulate M on input w.
2. If M ever enters its accept state, accept; if M ever enters its
reject state, reject.”

Note that this machine loops on input (M, w) if M loops on w, which is why
this machine does not decide Atpm. If the algorithm had some way to determine
that M was not halting on w, it could reject. Hence Aty is sometimes called
the balting problem. As we demonstrate, an algorithm has no way to make this
determination.

The Turing machine U is interesting in its own right. It is an example of
the universal Turing machine first proposed by Turing. This machine is called
universal because it is capable of simulating any other Turing machine from the
description of that machine. The universal Turing machine played an important
early role in stimulating the development of stored-program computers.

THE DIAGONALIZATION METHOD

The proof of the undecidability of the halting problem uses a technique called
diagonalization, discovered by mathematician Georg Cantor in 1873. Cantor was
concerned with the problem of measuring the sizes of infinite sets. If we have
two infinite sets, how can we tell whether one is larger than the other or whether
they are of the same size? For finite sets, of course, answering these questions
is easy. We simply count the elements in a finite set, and the resulting number
is its size. But, if we try to count the elements of an infinite set, we will never
finish! So we can’t use the counting method to determine the relative sizes of
infinite sets.

For example, take the set of even integers and the set of all strings over {0,1}.
Both sets are infinite and thus larger than any finite set, but is one of the two
larger than the other? How can we compare their relative size?

Cantor proposed a rather nice solution to this problem. He observed that two
finite sets have the same size if the elements of one set can be paired with the
elements of the other set. This method compares the sizes without resorting to
counting. We can extend this idea to infinite sets. Let’s see what it means more
precisely.

4.2 THE HALTING PROBLEM 175

DEFINITION 4.12

Assume that we have sets A and B and a function f from A to B.
Say that f is onme-to-ome if it never maps two different elements to
the same place—that is, if f(a) # f(b) whenever a # b. Say that
[ is onto if it hits every element of B—that is, if for every b € B
there is an a € A such that f(a) = b. Say that 4 and B are the same
size if there is a one-to-one, onto function f: A— B. A function
that is both one-to-one and onto is called a correspondence. In a
correspondence every element of A maps to a unique element of B
and each element of B has a unique element of 4 mapping to it. A
correspondence is simply a way of pairing the elements of A with
the elements of B.

EXAMPLE 4.13

Let N be the set of natural numbers {1,2,3,...} and let £ be the set of even
natural numbers {2,4,6, ...}. Using Cantor’s definition of size we can see that
N and € have the same size. The correspondence f mapping N to £ is simply
f(n) = 2n. We can visualize f more easily with the help of a table.

n
1 2
2 4
3 6

Of course, this example seems bizarre. Intuitively, £ seems smaller than N be-
cause & is a proper subset of /. But pairing each member of A/ with its own
member of £ is possible, so we declare these two sets to be the same size.

DEFINITION 4.14

A set A is countable if either it is finite or it has the same size as AV

EXAMPLE 4.15

Now we turn to an even stranger example. If we let @ = {Z| m,n € N} be the
set of positive rational numbers, Q seems to be much larger than N. Yet these
two sets are the same size according to our definition. We give a correspondence
with NV to show that Q is countable. One easy way to do so is to list all the
elements of Q. Then we pair the first element on the list with the number 1
from A, the second element on the list with the number 2 from N, and so on.
We must ensure that every member of Q appears only once on the list.



176 CHAPTER 4 / DECIDABILITY

To get this list we make an infinite matrix containing all the positive ratio-
nal numbers, as shown in Figure 4.16. The ith row contains all numbers with
numerator 7 and the jth column has all numbers with denominator j. So the
number ; occurs in the ith row and jth column.

Now we turn this matrix into a list. One (bad) way to attempt it would be to
begin the list with all the elements in the first row. That isn’t a good approach
because the first row is infinite, so the list would never get to the second row.
Instead we list the elements on the diagonals, starting from the corner, which are
superimposed on the diagram. The first diagonal contains the single element 1,
and the second diagonal contains the two elements 2 and . So the first three
elements on the listare 1, 2, and 1. In the third diagonal a complication arises. It
contains %, %, and % If we simply added these to the list, we would repeat % = %
We avoid doing so by skipping an element when it would cause a repetition. So
we add only the two new elements 2 and 5. Continuing in this way we obtain a
list of all the elements of Q.

[SII~) (S]]

(SN

FIGURE 4.16
A correspondence of A and Q

After seeing the correspondence of A/ and Q, you might think that any two
infinite sets can be shown to have the same size. After all, you need only demon-
strate a correspondence, and this example shows that surprising correspondences
do exist. However, for some infinite sets no correspondence with A/ exists.
These sets are simply too big. Such sets are called uncountable.

The set of real numbers is an example of an uncountable set. A real number
is one that has a decimal representation. The numbers 7 = 3.1415926. .. and
V2 = 1.4142135. .. are examples of real numbers. Let R be the set of real
numbers. Cantor proved that R is uncountable. In doing so he introduced the
diagonalization method.

4.2 THE HALTING PROBLEM 177

THEOREM 4.17

R is uncountable.

PROOF  In order to show that R is uncountable, we show that no correspon-
dence exists between A" and R. The proof is by contradiction. Suppose that a
correspondence f existed between A and R. Our job is to show that f fails to
work as it should. For it to be a correspondence, f must pair all the members of
N with all the members of R. But we will find an z in R that is not paired with
anything in A/, which will be our contradiction.

The way we find this z is by actually constructing it. We choose each digit
of z to make z different from one of the real numbers that is paired with an
element of V. In the end we are sure that z is different from any real number
that is paired.

We can illustrate this idea by giving an example. Suppose that the correspon-
dence f exists. Let f(1) = 3.14159..., f(2) = 55.55555..., f(3) = ...,
and so on, just to make up some values for f. Then f pairs the number 1 with
3.14159. .., the number 2 with 55.55555. .. and so on. The following table
shows a few values of a hypothetical correspondence f between A/ and R.

n f(n)

1 3.14159...
2 | 55.55555. ..
3 0.12345...
4 0.50000...

We construct the desired # by giving its decimal representation. It is a num-
ber between 0 and 1, so all its significant digits are fractional digits following the
decimal point. Our objective is to ensure that z # f(n) for any n. To ensure that
z # f(1) we let the first digit of z be anything different from the first fractional
digit 1 of f(1) = 3.14159. ... Arbitrarily, we let it be 4. To ensure thatz # f(2)
we let the second digit of - be anything different from the second fractional digit
5 of f(2) = 55.555555. ... . Arbitrarily, we let it be 6. The third fractional digit
of f(3) = 0.12345...is 3, so we let z be anything different—say, 4. Continuing
in this way down the diagonal of the table for f, we obtain all the digits of z, as
shown in the following table. We know that z is not f(n) for any n because it
differs from f(n) in the nth fractional digit. (A slight problem arises because
certain numbers, such as 0.1999. .. and 0.2000. . , are equal even though their
decimal representations are different. We avoid this problem by never selecting
the digits 0 or 9 when we construct z.)



178 CHAPTER 4 / DECIDABILITY

n f(n)

1 3.141569...

2 | 55.655655...

3 0.12345... r=0.4641 ...
4 0.50000...

The preceding theorem has an important application to the theory of com-
putation. It shows that some languages are not decidable or even Turing-
recognizable, for the reason that there are uncountably many languages yet only
countably many Turing machines. Because each Turing machine can recognize
a single language and there are more languages than Turing machines, some
languages are not recognized by any Turing machine. Such languages are not
Turing-recognizable, as we state in the following corollary.

COROLLARY 4.18

Some languages are not Turing-recognizable.

PROOF To show that the set of all Turing machines is countable we first ob-
serve that the set of all strings * is countable, for any alphabet . With only
finitely many strings of each length, we may form a list of £* by writing down
all strings of length 0, length 1, length 2, and so on.

The set of all Turing machines is countable because each Turing machine M
has an encoding into a string (M). If we simply omit those strings that are not
legal encodings of Turing machines, we can obtain a list of all Turing machines.

To show that the set of all languages is uncountable we first observe that the
set of all infinite binary sequences is uncountable. An infinite binary sequence is an
unending sequence of Os and 1s. Let B be the set of all infinite binary sequences.
We can show that B is uncountable by using a proof by diagonalization similar
to the one we used in Theorem 4.17 to show that R is uncountable.

Let £ be the set of all languages over alphabet . We show that £ is un-
countable by giving a correspondence with B, thus showing that the two sets are
the same size. Let ¥* = {s1, 82, 83,...}. Each language A € L has a unique
sequence in B. The ith bit of that sequenceisa 1 if s; € AandisaOifs; & A,
which is called the characteristic sequence of A. For example, if A were the lan-
guage of all strings starting with a 0 over the alphabet {0,1}, its characteristic
sequence x4 would be

>*={¢e, 0, 1,00, 0L, 10, 11 ,000,001, - } ;
A={ 0, 00 , 01 , 000,001, - } ;
xa= 0 1 0 1 1 0 0 1 1

The function f: £L— B, where f(A) equals the characteristic sequence of
A, is one-to-one and onto and hence a correspondence. Therefore, as B is un-

4.2 THE HALTING PROBLEM 179

countable, £ is uncountable as well.

Thus we have shown that the set of all languages cannot be put into a corre-
spondence with the set of all Turing machines. We conclude that some languages
are not recognized by any Turing machine.

THE HALTING PROBLEM IS UNDECIDABLE
Now we are ready to prove Theorem 4.11, the undecidability of the language
Atm = {(M,w)| M isa TM and M accepts w}.

PROOF We assume that Aty is decidable and obtain a contradiction. Sup-
pose that H is a decider for Atm. On input (M, w), where M isa TM and w is a
string, H halts and accepts if M accepts w. Furthermore, H halts and rejects if
M fails to accept w. In other words, we assume that H is a TM, where

H((M,w)) = accept  if M accepts w
’ | reject  if M does not accept w.

Now we construct a new Turing machine D with H as a subroutine. This
new TM calls H to determine what M does when the input to M is its own
description (M). Once D has determined this information, it does the opposite.
That is, it rejects if M accepts and accepts if M does not accept. The following
is a description of D.

D = “On input (M), where M is a TM:
1. Run H on input (M, (M)).
2. Output the opposite of what H outputs; that is, if H accepts,
reject and if H rejects, accept.”

Don’t be confused by the idea of running a machine on its own description!
"That is similar to running a program with itself as input, something that does
occasionally occur in practice. For example, a compiler is a program that trans-
lates other programs. A compiler for the language Pascal may itself be written
in Pascal, so running that program on itself would make sense. In summary,

accept if M does not accept (M
D((n)) = { 4Pt Pt (M)

reject  if M accepts (M).
What happens when we run D with its own description (D) as input? In that
case we get

accept if D does not accept (D)

D((D)) = { “P ! b
reject  if D accepts (D).

No matter what D does, it is forced to do the opposite, which is obviously a
contradiction. Thus neither TM D nor TM H can exist.




180

CHAPTER 4 / DECIDABILITY

Let’s review the steps of this proof. Assume that a TM H decides Atm. Then
use H to build a TM D that when given input (M) accepts exactly when M does
not accept input (M). Finally, run D on itself. The machines take the following
actions, with the last line being the contradiction.

* H accepts (M, w) exactly when M accepts w.
* D rejects (M) exactly when M accepts (M).
* D rejects (D) exactly when D accepts (D).

Where is the diagonalization in the proof of Theorem 4.11? It becomes ap-
parent when you examine tables of behavior for TMs H and D. In these tables
we list all TMs down the rows, M;, Ma, ... and all their descriptions across the
columns, (M), (M), ... The entries tell whether the machine in a given row
accepts the input in a given column. The entry is accept if the machine accepts
the input but is blank if it rejects or loops on that input. We made up the entries
in the following figure to illustrate the idea.

(My) (M2) (Ms) (M)
M | accept accept
My | accept accept accept accept
M

accept accept

M,

FIGURE 4,19
Entry 1, j is accept if M; accepts (M)

In the following figure the entries are the results of running H on inputs
corresponding to Figure 4.18. So if M3 does not accept input (Ms), the entry
for row M3 and column (M) is reject because H rejects input (M3, (Ma)).

(My) (Mz) (Ms) (My)
My | accept reject accept reject
My | accept accept accept accept
M3 | reject reject  reject  reject
accept accept reject  reject

M,

FIGURE 4.20
Entry 4, j is the value of H on input (M;, (M,))

i

4.2 THE HALTING PROBLEM 181

In the following figure, we added D to Figure 4.19. By our assumption, H is
a TM and so is D. Therefore it must occur on the list My, Ms, ... of all TMs.
Note that D computes the opposite of the diagonal entries. "The contradiction
occurs at the point of the question mark where the entry must be the opposite
of itself.

(My) (M) (Ms) (M) (D)
M, | accept reject accept reject accept
Ms | accept accept accept accept accept
Ms | reject reject reject  reject reject
My | accept accept reject  reject accept
D reject  reject  accept accept ?

FIGURE 4.21

If D is in the figure, a contradiction occurs at “?”

A TURING-UNRECOGNIZABLE LANGUAGE

In the preceding section we demonstrated a language—namely, Atm—thatisun-
decidable. Now we demonstrate a language that isn’t even Turing-recognizable.
Note that Aty will not suffice for this purpose because we showed that At
is Turing-recognizable (page 174). The following theorem shows that, if both
a language and its complement are Turing-recognizable, the language is decid-
able. Hence, for any undecidable language, either it or its complement is not
Turing-recognizable. Recall that the complement of a language is the language
consisting of all strings that are notin the language. We say that a language is co-
Turing-recognizable if it is the complement of a Turing-recognizable language.

THEOREM 4.22

A language is decidable iff it is ‘Turing-recognizable and co-"Turing-recognizable.

In other words, a language is decidable exactly when both it and its complement
are Turing-recognizable.

PROOF We have two directions to prove. First, if A is decidable, we can easily
see that both A and its complement A are Turing-recognizable. Any decidable
language is Turing-recognizable, and the complement of a decidable language
also is decidable.

For the other direction, if both A and A are Turing-recognizable, we let M
be the recognizer for A and M, be the recognizer for A. The following Turing



182 CHAPTER 4 / DECIDABILITY

machine M is a decider for A.

M = “On input w:
1. Run both M; and M, on input w in parallel.
2. If My accepts, accept; if My accepts, reject.”

Running the two machines in parallel means that M has two tapes, one for simu-
lating M, and the other for simulating My. In this case M takes turns simulating
one step of each machine, which continues until one of them accepts.

Now we show that M decides A. Every string w is either in A or A. Therefore
either M; or M, must accept w. Because M halts whenever M| or M accepts,
M always halts and so it is a decider. Furthermore, it accepts all strings in 4 and
rejects all strings not in A. So M is a decider for A, and thus A is decidable.

COROLLARY 4,23 -
At is not Turing-recognizable.
PROOF We know that Arwm is Turing-recognizable. If Aty also were Turing-

recognizable, Aty would be decidable. Theorem 4.11 tells us that Aty is not
decidable, so Aty must not be Turing-recognizable.




