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Course Objectives
Upon the successful completion of this course students will be able to:

1.
 Find regular grammars and context-free grammars for simple
languages whose strings are described by given properties.

2.
 Apply algorithms to: transform regular expressions to NFAs, NFAs
to DFAs, and DFAs to minimum-state DFAs; construct regular 
expressions from NFAs or DFAs; and transform between regular 
grammars and NFAs.

3.
 Apply algorithms to transform: between PDAs that accept by final 
state and those that accept by empty stack; and between context-free 
grammars and PDAs that accept by empty stack.

4.
 Describe LL(k) grammars; perform factorization if possible to reduce 
the size of k; and write recursive descent procedures and parse tables 
for simple LL(1) grammars.

5.
 Transform grammars by removing all left recursion and by removing 
all possible productions that have the empty string on the right side.
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6.
 Apply pumping lemmas to prove that some simple languages are not 
regular or not context-free.

7.
 State the Church-Turing Thesis and solve simple problems with 
some of the following models of computation: Turing machines 
(single-tape and multi-tape); while-loop programs; partial recursive 
functions; Markov algorithms; Post algorithms; the lambda calculus; 
and Post systems.

8.
 Describe the concepts of unsolvable and partially solvable; state the 
halting problem and prove that it is unsolvable and partially 
solvable; and use diagonalization to prove that the set of total 
computable functions cannot be enumerated.

9.
 Describe the hierarchy of languages and give examples of languages 
at each level that do not belong in a lower level.

10.
 Describe the complexity classes P, NP, and PSPACE.
11.
 Use an appropriate programming language as an experimental tool 

for testing properties of computational structures.
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• Whatʼs a Grammar?
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‣ ‹T, V, R, S›, where:
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‣ ‹T, V, R, S›, where:

• Grammar for L1= ab*
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• Whatʼs a Grammar?
‣ ‹T, V, R, S›, where:

• Grammar for L1= ab*
‣ What are the constraints on a regular grammar?
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• Whatʼs a Grammar?
‣ ‹T, V, R, S›, where:

• Grammar for L1= ab*
‣ What are the constraints on a regular grammar?

° S→ω, 
 or S→ωV, where ω ∈ T* (a possibly empty 
sequence of terminals).
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Context-free Languages

• Let C = {x#y | x, y ∈ {0, 1}* and x ≠ y }
‣ Design a PDA that accepts C

‣ Write a grammar that generates C
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Non-deterministic PDA
Start in state 2:

1. Read next input symbol, push 1
2. Non-deterministically go to state 1 or 3
3. If current input is a, next state is 4.a
4.x
 Read input symbols until # is read
5.x
 Read next input, pop
6.x
 If stack empty, goto 7.x else goto 5.x
7.x 
 Accept if current input is not x, otherwise 
reject
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S→RT | RʼTʼ

R→XRX | 1Y#

T→0Y

Rʼ→XRʼX | 0Y

Tʼ→1Y

X→0 | 1

Y→YX | ε

S⇒RT⇒XRXT⇒XX
RXXT⇒* XnRXnT ⇒ 
Xn1YXnT⇒ 
Xn1YXn0Y⇒…
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NP-Hard vs NP-Complete

• A problem is NP-hard if all NP problems 
can be polynomially reduced to it.

• So, the difference between NP-complete 
and NP-hard is that an NP-complete 
problem must be in NP
‣ An NP-hard problem need not be in NP
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Example NP-hard problem

• From Sipser Ex 7.33:
‣ The problem D = “Does a polynomial p in several 

variables have integral solutions” is NP-hard.

‣ Note: itʼs not in NP — in fact, its undecidable

• But we can reduce the known NP-complete 
problem 3-CNF satisfiability to D
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Proof Outline
• Take a formula in 3-CNF and transform it into a 

Polynomial q as follows:
variable x → variable x 
¬ x → (1 - x)
x ∧ y →  xy
x ∨ y = ¬ (¬ x ∧ ¬ y)  → (1 - (1-x)(1-y))

‣ So if the 3-CNF formula is satisfiable, the 
polynomial 1-q has has integral roots.

‣ But (1-q) might also have integral roots that do 
not correspond to a boolean
° but (1-q)2 + (x(1-x))2 + (y(1-y))2 + … + (z(1-z))2 

does not!
10
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λ-calculus
• Recall: 

#0 = λ z . λ s . z
#1 = λ z . λ s . s z
#2 = λ z . λ s . s (s z)
#3 = λ z . λ s . s (s (s z))
add = λ x . λ y . λ z . λ s . x (y z s) s

• Reduce: 
add #1 #2
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• add #1 #2

• (λ x . λ y . λ z . λ s . x (y z s) s) #1 #2

• (λ y . λ z . λ s . #1 (y z s) s) #2

• λ z . λ s . #1 (#2 z s) s

• λ z . λ s . (λ z0 . λ s0 . s0 z0) (#2 z s) s

• λ z . λ s . (λ s0 . s0 (#2 z s)) s

• λ z . λ s . s (#2 z s)

• λ z . λ s . s ((λ z . λ s0 . s0 (s0 z)) z s)

• λ z . λ s . s ((λ s0 . s0 (s0 z)) s)

• λ z . λ s . s (s (s z)
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Busy Beavers
• Define: a Turing machine is a “Beaver” if
‣ it is deterministic, 

‣ accepts the empty string,

‣ writes only 1s to its tape, and

‣ eventually halts

• A “Busy Beaver” writes as many 1s as any other 
Beaver with the same number of states.

• Let b(n) be the number of 1 that can be written 
by a Busy Beaver with n states (+ a halt state)
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b(n)
b(1) = 1
b(2) = 4
b(3) = 6
b(4) = 13
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10 Turing Machines and Equivalent Models 

Start H
1, R

!

1, L

!

1, L

1

0 1
1, L

1

     ! 
  

Alternative Definitions  

We should point out that there are many different definitions of Turing ma-

chines. Our definition is similar to the machine originally defined by Turing. 

Some definitions allow the tape to be infinite in one direction only. In other 

words, the tape has a definite left end and extends infinitely to the right.  

 A multihead Turing machine has two or more tape heads positioned on 

the tape. A multitape Turing machine has two or more tapes with 

corresponding tape heads. It’s important to note that all these Turing 

machines are equivalent in power. In other words, any problem solved by one 

type of Turing machine can also be solved by any other type of Turing 

machine. 

Simulating a Multitape Turing Machine 

Let’s give an informal description of how a multitape Turing machine can be 

simulated by a single-tape Turing machine. For our description we’ll assume 

that we have a Turing machine T that has two tapes, each with a single tape 

head. We’ll describe a new single-tape, single-head machine M that will start 

with its tape containing the two nonblank portions taken from the tapes of T, 

separated by a new tape symbol 

@. 

Whenever T executes an instruction (which is actually a pair of instructions, 

one for each tape), M simulates the action by performing two corresponding 

instructions, one instruction for the left side of @ and the other instruction for 

the right side of @. 

 Since M has only one tape head, it must chase back and forth across @ to 

execute instructions. So it needs to keep track of the positions of the two tape 

heads that it is simulating. One way to do this is to place a position marker ! 

in every other tape cell. To indicate a current cell, we’ll write the symbol  

Busy beaver with 2 states

• These particular values of b have been 
computed.  But we can still ask:

• Is b(n) computable?
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Lemma: b(n+1) > b(n) 
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Lemma: b(n+1) > b(n) 
• To Prove: ∀n > 0, b(n+1) > b(n) 
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Lemma: b(n+1) > b(n) 
• To Prove: ∀n > 0, b(n+1) > b(n) 
• Proof:
‣ let Tn be a busy beaver with n states, n > 0. 
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Lemma: b(n+1) > b(n) 
• To Prove: ∀n > 0, b(n+1) > b(n) 
• Proof:
‣ let Tn be a busy beaver with n states, n > 0. 

‣ Construct Tn+1 as follows:
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Lemma: b(n+1) > b(n) 
• To Prove: ∀n > 0, b(n+1) > b(n) 
• Proof:
‣ let Tn be a busy beaver with n states, n > 0. 

‣ Construct Tn+1 as follows:
° replace the halt state in Tn by a state that skips to the right so 

long as it reads a 1, and when it finds a ⊔, writes a 1 and 
transfers to the halt state.
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° replace the halt state in Tn by a state that skips to the right so 

long as it reads a 1, and when it finds a ⊔, writes a 1 and 
transfers to the halt state.
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b(n)+1 1s
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Lemma: b(n+1) > b(n) 
• To Prove: ∀n > 0, b(n+1) > b(n) 
• Proof:
‣ let Tn be a busy beaver with n states, n > 0. 

‣ Construct Tn+1 as follows:
° replace the halt state in Tn by a state that skips to the right so 

long as it reads a 1, and when it finds a ⊔, writes a 1 and 
transfers to the halt state.

‣ Clearly, Tn+1 has n+1 states, is a beaver, and writes 
b(n)+1 1s

‣ Hence, b(n+1) ≥ b(n)+1 > b(n)
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Proof: b(n) is not computable

• Suppose, by way of contradiction, that b(n) is computable.

• Then there is a TM B that computes b(n) in unary, starting 
with a tape containing n in unary.

‣ There is also a TM TwoB that computes b(2n), starting 
with n on the tape; suppose that TwoB has k states

• Construct a family of TMs Cn with (k+n) states as follows:

‣ start with an empty tape

‣ uses n states to write n on the tape in unary

‣ behaves like TwoB, using k states to compute b(2n)

16
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Bx2Write nCn = 

k statesn states

;;
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• Note that Cn is a Beaver
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• Note that Cn is a Beaver

‣ Cn computes b(2n) and has (k + n) states
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• Note that Cn is a Beaver

‣ Cn computes b(2n) and has (k + n) states

‣ Cn writes b(2n) 1s and has (k + n) states
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• Note that Cn is a Beaver

‣ Cn computes b(2n) and has (k + n) states

‣ Cn writes b(2n) 1s and has (k + n) states

‣ Ck+1 writes b(2(k+1)) 1s and has (k + (k+1)) states
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k statesn states

;;
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• Note that Cn is a Beaver

‣ Cn computes b(2n) and has (k + n) states

‣ Cn writes b(2n) 1s and has (k + n) states

‣ Ck+1 writes b(2(k+1)) 1s and has (k + (k+1)) states

‣ Ck+1 writes b(2k+2) 1s and has (2k+1) states
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k statesn states

;;
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• Note that Cn is a Beaver

‣ Cn computes b(2n) and has (k + n) states

‣ Cn writes b(2n) 1s and has (k + n) states

‣ Ck+1 writes b(2(k+1)) 1s and has (k + (k+1)) states

‣ Ck+1 writes b(2k+2) 1s and has (2k+1) states

• Ck+1 is a Beaver with (2k+1) states and writes b(2k+2) 1s
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• Note that Cn is a Beaver

‣ Cn computes b(2n) and has (k + n) states

‣ Cn writes b(2n) 1s and has (k + n) states

‣ Ck+1 writes b(2(k+1)) 1s and has (k + (k+1)) states

‣ Ck+1 writes b(2k+2) 1s and has (2k+1) states

• Ck+1 is a Beaver with (2k+1) states and writes b(2k+2) 1s

• But a Busy Beaver with (2k+1) states can write only 
b(2k+1) 1s, and b(2k+2) > b(2k+1) by the lemma
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• Note that Cn is a Beaver

‣ Cn computes b(2n) and has (k + n) states

‣ Cn writes b(2n) 1s and has (k + n) states

‣ Ck+1 writes b(2(k+1)) 1s and has (k + (k+1)) states

‣ Ck+1 writes b(2k+2) 1s and has (2k+1) states

• Ck+1 is a Beaver with (2k+1) states and writes b(2k+2) 1s

• But a Busy Beaver with (2k+1) states can write only 
b(2k+1) 1s, and b(2k+2) > b(2k+1) by the lemma

• So Ck+1 cannot exist — by definition of “Busy Beaver”

17

Bx2Write nCn = 

k statesn states

;;
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Pumping Lemma for Regular languages

• How did we prove this lemma?

18

60 Regular Languages and Finite Automata 

 

accepted by the DFA, then there must be a path from the start state to the 

final state that traverses |s| + 1 states. If |s| ! m, then |s| + 1 > m, which 

tells us that some state must be traversed twice or more. So the DFA must 

have at least one loop that is traversed at least once on the path to accept s. 

Let x be the string of letters along the path from the start state to the state 

that begins the first traverse of a loop. Let y be the string of letters along one 

traverse of the loop and let z be the string of letters along the rest of the path 

of acceptance to the final state. So we can write s = xyz. Note that z may 

include more traverses of the loop or any subsequent loops. To illustrate from 

our little example, if s = abcd, then x = a, y = bc, and z = d. If s = abcbcd, then x 

= a, y = bc, and z = bcd. If s = abcbcbcbcd, then x = a, y = bc, and z = bcbcbcd.  

 The following graph symbolizes the path to accept s, where the arrows 

labeled x and y represent paths along distinct states of the DFA while the 

arrow labeled z represents the rest of the path to the final state. 

Start
x

y

z

 

Since |s| ! m the path must traverse the loop at least once. So y " !. Since 

the paths for x and y consists of distinct states (remember that y is the string 

on just one traversal of the loop), it follows that |xy|# m. Finally, since the 

path through the loop may be traversed any number of times, it follows that 

the DFA must accept all strings of the form xykz for all k ! 0.  

 The property that we’ve been discussing is called the pumping property 

because the string y can be pumped up to yk by traveling through the same 

loop k times. Our discussion serves as an informal proof of the following 

pumping lemma. 

Pumping Lemma (Regular Languages)   (11.13) 

Let L be an infinite regular language over the alphabet A. Then there is 

an integer m > 0 (m is the number of states in a DFA to recognize L) such 

that for any string s " L where |s| ! m there exist strings x, y, z " A*, 

where y " !, such that s = xyz, |xy| # m and xykz " L for all k ! 0. The 

last property tells us that {xz, xyz, xy2z , ..., xykz , ... } # L.  

 If an infinite language does not satisfy the conclusion of (11.13), then it 

can’t be regular. We can sometimes use this fact to prove that an infinite 

language is not regular by assuming that it is regular, applying the conclusion 

of (11.13), and then finding a contradiction. Here’s an example.  
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What is a PDA?

• Review the definition of a PDA

• Formal definition was in my Context-free 
languages lecture (lecture 8)
‣ Be clear what happens on each transition!

‣ Is the top of the stack “popped”?

‣ What symbol(s) are “pushed”?

19
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Pushdown Automata (PDA)

20

• A pushdown automaton     is defined as a 
7-tuple:                                     , where:
‣ Q  is a set of states,             is the start state

‣ Σ is the input alphabet,

‣    is the stack alphabet,            is the initial stack symbol

‣                                                   is the transition function

‣             is a set of final states, and

‣                      , the set X augmented with

M

Q

Γ

q0 ∈ Q

F ⊆ Q

εXε = X ∪ {ε}

Z0 ∈ Γ

M = (Q,Σ,Γ, δ, q0, Z0, F )

δ : (Q× Σε × Γε)→ P{Q× Γ∗}
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• We defined 
‣ The transitions                are applicable iff 

°     is the current state,

°             , or the next character on the input tape is    , and

°             , or the top of the stack is

‣ If you select a transition             , then 
° The new state is       

° if              ,      is popped off of the stack, and

° the (possibly empty) sequence of symbols     is pushed 
onto the stack

Transitions

21

δ(q, a, γ)
q

a

q′

γ

γ

(q′, ω)

ω

γ != ε

γ = ε

a = ε

δ : (Q×Aε × Γε)→ P{Q× Γ∗}
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Acceptance by Final State

22

A run of PDA M = (Q,A,Γ, δ, q0, γ0, F ) is a sequence

such that:

(q0, γ0)
a0→ (q1, s1)

a1→ · · · an−1→ (qn, sn)

for all i ∈ [0 .. n− 1]. (qi+1, γi+1) ∈ δ(qi, ai, γi) and

with q0, . . . , qn ∈ Q, s1, . . . , sn ∈ Γ∗, and a0, . . . , an−1 ∈ A

si = γiti and si+1 = γi+1ti for some ti ∈ Γ∗, and

w = a0a1a2 . . . an−1 is the input.

The run accepts     if qn ∈ F.w

The language of                  is given byM,L(M)
L(M) = {w ∈ A∗| w is accepted by some run of M}
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Acceptance by Empty Stack

23

such that:

(q0, γ0)
a0→ (q1, s1)

a1→ · · · an−1→ (qn, sn)

for all i ∈ [0 .. n− 1]. (qi+1, γi+1) ∈ δ(qi, ai, γi) and

with q0, . . . , qn ∈ Q, s1, . . . , sn ∈ Γ∗, and a0, . . . , an−1 ∈ A

si = γiti and si+1 = γi+1ti for some ti ∈ Γ∗, and

w = a0a1a2 . . . an−1 is the input.

The run accepts     if w

The language of                  is given byM,L(M)
L(M) = {w ∈ A∗| w is accepted by some run of M}

A run of PDA M = (Q,A,Γ, δ, q0, γ0, ∅) is a sequence

sn = ε.
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Problem: what language
is accepted by this PDA?

• Assume that X is initially on the stack

24

4

2. Use the properties of regular languages to show that the language

F = {aibjck | i, j, k ≥ 0 and if i = 1 then j = k}

is not regular.

Question 4: Pushdown Automata

1. Argue that the context-free language

{anbn | n ≥ 0} ∪ {anb2n | n ≥ 0}

is not accepted by any !  ÿ #$%&%�ÿ%( PDA.

2. Describe the language accepted by the following PDA:

 12.2   Pushdown Automata 21 

 

operations, then we can reduce the number of states required for any 

PDA. Let L = {anbn | n ! N}. Find PDAs that accept L by final state with 

the given restrictions.  

 a. A two-state PDA that contains one or more " instructions. 

 b. A two-state PDA that does not contain any " instructions. 

Construction Algorithms 

 5. Use (12.4) to transform the final-state PDA from Example 1 into an 

empty-stack PDA. 

 6. Use (12.5) to transform the empty-stack PDA from Example 2 into a 

final-state PDA. 

 7. In each of the following cases, use (12.7) to construct a PDA that accepts 

the language of the given grammar. 

 a. S # c | aSb. 

 b. S # " | aSb | aaS. 

 8. Use (12.8) to construct a grammar for the language of the following PDA 

that accepts by empty stack, where 0 is the start state and X is the ini-

tial stack symbol: (0, a, X, push(X), 0), (0, ", X, pop, 1) , (1, b, X, pop, 1). 

 9. Suppose we’re given the following PDA that accepts by empty stack, 

where X is the initial stack symbol: 

Start 0

push(A)

push(A)

pop

b, A

!, X

pop

a, A

a, X

 

 a. Use your wits to describe the language recognized by the PDA. 

 b. Use (12.8) to construct a grammar for the language of the PDA. 

 c. Do your answers to parts (a) and (b) describe the same language? 

Challenge 

 10. Give an argument to show that the following context-free language is not 

accepted by any deterministic PDA: {anbn | n ! 0} $ {anb2n | n ! 0}.  

ε
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CFG to PDA Construction

• Itʼs easy to build a PDA give a Context-
free grammar:
‣ The PDA has one state; label it 0

‣ The alphabet A consist of the terminal symbols of 
the grammar

‣ The stack alphabet Γ consists of {non-terminals of 
the grammar} ∪A

‣ The initial symbol on the stack is the start symbol

25
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• The PDAʼs transitions are as follows:
‣ For each terminal symbol a, define the transition
δ(0, a, a) = (ε, 0)

‣ For each production A → ω, where ω is a (possibly 
empty) sequence of terminals and non-terminals, define 
the transition δ(0, ε, A) = (ω, 0)

• Key idea: each transition in the PDA 
corresponds to a derivation step in the 
grammar

26
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Try this example:
• Simple arithmetic expressions

E → V | V + E 
V → a | 1

27

0

a, a

pop

for each terminal  ∈ A

!!!!!!!!!!", E!!!!!!!!!

pop, push(V + E)

for each rule A !# , # a sequence of
terminals and non-terminals

!!!!!!!!!!!!!!

push (E)
because E is the grammar's
start symbol

1, 1

pop

!!!!!!!!!!", E!!!!!!!!!

pop, push(V)

!!!!!!!!!!", V!!!!!!!!!

pop, push(a)

!!!!!!!!!!", V!!!!!!!!!

pop, push(1)

+, +

pop

ε ε

εε
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Proving things Uncomputable

• Is there an effective enumeration of the 
total functions N → N?

• Is there an algorithm to decide if an 
arbitrary computable function N → N is 
total?

28
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Homework 9, Problem 3

29

14 Computational Notions 

   ƒ(x) = if x is odd then x else x + 1, 

   g(x) = if x is even then 2x – x + 1 else x. 

Exercises 

Computable Functions 

 1. Show that the composition of two computable functions is computable. In 

other words, show that if h(x) = ƒ(g(x)), where ƒ and g are computable and 

the range of g is a subset of the domain of ƒ, then h is computable.  

 2. Show that the following function is computable. 

h(x) = if ƒx halts on input x then 1 else loop forever. 

 3. Suppose we have the following effective enumeration of all the com-

putable functions that take a single argument: 

ƒ0, ƒ1, ƒ2, ..., ƒn, .... 

 For each of the following functions g, explain what is wrong with the 

following diagonalization argument claiming to show that g is a com-

putable function that isn’t in the list. “Since the enumeration is effective, 

there is an algorithm to transform each n into the function ƒn. Since each 

ƒn is computable, it follows that g is computable. It is easy to see that g 

is not in the list. Therefore g is a computable function that isn’t in the 

list.” 

a. g(n) = ƒn(n) + 1.  

b. g(n) = if ƒn(n) = 4 then 3 else 4. 

c. g(n) = if ƒn(n) halts and ƒn(n) = 4 then 3 else 4.  

d. g(n) = if ƒn(n) halts and ƒn(n) = 4 then 3 else loop forever.  

Solvability 

 4. Show that the following problem is solvable: Is there a computable func-

tion that, when given ƒn, m, and k, can tell whether ƒn halts on input m in 

k units of time? 

 5. Show that the problem of deciding whether two DFAs over the same al-

phabet are equivalent is solvable.   

 6. For each of the following instances of Post’s correspondence problem, find 

a solution or state that no solution exists. 

 a. {(a, abbbbb), (bb, b)}. 

 b. {(ab, a), (ba, b), (a, ba), (b, ab)}. 
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 13.1   Turing Machines 19 

pairs of natural numbers represented as unary strings and separated by 

the symbol #. Where necessary, represent zero by the tape symbol !. 

 a. Add two natural numbers, neither of which is zero. 

 b. Add two natural numbers, either of which may be zero. 

 5. Construct a Turing machine to perform each task. 

 a. Complement the binary representation of a natural number, and 

   then add 1 to the result. 

 b. Add 2 to a natural number represented as a binary string. 

 c. Add 3 to a natural number represented as a binary string. 

 6. Construct a Turing machine to test for equality of two strings over the al-

phabet {a, b}, where the strings are separated by a cell containing #. Out-

put a 0 if the strings are not equal and a 1 if they are equal. 

 7. Construct a three-tape Turing machine to add two binary numbers, 

where the first two tapes hold the input strings and the tape heads are 

positioned at the right end of each string. The third tape will hold the 

output. 

Challenges 

 8. Construct a single-tape Turing machine that inputs any string over the 

alphabet {a, b, c} and outputs its successor in the standard ordering, 

where we assume that a  b  c. Recall that in the standard ordering, 

strings are ordered by length, strings of the same length being ordered 

lexicographically. 

 9. For busy beaver Turing machines it is known that b(3) = 6, which means 

that 3-state busy beavers write six 1’s before halting. Try to construct a 

3-state busy beaver. 

 

13.2   The Church-Turing Thesis 

The word “computable” is meaningful to most of us because we have a certain 

intuition about it, and we actually feel quite comfortable with it. We might 

even say something like, “A thing is computable if it can be computed.” Or we 

might say, “A thing is computable if there is some computation that computes 

it.” Of course, we might also say, “A thing is computable if it can be described 

by an algorithm.” 

The Meaning of Computability 

So the word “computable” is defined by using words like “computation” and 
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Grammar Transformations

• What is Chomsky Normal Form?
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Grammar Transformations

• What is Chomsky Normal Form?
‣ Productions have the form A→a or A→BC.  

31

Wednesday, 2 June 2010



Grammar Transformations

• What is Chomsky Normal Form?
‣ Productions have the form A→a or A→BC.  

‣ If the language contains ε, then A→ε is also 
allowed if A does not appear on the rhs of any 
production.

31
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Transforming to Chomsky Form 

1. If there is a production A ! ", where A is not the start symbol S, then 

use the preceding algorithm to remove all productions that contain ". 

If this process removes S ! ", then add it back. 

2. This step removes all unit productions A ! B, where A and B are 

nonterminals. For each pair of nonterminals A and B, if A ! B is a 

unit production or if there is a derivation A #+ B, then add all 

productions of the form A ! w, where B ! w is not a unit production. 

Now remove all the unit productions. 

3. For each production whose right side has two or more symbols, 

replace all occurrences of each terminal a with a new nonterminal A, 

and also add the new production A ! a.  

4. For each production of the form B ! C1C2...Cn, where n > 2, replace it 

with the following two productions, where D is a new nonterminal:  

B ! C1D     and     D ! C2...Cn.  

 Continue this step until all productions with nonterminal strings on 

the right side have length 2.  

EXAMPLE 2 Finding a Chomsky Normal Form 
 
Let’s write the following grammar in Chomsky normal form: 

      S ! R | aTa 

      R ! S | b 

      T ! R | c. 

 We’ll skip Step 1, since there are no occurrences of ". We’ll begin with Step 

2. From the unit productions S ! R, R ! S, and T ! R we add new 

productions S ! b, R ! aTa, and T ! b. From the derivation T #+ S we 

add the new production T ! aTa. The derivations S #+ S and R #+ R don’t 

add any new productions. Now remove the unit productions to obtain the 

grammar 

      S ! b | aTa  

      R ! b | aTa 

      T ! b | c | aTa. 

 We’ll throw away the productions R ! b | aTa because no derivation from S 

can reach R. Now to Step 3. Replace the letter a in aTa by A and add the 

Transforming a Grammar to Chomsky Normal Form
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2. For each production of the form A ! w, create all possible productions 

of the form A ! w', where w' is obtained from w by removing one or 

more occurrences of the nonterminals found in Step 1. 

3. The desired grammar consists of the original productions together 

with the productions constructed in Step 2, minus any productions of 

the form A ! ".  

EXAMPLE 1 Remove Lambda Productions 

 
 Let’s try this algorithm on our example grammar. Step 1 gives us two 

nonterminals D and E because they both derive " as follows:  

E # "     and     D # E # ".  

 For Step 2 we’ll list each original production together with all new produc-

tions that it creates: 

   Original Productions  New Productions 

   S ! aDaE   S ! aaE | aDa | aa  

   D ! bD    D ! b 

   D ! E    D ! "  

   E ! cE    E ! c 

   E ! "    None 

 For Step 3, we take the originals together with the new productions and 

throw away those containing " to obtain the following grammar: 

     S ! aDaE | aaE | aDa | aa 

     D ! bD | b | E 

     E ! cE | c.     $ 
  

Chomsky Normal Form 

Any context-free grammar can be written in a special form called Chomsky 

normal form, which appears in Chomsky [1959]. The right side of each 

production is either a single terminal or a string of two nonterminals, with the 

exception that if the language of the grammar contains ", then S ! " is 

allowed, where S is the start symbol. The Chomsky normal form has several 

uses. For example, any string of length n > 0 can be derived in 2n – 1 steps. 

Also, the derivation trees are binary trees. Here’s the algorithm: 
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 10. Construct an LR(1) parse table for each of the following grammars. 

 a. S ! Sa | b. b. S ! A | B c. S ! AB 

      A ! a  A ! a 

      B ! b.  B ! b. 

12.4   Context-Free Language Topics 
In this section we’ll look at a few properties of context-free grammars and 

languages. We’ll start by discussing some restricted grammars that still gen-

erate all the context-free languages. Then we’ll discuss a tool that can be used 

to show that some languages are not context-free. 

Transforming Grammars 

Context-free grammars appear to be very general because the right side of a 

production can be any string of any length. It’s interesting and useful to know 

that we can put more restrictions on the productions and still generate the 

same context-free languages. We’ll see that for languages that don’t contain ", 

we can modify their grammars so that the productions don’t contain ". Then 

we’ll introduce two classic special grammars that have many applications. 

Removing "-Productions 

A context-free language that does not contain " can be written with a gram-

mar that does not contain " on the right side of any production. For example, 

suppose we have the following grammar: 

     S ! aDaE 

     D ! bD | E 

     E ! cE | ". 

Although " appears in this grammar, it’s clear that " does not occur in the 

language generated by the grammar. After some thought, we can see that this 

grammar generates all strings of the form abkcmacn, where k, m, and n are 

nonnegative integers. Since the language does not contain ", we can write a 

grammar whose productions don’t contain ". Try it on your own, and then look 

at the following three-step algorithm: 

Algorithm to Remove Lambda Productions 

1. Find the set of all nonterminals N such that N derives ". 
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Exercises 

Grammar Transformations  

 1. For each of the following grammars, find a grammar without ! produc-

tions that generates the same language.  

 a. S " aA | aBb   b. S " aAB  

  A " aA | !    A " aAb | ! 

  B " aBb | !.    B " bB | !. 

 2. Find a Chomsky normal form for each of the following grammars.  

 a. S " aSa | bSb | c. b. S " abC | babS | de c. S " aSa | R  

       C " aCa | b.  R " S | b. 

 3. Find a Greibach normal form for the following grammar:  

   S " AbC | D 

   A " Aa | ! 

   C " cC | c 

   D " dD | !. 

Pumping Lemma 

 4. Use the pumping lemma (12.19) to show that each of the following lan-

guages is not context-free.  

 a. {anbnan | n ! 0}. Hint: Look at Example 3. 

b. {aibjck | 0 < i < j < k}. Hint: Let z = ambm+1cm+2 = uvwxy, and consider the 

following two cases: (1) There is at least one a in either v or x. (2) 

Neither v nor x contains any a’s. 

c. {ap | p is a prime number}. Hint: Let z = ap = uvwxy, where p is  prime 

and p > m + 1. Let k = |uwy|. Show |uvkwxky| is not prime. 

Challenges 

 5. Show that the language {anbnan | n # N} is not context-free by performing 

the following tasks: 

 a. Given the morphism ƒ : {a, b, c}* " {a, b, c}* defined by ƒ(a) = a, 

  ƒ(b) = b, and ƒ(c) = a, describe ƒ–1({anbnan | n # N}). 

 b. Show that 

  ƒ–1({anbnan | n # N}) $ {akbmcn | k, m, n # N} = {anbncn | n # N}. 

c.  Argue that {anbnan | n # N} is not context-free by using parts (a) and 

(b) together with (12.22) and (12.23). 
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free languages whose intersection is not context-free. 

 Now we’re in position to prove the following result about complements: 

 Context-free languages are not closed under complement.  (12.21) 

Proof: Suppose, by way of contradiction, that complements of context-free 

languages are context-free. Then we can take the two languages L1 and L2 

from the proof of (12.20) and make the following sequence of statements: 

Since L1 and L2 are context-free, it follows that the complements L1' and L2' 

are context-free. We can take the union of these two complements to obtain 

another context-free language. Further, we can take the complement of this 

union to obtain the following context-free language: 

(L1' ! L2')'.  

Now let’s describe a contradiction. Using De Morgan’s laws, we have the fol-

lowing statement: 

(L1' ! L2')' = L1 " L2. 

So we’re forced to conclude that L1 " L2 is context-free. But we know that 

L1 " L2 = {anbncn | n ! 0}, 

and we’ve shown that this language is not context-free. This contradiction 

proves (12.21).     QED. 

 

 Although (12.20) says that we can’t expect the intersection of context-free 

languages to be context-free, we can say that the intersection of a regular lan-

guage with a context-free language is context-free. We won’t prove this, but 

we’ll include it with the closure properties that we do know about. Here is a 

listing of them: 

Properties of Context-Free Languages   (12.22) 

1. The union of two context-free languages is context-free. 

2. The language product of two context-free languages is context-free. 

3. The closure of a context-free language is context-free. 

4. The intersection of a regular language with a context-free language is 

context-free. 

 We’ll finish with two more properties of context-free languages that can 
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be quite useful in showing that a language is not context-free: 

Context-Free Language Morphisms   (12.23) 

Let ƒ : A* ! A* be a language morphism. In other words, ƒ(") = " 

and ƒ(uv) = ƒ(u)ƒ(v) for all strings u and v. Let L be a language over A. 

1. If L is context-free, then ƒ(L) is context-free. 

2. If L is context-free, then ƒ–1(L) is context-free.  

Proof: We’ll prove statement 1 (statement 2 is a bit complicated). Since L is 

context-free, it has a context-free grammar. We’ll create a context-free gram-

mar for ƒ(L) as follows: Transform each production A ! w into a new produc-

tion of the form A ! w', where w' is obtained from w by replacing each termi-

nal a in w by ƒ(a). The new grammar is context-free, and any string in ƒ(L) is 

derived by this new grammar.     QED. 

EXAMPLE 4 Using a Morphism 
 
 Let’s use (12.23) to show that L = {anbcnden | n ! 0} is not context-free. We 

can define a morphism ƒ : {a, b, c, d, e}* ! {a, b, c, d, e}* by  

ƒ(a) = a,     ƒ(b) = ",     ƒ(c) = b,     ƒ(d) = ",     ƒ(e) = c. 

 Then ƒ(L) = {anbncn | n ! 0}. If L is context-free, then we must also conclude 

by (12.23) that ƒ(L) is context-free. But we know that ƒ(L) is not context-

free. Therefore L is not context-free.     #  
  

 It might occur to you that the language {anbncn | n ! 0} could be recognized 

by a pushdown automaton with two stacks available rather than just one 

stack. For example, we could push the a’s onto one stack. Then we pop the a’s 

as we push the b’s onto the second stack. Finally, we pop the b’s from the 

second stack as we read the c’s.  

 So it might make sense to take the next step and study pushdown au-

tomata with two stacks. Instead, we’re going to switch gears and discuss an-

other type of device, called a Turing machine, which is closer to the idea of a 

computer. The interesting thing is that Turing machines are equivalent in 

power to pushdown automata with two stacks. In fact, Turing machines are 

equivalent to pushdown automata with n stacks for any n ! 2. We’ll discuss 

them in the next chapter. 

ε ε

Wednesday, 2 June 2010



Example Problem
• Hein §12.4 Ex 5:

36

62 Context-Free Languages and Pushdown Automata 

 

Exercises 

Grammar Transformations  

 1. For each of the following grammars, find a grammar without ! produc-

tions that generates the same language.  

 a. S " aA | aBb   b. S " aAB  

  A " aA | !    A " aAb | ! 

  B " aBb | !.    B " bB | !. 

 2. Find a Chomsky normal form for each of the following grammars.  

 a. S " aSa | bSb | c. b. S " abC | babS | de c. S " aSa | R  

       C " aCa | b.  R " S | b. 

 3. Find a Greibach normal form for the following grammar:  

   S " AbC | D 

   A " Aa | ! 

   C " cC | c 

   D " dD | !. 

Pumping Lemma 

 4. Use the pumping lemma (12.19) to show that each of the following lan-

guages is not context-free.  

 a. {anbnan | n ! 0}. Hint: Look at Example 3. 

b. {aibjck | 0 < i < j < k}. Hint: Let z = ambm+1cm+2 = uvwxy, and consider the 

following two cases: (1) There is at least one a in either v or x. (2) 

Neither v nor x contains any a’s. 

c. {ap | p is a prime number}. Hint: Let z = ap = uvwxy, where p is  prime 

and p > m + 1. Let k = |uwy|. Show |uvkwxky| is not prime. 

Challenges 

 5. Show that the language {anbnan | n # N} is not context-free by performing 

the following tasks: 

 a. Given the morphism ƒ : {a, b, c}* " {a, b, c}* defined by ƒ(a) = a, 

  ƒ(b) = b, and ƒ(c) = a, describe ƒ–1({anbnan | n # N}). 

 b. Show that 

  ƒ–1({anbnan | n # N}) $ {akbmcn | k, m, n # N} = {anbncn | n # N}. 

c.  Argue that {anbnan | n # N} is not context-free by using parts (a) and 

(b) together with (12.22) and (12.23). 
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Properties of Context-Free Languages 

Although most languages that we encounter are context-free languages, we 

need to face the fact that not all languages are context-free. For example, sup-

pose we want to find a PDA or a context-free grammar for the language {anbncn 

| n ! 0}. After a few attempts we might get the idea that the language is not 

context-free. How can we be sure? In some cases we can use a pumping ar-

gument similar to the one used to show that a language is not regular. So let’s 

discuss a pumping lemma for context-free languages. 

 If a context-free language has an infinite number of strings, then any 

grammar for the language must be recursive. In other words, there must be a 

production that is recursive or indirectly recursive. For example, a grammar 

for an infinite context-free language will contain a fragment similar to the fol-

lowing: 

     S ! uNy 

     N ! vNx | w. 

Notice that either v or x must be nonempty. Otherwise, the language derived 

is finite, consisting of the single string uwy. The grammar allows us to derive 

infinitely many strings having a certain pattern. For example, the derivation 

to recognize the string uv3wx3y can be written as follows: 

S " uNy " uvNxy " uvvNxxy " uvvvNxxxy " uv3wx3y. 

 This derivation can be shortened or lengthened to obtain the set of all 

strings of the form uvkwxky for all k ! 0. This example illustrates the main re-

sult of the pumping lemma for context-free languages, which we’ll state in all 

its detail as follows: 

Pumping Lemma for Context-Free Languages  (12.19) 

Let L be an infinite context-free language. Then there is a positive 

integer m such that for all strings z # L with |z| ! m, z can be written in 

the form z = uvwxy, where the following properties hold: 

     |vx| ! 1,  

     |vwx|" m,  

     uvkwxky #  L for all k ! 0. 

 The positive integer m in (12.19) depends on the grammar for the lan-

guage L. Without going into the proof, suffice it to say that m is large enough 

to ensure a recursive derivation of any string of length m or more. Let’s use the 

- m is called the pumping length for L
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Pumping Lemma

• Show that L = {anbnan | n ≥ 0} is not 
Context-free using the pumping lemma.
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Pumping Lemma

• Show that L = {anbnan | n ≥ 0} is not 
Context-free using the pumping lemma.

• Letʼs suppose that L is CF
‣ Then by the pumping lemma, ∃ z = ambmam  in L where 

m is the pumping length and z = uvwxy where
| vx | ≥ 1
| vwx | ≤ m 
uvkwxky ∈ L for all k ≥ 0
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• What can vwx be?
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