
CS311 Computational Structures

Review
Lecture 19

1

Wednesday, 2 June 2010

Course Objectives
Upon the successful completion of this course students will be able to:

1.
 Find regular grammars and context-free grammars for simple
languages whose strings are described by given properties.

2.
 Apply algorithms to: transform regular expressions to NFAs, NFAs
to DFAs, and DFAs to minimum-state DFAs; construct regular
expressions from NFAs or DFAs; and transform between regular
grammars and NFAs.

3.
 Apply algorithms to transform: between PDAs that accept by final
state and those that accept by empty stack; and between context-free
grammars and PDAs that accept by empty stack.

4.
 Describe LL(k) grammars; perform factorization if possible to reduce
the size of k; and write recursive descent procedures and parse tables
for simple LL(1) grammars.

5.
 Transform grammars by removing all left recursion and by removing
all possible productions that have the empty string on the right side.

2

Wednesday, 2 June 2010

6.
 Apply pumping lemmas to prove that some simple languages are not
regular or not context-free.

7.
 State the Church-Turing Thesis and solve simple problems with
some of the following models of computation: Turing machines
(single-tape and multi-tape); while-loop programs; partial recursive
functions; Markov algorithms; Post algorithms; the lambda calculus;
and Post systems.

8.
 Describe the concepts of unsolvable and partially solvable; state the
halting problem and prove that it is unsolvable and partially
solvable; and use diagonalization to prove that the set of total
computable functions cannot be enumerated.

9.
 Describe the hierarchy of languages and give examples of languages
at each level that do not belong in a lower level.

10.
 Describe the complexity classes P, NP, and PSPACE.
11.
 Use an appropriate programming language as an experimental tool

for testing properties of computational structures.

3

Wednesday, 2 June 2010

4

Regular Languages

Wednesday, 2 June 2010

• Whatʼs a Grammar?

4

Regular Languages

Wednesday, 2 June 2010

• Whatʼs a Grammar?
‣ ‹T, V, R, S›, where:

4

Regular Languages

Wednesday, 2 June 2010

• Whatʼs a Grammar?
‣ ‹T, V, R, S›, where:

4

Regular Languages

Wednesday, 2 June 2010

• Whatʼs a Grammar?
‣ ‹T, V, R, S›, where:

• Grammar for L1= ab*

4

Regular Languages

Wednesday, 2 June 2010

• Whatʼs a Grammar?
‣ ‹T, V, R, S›, where:

• Grammar for L1= ab*
‣ What are the constraints on a regular grammar?

4

Regular Languages

Wednesday, 2 June 2010

• Whatʼs a Grammar?
‣ ‹T, V, R, S›, where:

• Grammar for L1= ab*
‣ What are the constraints on a regular grammar?

° S→ω,
 or S→ωV, where ω ∈ T* (a possibly empty
sequence of terminals).

4

Regular Languages

Wednesday, 2 June 2010

Context-free Languages

• Let C = {x#y | x, y ∈ {0, 1}* and x ≠ y }
‣ Design a PDA that accepts C

‣ Write a grammar that generates C

5

Wednesday, 2 June 2010

Non-deterministic PDA
Start in state 2:

1. Read next input symbol, push 1
2. Non-deterministically go to state 1 or 3
3. If current input is a, next state is 4.a
4.x
 Read input symbols until # is read
5.x
 Read next input, pop
6.x
 If stack empty, goto 7.x else goto 5.x
7.x
 Accept if current input is not x, otherwise
reject

6

Wednesday, 2 June 2010

S→RT | RʼTʼ

R→XRX | 1Y#

T→0Y

Rʼ→XRʼX | 0Y

Tʼ→1Y

X→0 | 1

Y→YX | ε

S⇒RT⇒XRXT⇒XX
RXXT⇒* XnRXnT ⇒
Xn1YXnT⇒
Xn1YXn0Y⇒…

7

Grammar

`

Wednesday, 2 June 2010

S→RT | RʼTʼ

R→XRX | 1Y#

T→0Y

Rʼ→XRʼX | 0Y

Tʼ→1Y

X→0 | 1

Y→YX | ε

S⇒RT⇒XRXT⇒XX
RXXT⇒* XnRXnT ⇒
Xn1YXnT⇒
Xn1YXn0Y⇒…

7

Grammar

Wednesday, 2 June 2010

NP-Hard vs NP-Complete

• A problem is NP-hard if all NP problems
can be polynomially reduced to it.

• So, the difference between NP-complete
and NP-hard is that an NP-complete
problem must be in NP
‣ An NP-hard problem need not be in NP

8

Wednesday, 2 June 2010

Example NP-hard problem

• From Sipser Ex 7.33:
‣ The problem D = “Does a polynomial p in several

variables have integral solutions” is NP-hard.

‣ Note: itʼs not in NP — in fact, its undecidable

• But we can reduce the known NP-complete
problem 3-CNF satisfiability to D

9

Wednesday, 2 June 2010

Proof Outline
• Take a formula in 3-CNF and transform it into a

Polynomial q as follows:
variable x → variable x
¬ x → (1 - x)
x ∧ y → xy
x ∨ y = ¬ (¬ x ∧ ¬ y) → (1 - (1-x)(1-y))

‣ So if the 3-CNF formula is satisfiable, the
polynomial 1-q has has integral roots.

‣ But (1-q) might also have integral roots that do
not correspond to a boolean
° but (1-q)2 + (x(1-x))2 + (y(1-y))2 + … + (z(1-z))2

does not!
10

Wednesday, 2 June 2010

λ-calculus
• Recall:

#0 = λ z . λ s . z
#1 = λ z . λ s . s z
#2 = λ z . λ s . s (s z)
#3 = λ z . λ s . s (s (s z))
add = λ x . λ y . λ z . λ s . x (y z s) s

• Reduce:
add #1 #2

11

Wednesday, 2 June 2010

• add #1 #2

• (λ x . λ y . λ z . λ s . x (y z s) s) #1 #2

• (λ y . λ z . λ s . #1 (y z s) s) #2

• λ z . λ s . #1 (#2 z s) s

• λ z . λ s . (λ z0 . λ s0 . s0 z0) (#2 z s) s

• λ z . λ s . (λ s0 . s0 (#2 z s)) s

• λ z . λ s . s (#2 z s)

• λ z . λ s . s ((λ z . λ s0 . s0 (s0 z)) z s)

• λ z . λ s . s ((λ s0 . s0 (s0 z)) s)

• λ z . λ s . s (s (s z)

12

Wednesday, 2 June 2010

Busy Beavers
• Define: a Turing machine is a “Beaver” if
‣ it is deterministic,

‣ accepts the empty string,

‣ writes only 1s to its tape, and

‣ eventually halts

• A “Busy Beaver” writes as many 1s as any other
Beaver with the same number of states.

• Let b(n) be the number of 1 that can be written
by a Busy Beaver with n states (+ a halt state)

13

Wednesday, 2 June 2010

b(n)
b(1) = 1
b(2) = 4
b(3) = 6
b(4) = 13

14

10 Turing Machines and Equivalent Models

Start H
1, R

!

1, L

!

1, L

1

0 1
1, L

1

 !

Alternative Definitions

We should point out that there are many different definitions of Turing ma-

chines. Our definition is similar to the machine originally defined by Turing.

Some definitions allow the tape to be infinite in one direction only. In other

words, the tape has a definite left end and extends infinitely to the right.

 A multihead Turing machine has two or more tape heads positioned on

the tape. A multitape Turing machine has two or more tapes with

corresponding tape heads. It’s important to note that all these Turing

machines are equivalent in power. In other words, any problem solved by one

type of Turing machine can also be solved by any other type of Turing

machine.

Simulating a Multitape Turing Machine

Let’s give an informal description of how a multitape Turing machine can be

simulated by a single-tape Turing machine. For our description we’ll assume

that we have a Turing machine T that has two tapes, each with a single tape

head. We’ll describe a new single-tape, single-head machine M that will start

with its tape containing the two nonblank portions taken from the tapes of T,

separated by a new tape symbol

@.

Whenever T executes an instruction (which is actually a pair of instructions,

one for each tape), M simulates the action by performing two corresponding

instructions, one instruction for the left side of @ and the other instruction for

the right side of @.

 Since M has only one tape head, it must chase back and forth across @ to

execute instructions. So it needs to keep track of the positions of the two tape

heads that it is simulating. One way to do this is to place a position marker !

in every other tape cell. To indicate a current cell, we’ll write the symbol

Busy beaver with 2 states

• These particular values of b have been
computed. But we can still ask:

• Is b(n) computable?

Wednesday, 2 June 2010

Lemma: b(n+1) > b(n)

15

Wednesday, 2 June 2010

Lemma: b(n+1) > b(n)
• To Prove: ∀n > 0, b(n+1) > b(n)

15

Wednesday, 2 June 2010

Lemma: b(n+1) > b(n)
• To Prove: ∀n > 0, b(n+1) > b(n)
• Proof:

15

Wednesday, 2 June 2010

Lemma: b(n+1) > b(n)
• To Prove: ∀n > 0, b(n+1) > b(n)
• Proof:
‣ let Tn be a busy beaver with n states, n > 0.

15

Wednesday, 2 June 2010

Lemma: b(n+1) > b(n)
• To Prove: ∀n > 0, b(n+1) > b(n)
• Proof:
‣ let Tn be a busy beaver with n states, n > 0.

‣ Construct Tn+1 as follows:

15

Wednesday, 2 June 2010

Lemma: b(n+1) > b(n)
• To Prove: ∀n > 0, b(n+1) > b(n)
• Proof:
‣ let Tn be a busy beaver with n states, n > 0.

‣ Construct Tn+1 as follows:
° replace the halt state in Tn by a state that skips to the right so

long as it reads a 1, and when it finds a ⊔, writes a 1 and
transfers to the halt state.

15

Wednesday, 2 June 2010

Lemma: b(n+1) > b(n)
• To Prove: ∀n > 0, b(n+1) > b(n)
• Proof:
‣ let Tn be a busy beaver with n states, n > 0.

‣ Construct Tn+1 as follows:
° replace the halt state in Tn by a state that skips to the right so

long as it reads a 1, and when it finds a ⊔, writes a 1 and
transfers to the halt state.

‣ Clearly, Tn+1 has n+1 states, is a beaver, and writes
b(n)+1 1s

15

Wednesday, 2 June 2010

Lemma: b(n+1) > b(n)
• To Prove: ∀n > 0, b(n+1) > b(n)
• Proof:
‣ let Tn be a busy beaver with n states, n > 0.

‣ Construct Tn+1 as follows:
° replace the halt state in Tn by a state that skips to the right so

long as it reads a 1, and when it finds a ⊔, writes a 1 and
transfers to the halt state.

‣ Clearly, Tn+1 has n+1 states, is a beaver, and writes
b(n)+1 1s

‣ Hence, b(n+1) ≥ b(n)+1 > b(n)

15

Wednesday, 2 June 2010

Proof: b(n) is not computable

• Suppose, by way of contradiction, that b(n) is computable.

• Then there is a TM B that computes b(n) in unary, starting
with a tape containing n in unary.

‣ There is also a TM TwoB that computes b(2n), starting
with n on the tape; suppose that TwoB has k states

• Construct a family of TMs Cn with (k+n) states as follows:

‣ start with an empty tape

‣ uses n states to write n on the tape in unary

‣ behaves like TwoB, using k states to compute b(2n)

16

Wednesday, 2 June 2010

17

Bx2Write nCn =

k statesn states

;;

Wednesday, 2 June 2010

• Note that Cn is a Beaver

17

Bx2Write nCn =

k statesn states

;;

Wednesday, 2 June 2010

• Note that Cn is a Beaver

‣ Cn computes b(2n) and has (k + n) states

17

Bx2Write nCn =

k statesn states

;;

Wednesday, 2 June 2010

• Note that Cn is a Beaver

‣ Cn computes b(2n) and has (k + n) states

‣ Cn writes b(2n) 1s and has (k + n) states

17

Bx2Write nCn =

k statesn states

;;

Wednesday, 2 June 2010

• Note that Cn is a Beaver

‣ Cn computes b(2n) and has (k + n) states

‣ Cn writes b(2n) 1s and has (k + n) states

‣ Ck+1 writes b(2(k+1)) 1s and has (k + (k+1)) states

17

Bx2Write nCn =

k statesn states

;;

Wednesday, 2 June 2010

• Note that Cn is a Beaver

‣ Cn computes b(2n) and has (k + n) states

‣ Cn writes b(2n) 1s and has (k + n) states

‣ Ck+1 writes b(2(k+1)) 1s and has (k + (k+1)) states

‣ Ck+1 writes b(2k+2) 1s and has (2k+1) states

17

Bx2Write nCn =

k statesn states

;;

Wednesday, 2 June 2010

• Note that Cn is a Beaver

‣ Cn computes b(2n) and has (k + n) states

‣ Cn writes b(2n) 1s and has (k + n) states

‣ Ck+1 writes b(2(k+1)) 1s and has (k + (k+1)) states

‣ Ck+1 writes b(2k+2) 1s and has (2k+1) states

• Ck+1 is a Beaver with (2k+1) states and writes b(2k+2) 1s

17

Bx2Write nCn =

k statesn states

;;

Wednesday, 2 June 2010

• Note that Cn is a Beaver

‣ Cn computes b(2n) and has (k + n) states

‣ Cn writes b(2n) 1s and has (k + n) states

‣ Ck+1 writes b(2(k+1)) 1s and has (k + (k+1)) states

‣ Ck+1 writes b(2k+2) 1s and has (2k+1) states

• Ck+1 is a Beaver with (2k+1) states and writes b(2k+2) 1s

• But a Busy Beaver with (2k+1) states can write only
b(2k+1) 1s, and b(2k+2) > b(2k+1) by the lemma

17

Bx2Write nCn =

k statesn states

;;

Wednesday, 2 June 2010

• Note that Cn is a Beaver

‣ Cn computes b(2n) and has (k + n) states

‣ Cn writes b(2n) 1s and has (k + n) states

‣ Ck+1 writes b(2(k+1)) 1s and has (k + (k+1)) states

‣ Ck+1 writes b(2k+2) 1s and has (2k+1) states

• Ck+1 is a Beaver with (2k+1) states and writes b(2k+2) 1s

• But a Busy Beaver with (2k+1) states can write only
b(2k+1) 1s, and b(2k+2) > b(2k+1) by the lemma

• So Ck+1 cannot exist — by definition of “Busy Beaver”

17

Bx2Write nCn =

k statesn states

;;

Wednesday, 2 June 2010

Pumping Lemma for Regular languages

• How did we prove this lemma?

18

60 Regular Languages and Finite Automata

accepted by the DFA, then there must be a path from the start state to the

final state that traverses |s| + 1 states. If |s| ! m, then |s| + 1 > m, which

tells us that some state must be traversed twice or more. So the DFA must

have at least one loop that is traversed at least once on the path to accept s.

Let x be the string of letters along the path from the start state to the state

that begins the first traverse of a loop. Let y be the string of letters along one

traverse of the loop and let z be the string of letters along the rest of the path

of acceptance to the final state. So we can write s = xyz. Note that z may

include more traverses of the loop or any subsequent loops. To illustrate from

our little example, if s = abcd, then x = a, y = bc, and z = d. If s = abcbcd, then x

= a, y = bc, and z = bcd. If s = abcbcbcbcd, then x = a, y = bc, and z = bcbcbcd.

 The following graph symbolizes the path to accept s, where the arrows

labeled x and y represent paths along distinct states of the DFA while the

arrow labeled z represents the rest of the path to the final state.

Start
x

y

z

Since |s| ! m the path must traverse the loop at least once. So y " !. Since

the paths for x and y consists of distinct states (remember that y is the string

on just one traversal of the loop), it follows that |xy|# m. Finally, since the

path through the loop may be traversed any number of times, it follows that

the DFA must accept all strings of the form xykz for all k ! 0.

 The property that we’ve been discussing is called the pumping property

because the string y can be pumped up to yk by traveling through the same

loop k times. Our discussion serves as an informal proof of the following

pumping lemma.

Pumping Lemma (Regular Languages) (11.13)

Let L be an infinite regular language over the alphabet A. Then there is

an integer m > 0 (m is the number of states in a DFA to recognize L) such

that for any string s " L where |s| ! m there exist strings x, y, z " A*,

where y " !, such that s = xyz, |xy| # m and xykz " L for all k ! 0. The

last property tells us that {xz, xyz, xy2z , ..., xykz , ... } # L.

 If an infinite language does not satisfy the conclusion of (11.13), then it

can’t be regular. We can sometimes use this fact to prove that an infinite

language is not regular by assuming that it is regular, applying the conclusion

of (11.13), and then finding a contradiction. Here’s an example.

Wednesday, 2 June 2010

What is a PDA?

• Review the definition of a PDA

• Formal definition was in my Context-free
languages lecture (lecture 8)
‣ Be clear what happens on each transition!

‣ Is the top of the stack “popped”?

‣ What symbol(s) are “pushed”?

19

Wednesday, 2 June 2010

Pushdown Automata (PDA)

20

• A pushdown automaton is defined as a
7-tuple: , where:
‣ Q is a set of states, is the start state

‣ Σ is the input alphabet,

‣ is the stack alphabet, is the initial stack symbol

‣ is the transition function

‣ is a set of final states, and

‣ , the set X augmented with

M

Q

Γ

q0 ∈ Q

F ⊆ Q

εXε = X ∪ {ε}

Z0 ∈ Γ

M = (Q,Σ,Γ, δ, q0, Z0, F)

δ : (Q× Σε × Γε)→ P{Q× Γ∗}

Wednesday, 2 June 2010

• We defined
‣ The transitions are applicable iff

° is the current state,

° , or the next character on the input tape is , and

° , or the top of the stack is

‣ If you select a transition , then
° The new state is

° if , is popped off of the stack, and

° the (possibly empty) sequence of symbols is pushed
onto the stack

Transitions

21

δ(q, a, γ)
q

a

q′

γ

γ

(q′, ω)

ω

γ != ε

γ = ε

a = ε

δ : (Q×Aε × Γε)→ P{Q× Γ∗}

Wednesday, 2 June 2010

Acceptance by Final State

22

A run of PDA M = (Q,A,Γ, δ, q0, γ0, F) is a sequence

such that:

(q0, γ0)
a0→ (q1, s1)

a1→ · · · an−1→ (qn, sn)

for all i ∈ [0 .. n− 1]. (qi+1, γi+1) ∈ δ(qi, ai, γi) and

with q0, . . . , qn ∈ Q, s1, . . . , sn ∈ Γ∗, and a0, . . . , an−1 ∈ A

si = γiti and si+1 = γi+1ti for some ti ∈ Γ∗, and

w = a0a1a2 . . . an−1 is the input.

The run accepts if qn ∈ F.w

The language of is given byM,L(M)
L(M) = {w ∈ A∗| w is accepted by some run of M}

Wednesday, 2 June 2010

Acceptance by Empty Stack

23

such that:

(q0, γ0)
a0→ (q1, s1)

a1→ · · · an−1→ (qn, sn)

for all i ∈ [0 .. n− 1]. (qi+1, γi+1) ∈ δ(qi, ai, γi) and

with q0, . . . , qn ∈ Q, s1, . . . , sn ∈ Γ∗, and a0, . . . , an−1 ∈ A

si = γiti and si+1 = γi+1ti for some ti ∈ Γ∗, and

w = a0a1a2 . . . an−1 is the input.

The run accepts if w

The language of is given byM,L(M)
L(M) = {w ∈ A∗| w is accepted by some run of M}

A run of PDA M = (Q,A,Γ, δ, q0, γ0, ∅) is a sequence

sn = ε.

Wednesday, 2 June 2010

Problem: what language
is accepted by this PDA?

• Assume that X is initially on the stack

24

4

2. Use the properties of regular languages to show that the language

F = {aibjck | i, j, k ≥ 0 and if i = 1 then j = k}

is not regular.

Question 4: Pushdown Automata

1. Argue that the context-free language

{anbn | n ≥ 0} ∪ {anb2n | n ≥ 0}

is not accepted by any ! ÿ #$%&%�ÿ%(PDA.

2. Describe the language accepted by the following PDA:

 12.2 Pushdown Automata 21

operations, then we can reduce the number of states required for any

PDA. Let L = {anbn | n ! N}. Find PDAs that accept L by final state with

the given restrictions.

 a. A two-state PDA that contains one or more " instructions.

 b. A two-state PDA that does not contain any " instructions.

Construction Algorithms

 5. Use (12.4) to transform the final-state PDA from Example 1 into an

empty-stack PDA.

 6. Use (12.5) to transform the empty-stack PDA from Example 2 into a

final-state PDA.

 7. In each of the following cases, use (12.7) to construct a PDA that accepts

the language of the given grammar.

 a. S # c | aSb.

 b. S # " | aSb | aaS.

 8. Use (12.8) to construct a grammar for the language of the following PDA

that accepts by empty stack, where 0 is the start state and X is the ini-

tial stack symbol: (0, a, X, push(X), 0), (0, ", X, pop, 1) , (1, b, X, pop, 1).

 9. Suppose we’re given the following PDA that accepts by empty stack,

where X is the initial stack symbol:

Start 0

push(A)

push(A)

pop

b, A

!, X

pop

a, A

a, X

 a. Use your wits to describe the language recognized by the PDA.

 b. Use (12.8) to construct a grammar for the language of the PDA.

 c. Do your answers to parts (a) and (b) describe the same language?

Challenge

 10. Give an argument to show that the following context-free language is not

accepted by any deterministic PDA: {anbn | n ! 0} $ {anb2n | n ! 0}.

ε

Wednesday, 2 June 2010

CFG to PDA Construction

• Itʼs easy to build a PDA give a Context-
free grammar:
‣ The PDA has one state; label it 0

‣ The alphabet A consist of the terminal symbols of
the grammar

‣ The stack alphabet Γ consists of {non-terminals of
the grammar} ∪A

‣ The initial symbol on the stack is the start symbol

25

Wednesday, 2 June 2010

• The PDAʼs transitions are as follows:
‣ For each terminal symbol a, define the transition
δ(0, a, a) = (ε, 0)

‣ For each production A → ω, where ω is a (possibly
empty) sequence of terminals and non-terminals, define
the transition δ(0, ε, A) = (ω, 0)

• Key idea: each transition in the PDA
corresponds to a derivation step in the
grammar

26

	 � � 	
� � �

� � � �
 	 � � � �
 � � � � 	 � � � 	 � � ∈� �

!!!!!!!!"� � � !!!!!!
� � � � � � � � � � #�

� � � �
 	 � � � � � �
 � � � !#� � � #� 	 � �
 � �
 � �
 � � �
�
 � � � � 	 � � � 	 � � � � � � � �
 � � � � 	 � �

!!!!!!!!!!!!!!

� � � � � � � �
� �
 �
 � � � � � � � �
 � � � 	 � � 	 � � �
� � 	 � � � � � �
 � �

ε

Wednesday, 2 June 2010

Try this example:
• Simple arithmetic expressions

E → V | V + E
V → a | 1

27

0

a, a

pop

for each terminal ∈ A

!!!!!!!!!!", E!!!!!!!!!

pop, push(V + E)

for each rule A !# , # a sequence of
terminals and non-terminals

!!!!!!!!!!!!!!

push (E)
because E is the grammar's
start symbol

1, 1

pop

!!!!!!!!!!", E!!!!!!!!!

pop, push(V)

!!!!!!!!!!", V!!!!!!!!!

pop, push(a)

!!!!!!!!!!", V!!!!!!!!!

pop, push(1)

+, +

pop

ε ε

εε

Wednesday, 2 June 2010

Proving things Uncomputable

• Is there an effective enumeration of the
total functions N → N?

• Is there an algorithm to decide if an
arbitrary computable function N → N is
total?

28

Wednesday, 2 June 2010

Homework 9, Problem 3

29

14 Computational Notions

 ƒ(x) = if x is odd then x else x + 1,

 g(x) = if x is even then 2x – x + 1 else x.

Exercises

Computable Functions

 1. Show that the composition of two computable functions is computable. In

other words, show that if h(x) = ƒ(g(x)), where ƒ and g are computable and

the range of g is a subset of the domain of ƒ, then h is computable.

 2. Show that the following function is computable.

h(x) = if ƒx halts on input x then 1 else loop forever.

 3. Suppose we have the following effective enumeration of all the com-

putable functions that take a single argument:

ƒ0, ƒ1, ƒ2, ..., ƒn,

 For each of the following functions g, explain what is wrong with the

following diagonalization argument claiming to show that g is a com-

putable function that isn’t in the list. “Since the enumeration is effective,

there is an algorithm to transform each n into the function ƒn. Since each

ƒn is computable, it follows that g is computable. It is easy to see that g

is not in the list. Therefore g is a computable function that isn’t in the

list.”

a. g(n) = ƒn(n) + 1.

b. g(n) = if ƒn(n) = 4 then 3 else 4.

c. g(n) = if ƒn(n) halts and ƒn(n) = 4 then 3 else 4.

d. g(n) = if ƒn(n) halts and ƒn(n) = 4 then 3 else loop forever.

Solvability

 4. Show that the following problem is solvable: Is there a computable func-

tion that, when given ƒn, m, and k, can tell whether ƒn halts on input m in

k units of time?

 5. Show that the problem of deciding whether two DFAs over the same al-

phabet are equivalent is solvable.

 6. For each of the following instances of Post’s correspondence problem, find

a solution or state that no solution exists.

 a. {(a, abbbbb), (bb, b)}.

 b. {(ab, a), (ba, b), (a, ba), (b, ab)}.

Wednesday, 2 June 2010

Turing Machine Construction
• Hein §13.1 Ex 6

30

 13.1 Turing Machines 19

pairs of natural numbers represented as unary strings and separated by

the symbol #. Where necessary, represent zero by the tape symbol !.

 a. Add two natural numbers, neither of which is zero.

 b. Add two natural numbers, either of which may be zero.

 5. Construct a Turing machine to perform each task.

 a. Complement the binary representation of a natural number, and

 then add 1 to the result.

 b. Add 2 to a natural number represented as a binary string.

 c. Add 3 to a natural number represented as a binary string.

 6. Construct a Turing machine to test for equality of two strings over the al-

phabet {a, b}, where the strings are separated by a cell containing #. Out-

put a 0 if the strings are not equal and a 1 if they are equal.

 7. Construct a three-tape Turing machine to add two binary numbers,

where the first two tapes hold the input strings and the tape heads are

positioned at the right end of each string. The third tape will hold the

output.

Challenges

 8. Construct a single-tape Turing machine that inputs any string over the

alphabet {a, b, c} and outputs its successor in the standard ordering,

where we assume that a b c. Recall that in the standard ordering,

strings are ordered by length, strings of the same length being ordered

lexicographically.

 9. For busy beaver Turing machines it is known that b(3) = 6, which means

that 3-state busy beavers write six 1’s before halting. Try to construct a

3-state busy beaver.

13.2 The Church-Turing Thesis

The word “computable” is meaningful to most of us because we have a certain

intuition about it, and we actually feel quite comfortable with it. We might

even say something like, “A thing is computable if it can be computed.” Or we

might say, “A thing is computable if there is some computation that computes

it.” Of course, we might also say, “A thing is computable if it can be described

by an algorithm.”

The Meaning of Computability

So the word “computable” is defined by using words like “computation” and

Wednesday, 2 June 2010

Grammar Transformations

31

Wednesday, 2 June 2010

Grammar Transformations

• What is Chomsky Normal Form?

31

Wednesday, 2 June 2010

Grammar Transformations

• What is Chomsky Normal Form?
‣ Productions have the form A→a or A→BC.

31

Wednesday, 2 June 2010

Grammar Transformations

• What is Chomsky Normal Form?
‣ Productions have the form A→a or A→BC.

‣ If the language contains ε, then A→ε is also
allowed if A does not appear on the rhs of any
production.

31

Wednesday, 2 June 2010

32

 12.4 Context-Free Language Topics 55

Transforming to Chomsky Form

1. If there is a production A ! ", where A is not the start symbol S, then

use the preceding algorithm to remove all productions that contain ".

If this process removes S ! ", then add it back.

2. This step removes all unit productions A ! B, where A and B are

nonterminals. For each pair of nonterminals A and B, if A ! B is a

unit production or if there is a derivation A #+ B, then add all

productions of the form A ! w, where B ! w is not a unit production.

Now remove all the unit productions.

3. For each production whose right side has two or more symbols,

replace all occurrences of each terminal a with a new nonterminal A,

and also add the new production A ! a.

4. For each production of the form B ! C1C2...Cn, where n > 2, replace it

with the following two productions, where D is a new nonterminal:

B ! C1D and D ! C2...Cn.

 Continue this step until all productions with nonterminal strings on

the right side have length 2.

EXAMPLE 2 Finding a Chomsky Normal Form

Let’s write the following grammar in Chomsky normal form:

 S ! R | aTa

 R ! S | b

 T ! R | c.

 We’ll skip Step 1, since there are no occurrences of ". We’ll begin with Step

2. From the unit productions S ! R, R ! S, and T ! R we add new

productions S ! b, R ! aTa, and T ! b. From the derivation T #+ S we

add the new production T ! aTa. The derivations S #+ S and R #+ R don’t

add any new productions. Now remove the unit productions to obtain the

grammar

 S ! b | aTa

 R ! b | aTa

 T ! b | c | aTa.

 We’ll throw away the productions R ! b | aTa because no derivation from S

can reach R. Now to Step 3. Replace the letter a in aTa by A and add the

Transforming a Grammar to Chomsky Normal Form

Wednesday, 2 June 2010

33

54 Context-Free Languages and Pushdown Automata

2. For each production of the form A ! w, create all possible productions

of the form A ! w', where w' is obtained from w by removing one or

more occurrences of the nonterminals found in Step 1.

3. The desired grammar consists of the original productions together

with the productions constructed in Step 2, minus any productions of

the form A ! ".

EXAMPLE 1 Remove Lambda Productions

 Let’s try this algorithm on our example grammar. Step 1 gives us two

nonterminals D and E because they both derive " as follows:

E # " and D # E # ".

 For Step 2 we’ll list each original production together with all new produc-

tions that it creates:

 Original Productions New Productions

 S ! aDaE S ! aaE | aDa | aa

 D ! bD D ! b

 D ! E D ! "

 E ! cE E ! c

 E ! " None

 For Step 3, we take the originals together with the new productions and

throw away those containing " to obtain the following grammar:

 S ! aDaE | aaE | aDa | aa

 D ! bD | b | E

 E ! cE | c. $

Chomsky Normal Form

Any context-free grammar can be written in a special form called Chomsky

normal form, which appears in Chomsky [1959]. The right side of each

production is either a single terminal or a string of two nonterminals, with the

exception that if the language of the grammar contains ", then S ! " is

allowed, where S is the start symbol. The Chomsky normal form has several

uses. For example, any string of length n > 0 can be derived in 2n – 1 steps.

Also, the derivation trees are binary trees. Here’s the algorithm:

 12.3 Parsing Techniques 53

 10. Construct an LR(1) parse table for each of the following grammars.

 a. S ! Sa | b. b. S ! A | B c. S ! AB

 A ! a A ! a

 B ! b. B ! b.

12.4 Context-Free Language Topics
In this section we’ll look at a few properties of context-free grammars and

languages. We’ll start by discussing some restricted grammars that still gen-

erate all the context-free languages. Then we’ll discuss a tool that can be used

to show that some languages are not context-free.

Transforming Grammars

Context-free grammars appear to be very general because the right side of a

production can be any string of any length. It’s interesting and useful to know

that we can put more restrictions on the productions and still generate the

same context-free languages. We’ll see that for languages that don’t contain ",

we can modify their grammars so that the productions don’t contain ". Then

we’ll introduce two classic special grammars that have many applications.

Removing "-Productions

A context-free language that does not contain " can be written with a gram-

mar that does not contain " on the right side of any production. For example,

suppose we have the following grammar:

 S ! aDaE

 D ! bD | E

 E ! cE | ".

Although " appears in this grammar, it’s clear that " does not occur in the

language generated by the grammar. After some thought, we can see that this

grammar generates all strings of the form abkcmacn, where k, m, and n are

nonnegative integers. Since the language does not contain ", we can write a

grammar whose productions don’t contain ". Try it on your own, and then look

at the following three-step algorithm:

Algorithm to Remove Lambda Productions

1. Find the set of all nonterminals N such that N derives ".

Wednesday, 2 June 2010

Example Problem
• Hein §12.4 Ex 2

34

62 Context-Free Languages and Pushdown Automata

Exercises

Grammar Transformations

 1. For each of the following grammars, find a grammar without ! produc-

tions that generates the same language.

 a. S " aA | aBb b. S " aAB

 A " aA | ! A " aAb | !

 B " aBb | !. B " bB | !.

 2. Find a Chomsky normal form for each of the following grammars.

 a. S " aSa | bSb | c. b. S " abC | babS | de c. S " aSa | R

 C " aCa | b. R " S | b.

 3. Find a Greibach normal form for the following grammar:

 S " AbC | D

 A " Aa | !

 C " cC | c

 D " dD | !.

Pumping Lemma

 4. Use the pumping lemma (12.19) to show that each of the following lan-

guages is not context-free.

 a. {anbnan | n ! 0}. Hint: Look at Example 3.

b. {aibjck | 0 < i < j < k}. Hint: Let z = ambm+1cm+2 = uvwxy, and consider the

following two cases: (1) There is at least one a in either v or x. (2)

Neither v nor x contains any a’s.

c. {ap | p is a prime number}. Hint: Let z = ap = uvwxy, where p is prime

and p > m + 1. Let k = |uwy|. Show |uvkwxky| is not prime.

Challenges

 5. Show that the language {anbnan | n # N} is not context-free by performing

the following tasks:

 a. Given the morphism ƒ : {a, b, c}* " {a, b, c}* defined by ƒ(a) = a,

 ƒ(b) = b, and ƒ(c) = a, describe ƒ–1({anbnan | n # N}).

 b. Show that

 ƒ–1({anbnan | n # N}) $ {akbmcn | k, m, n # N} = {anbncn | n # N}.

c. Argue that {anbnan | n # N} is not context-free by using parts (a) and

(b) together with (12.22) and (12.23).

Wednesday, 2 June 2010

Properties of CFLs

35

60 Context-Free Languages and Pushdown Automata

free languages whose intersection is not context-free.

 Now we’re in position to prove the following result about complements:

 Context-free languages are not closed under complement. (12.21)

Proof: Suppose, by way of contradiction, that complements of context-free

languages are context-free. Then we can take the two languages L1 and L2

from the proof of (12.20) and make the following sequence of statements:

Since L1 and L2 are context-free, it follows that the complements L1' and L2'

are context-free. We can take the union of these two complements to obtain

another context-free language. Further, we can take the complement of this

union to obtain the following context-free language:

(L1' ! L2')'.

Now let’s describe a contradiction. Using De Morgan’s laws, we have the fol-

lowing statement:

(L1' ! L2')' = L1 " L2.

So we’re forced to conclude that L1 " L2 is context-free. But we know that

L1 " L2 = {anbncn | n ! 0},

and we’ve shown that this language is not context-free. This contradiction

proves (12.21). QED.

 Although (12.20) says that we can’t expect the intersection of context-free

languages to be context-free, we can say that the intersection of a regular lan-

guage with a context-free language is context-free. We won’t prove this, but

we’ll include it with the closure properties that we do know about. Here is a

listing of them:

Properties of Context-Free Languages (12.22)

1. The union of two context-free languages is context-free.

2. The language product of two context-free languages is context-free.

3. The closure of a context-free language is context-free.

4. The intersection of a regular language with a context-free language is

context-free.

 We’ll finish with two more properties of context-free languages that can

 12.4 Context-Free Language Topics 61

be quite useful in showing that a language is not context-free:

Context-Free Language Morphisms (12.23)

Let ƒ : A* ! A* be a language morphism. In other words, ƒ(") = "

and ƒ(uv) = ƒ(u)ƒ(v) for all strings u and v. Let L be a language over A.

1. If L is context-free, then ƒ(L) is context-free.

2. If L is context-free, then ƒ–1(L) is context-free.

Proof: We’ll prove statement 1 (statement 2 is a bit complicated). Since L is

context-free, it has a context-free grammar. We’ll create a context-free gram-

mar for ƒ(L) as follows: Transform each production A ! w into a new produc-

tion of the form A ! w', where w' is obtained from w by replacing each termi-

nal a in w by ƒ(a). The new grammar is context-free, and any string in ƒ(L) is

derived by this new grammar. QED.

EXAMPLE 4 Using a Morphism

 Let’s use (12.23) to show that L = {anbcnden | n ! 0} is not context-free. We

can define a morphism ƒ : {a, b, c, d, e}* ! {a, b, c, d, e}* by

ƒ(a) = a, ƒ(b) = ", ƒ(c) = b, ƒ(d) = ", ƒ(e) = c.

 Then ƒ(L) = {anbncn | n ! 0}. If L is context-free, then we must also conclude

by (12.23) that ƒ(L) is context-free. But we know that ƒ(L) is not context-

free. Therefore L is not context-free. #

 It might occur to you that the language {anbncn | n ! 0} could be recognized

by a pushdown automaton with two stacks available rather than just one

stack. For example, we could push the a’s onto one stack. Then we pop the a’s

as we push the b’s onto the second stack. Finally, we pop the b’s from the

second stack as we read the c’s.

 So it might make sense to take the next step and study pushdown au-

tomata with two stacks. Instead, we’re going to switch gears and discuss an-

other type of device, called a Turing machine, which is closer to the idea of a

computer. The interesting thing is that Turing machines are equivalent in

power to pushdown automata with two stacks. In fact, Turing machines are

equivalent to pushdown automata with n stacks for any n ! 2. We’ll discuss

them in the next chapter.

ε ε

Wednesday, 2 June 2010

Example Problem
• Hein §12.4 Ex 5:

36

62 Context-Free Languages and Pushdown Automata

Exercises

Grammar Transformations

 1. For each of the following grammars, find a grammar without ! produc-

tions that generates the same language.

 a. S " aA | aBb b. S " aAB

 A " aA | ! A " aAb | !

 B " aBb | !. B " bB | !.

 2. Find a Chomsky normal form for each of the following grammars.

 a. S " aSa | bSb | c. b. S " abC | babS | de c. S " aSa | R

 C " aCa | b. R " S | b.

 3. Find a Greibach normal form for the following grammar:

 S " AbC | D

 A " Aa | !

 C " cC | c

 D " dD | !.

Pumping Lemma

 4. Use the pumping lemma (12.19) to show that each of the following lan-

guages is not context-free.

 a. {anbnan | n ! 0}. Hint: Look at Example 3.

b. {aibjck | 0 < i < j < k}. Hint: Let z = ambm+1cm+2 = uvwxy, and consider the

following two cases: (1) There is at least one a in either v or x. (2)

Neither v nor x contains any a’s.

c. {ap | p is a prime number}. Hint: Let z = ap = uvwxy, where p is prime

and p > m + 1. Let k = |uwy|. Show |uvkwxky| is not prime.

Challenges

 5. Show that the language {anbnan | n # N} is not context-free by performing

the following tasks:

 a. Given the morphism ƒ : {a, b, c}* " {a, b, c}* defined by ƒ(a) = a,

 ƒ(b) = b, and ƒ(c) = a, describe ƒ–1({anbnan | n # N}).

 b. Show that

 ƒ–1({anbnan | n # N}) $ {akbmcn | k, m, n # N} = {anbncn | n # N}.

c. Argue that {anbnan | n # N} is not context-free by using parts (a) and

(b) together with (12.22) and (12.23).

Wednesday, 2 June 2010

Pumping Lemma for
Context-free languages

• Hein §12.4.2

37

58 Context-Free Languages and Pushdown Automata

Properties of Context-Free Languages

Although most languages that we encounter are context-free languages, we

need to face the fact that not all languages are context-free. For example, sup-

pose we want to find a PDA or a context-free grammar for the language {anbncn

| n ! 0}. After a few attempts we might get the idea that the language is not

context-free. How can we be sure? In some cases we can use a pumping ar-

gument similar to the one used to show that a language is not regular. So let’s

discuss a pumping lemma for context-free languages.

 If a context-free language has an infinite number of strings, then any

grammar for the language must be recursive. In other words, there must be a

production that is recursive or indirectly recursive. For example, a grammar

for an infinite context-free language will contain a fragment similar to the fol-

lowing:

 S ! uNy

 N ! vNx | w.

Notice that either v or x must be nonempty. Otherwise, the language derived

is finite, consisting of the single string uwy. The grammar allows us to derive

infinitely many strings having a certain pattern. For example, the derivation

to recognize the string uv3wx3y can be written as follows:

S " uNy " uvNxy " uvvNxxy " uvvvNxxxy " uv3wx3y.

 This derivation can be shortened or lengthened to obtain the set of all

strings of the form uvkwxky for all k ! 0. This example illustrates the main re-

sult of the pumping lemma for context-free languages, which we’ll state in all

its detail as follows:

Pumping Lemma for Context-Free Languages (12.19)

Let L be an infinite context-free language. Then there is a positive

integer m such that for all strings z # L with |z| ! m, z can be written in

the form z = uvwxy, where the following properties hold:

 |vx| ! 1,

 |vwx|" m,

 uvkwxky # L for all k ! 0.

 The positive integer m in (12.19) depends on the grammar for the lan-

guage L. Without going into the proof, suffice it to say that m is large enough

to ensure a recursive derivation of any string of length m or more. Let’s use the

- m is called the pumping length for L

Wednesday, 2 June 2010

Pumping Lemma

38

Wednesday, 2 June 2010

Pumping Lemma

• Show that L = {anbnan | n ≥ 0} is not
Context-free using the pumping lemma.

38

Wednesday, 2 June 2010

Pumping Lemma

• Show that L = {anbnan | n ≥ 0} is not
Context-free using the pumping lemma.

• Letʼs suppose that L is CF
‣ Then by the pumping lemma, ∃ z = ambmam in L where

m is the pumping length and z = uvwxy where
| vx | ≥ 1
| vwx | ≤ m
uvkwxky ∈ L for all k ≥ 0

38

Wednesday, 2 June 2010

• What can vwx be?

39

Wednesday, 2 June 2010

