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Course Objectives

Upon the successtul completion of this course students will be able to:

1. Find regular grammars and context-free grammars for simple
languages whose strings are described by given properties.

2. Apply algorithms to: transform regular expressions to NFAs, NFAs
to DFAs, and DFAs to minimum-state DFAs; construct regular
expressions from NFAs or DFAs; and transtorm between regular
grammars and NFAs.

3. Apply algorithms to transform: between PDAs that accept by final
state and those that accept by empty stack; and between context-free
grammars and PDAs that accept by empty stack.

4. Describe LL(k) grammars; perform factorization if possible to reduce
the size of k; and write recursive descent procedures and parse tables
for simple LL(1) grammars.

5. Transform grammars by removing all left recursion and by removing
all possible productions that have the empty string on the right side.
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6. Apply pumping lemmas to prove that some simple languages are not
regular or not context-free.

7. State the Church-Turing Thesis and solve simple problems with
some of the following models of computation: Turing machines
(single-tape and multi-tape); while-loop programs; partial recursive
functions; Markov algorithms; Post algorithms; the lambda calculus;
and Post systems.

8. Describe the concepts of unsolvable and partially solvable; state the
halting problem and prove that it i1s unsolvable and partially
solvable; and use diagonalization to prove that the set of total
computable functions cannot be enumerated.

9. Describe the hierarchy of languages and give examples of languages
at each level that do not belong in a lower level.

10. Describe the complexity classes P, NP, and PSPACE.

11. Use an appropriate programming language as an experimental tool
for testing properties of computational structures.
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Regular Languages

e What's a Grammar?
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» <1, V, R, S, where:

e Grammar for Li= ab”
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Regular Languages

e What’s a Grammar?
» <1, V, R, S, where:

e Grammar for Li= ab”

> What are the constraints on a regular grammar?

o S/ W, orS—wV, where w € T* (a possibly empty
sequence of terminals).
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Context-free Languages

o LletC={#y|x,ye{0,1}*and x#y}
» Design a PDA that accepts C

» Write a grammar that generates C
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Non-deterministic PDA

Start in state 2:

1. Read next input symbol, push 1

2. Non-deterministically go to state 1 or 3
3. If current input is a, next state is 4.a
4.x Read input symbols until # is read
5.X Read next input, pop

6.x If stack empty, goto 7.x else goto 5.x

7.X Accept if current input is not x, otherwise
reject
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Grammar

S—RT|RT
R—XRX | 1Y#
T—0Y
R'—XR’X | OY
T'—1Y

X—0 | 1

Y- YX | €
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Grammar

S—RT|RT
R-XRX | 1Y#

S=RT=XRXT=XX
T—-0Y

RXXT=* X"RX"T =
R'=»XR’X | 0Y

XY X T=
T —=1Y

XY XQY=...
X—0]1

Y- YX | e
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NP-Hard vs NP-Complete

e A problem is NP-hard if all NP problems
can be polynomially reduced to it.

e S0, the difference between NP-complete
and NP-hard is that an NP-complete
problem must be in NP

> An NP-hard problem need not be in NP
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Example NP-hard problem

* From Sipser Ex 7.33;

> The problem D = "Does a polynomial p in several
variables have integral solutions” is NP-hard.

» Note: it’s not in NP — in fact, its undecidable

e But we can reduce the known NP-complete
problem 3-CNF satisfiability to D
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Proof QOutline

e Take a formula in 3-CNF and transform it into a
Polynomial g as follows:

variable x — variable x

=X = (1 -X)

XAY = Xy

Xvy==-(=xA=y) = (1 -01-x)(1-y))

» So if the 3-CNF formula is satisfiable, the
polynomial 1-q has has integral roots.

» But (1-qg) might also have integral roots that do
not correspond to a boolean

> but (1-9)2 + (X(1-x))2+ (y(1-y))2 + ... + (z(1-2))2
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A-calculus

e Recall:

#0=Az.AsS.Z

#1=ANz.ANs.sz
#2=ANz.ANs.s(s2)
#3=ANz.As.s (s (s z2))
add=AX.Ay.Az.As.x(yzs)s

e Reduce:
add #1 #2
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add #1 #2
(AX.AYy.Az.As.Xx(yzs)s)#1 #2
(A\Yy.ANz.As.#1 (yzs)s) #2
ANz . ANs.#1 (#2zs)s
Az.As.(Az0.As0.s02z0)(#2zs)s
ANz.As.(AsO.sO(#2zs)) s
ANzZ.ANs.s(#2z5s)
Az.As.s((Az.AsO.sO(sO2z))zs)
ANz.ANs.s((NsO.sO(sO2z))s)
ANz.ANs.s(s(s2z)
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Busy Beavers

 Define: a Turing machine is a “"Beaver” if
> it is deterministic,
> accepts the empty string,
> writes only 1s to its tape, and
> eventually halts

» A"Busy Beaver” writes as many 1s as any other
Beaver with the same number of states.

e Letb(n) be the number of 1 that can be written
by a Busy Beaver with n states (+ a halt state)

Portland State 3

IIIIIIIIII

Wednesday, 2 June 2010



b(1) = 1 —

b(2) =4 Start 0) TR T L >@
1

b(3) = 6 e

b(4) =13 Busy beaver with 2 states

* These particular values of b have been
computed. But we can still ask:

* |s b(n) computable?
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Lemma: b(n+1) > b(n)
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Lemma: b(n+1) > b(n)

e To Prove: vn >0, b(n+1) > b(n)
* Proof:
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Lemma: b(n+1) > b(n)

e To Prove: vn >0, b(n+1) > b(n)
* Proof:

> let Tnh be a busy beaver with n states, n > 0.

» Construct Th+1 as follows:

o replace the halt state in T, by a state that skips to the right so
long as it reads a 1, and when it finds a |1, writes a 1 and
transfers to the halt state.
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Lemma: b(n+1) > b(n)

e To Prove: vn >0, b(n+1) > b(n)
* Proof:

> let Tnh be a busy beaver with n states, n > 0.

» Construct Th+1 as follows:

o replace the halt state in T, by a state that skips to the right so
long as it reads a 1, and when it finds a |1, writes a 1 and
transfers to the halt state.

> Clearly, Thi1 has n+1 states, is a beaver, and writes
b(n)+1 1s

» Hence, b(n+1) =b(n)+1 > b(n)
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Proof: b(n) is not computable

e Suppose, by way of contradiction, that b(n) is computable.

e Then thereis a TM B that computes b(n) in unary, starting
with a tape containing n in unary.

» There is also a TM TwoB that computes b(2n), starting
with n on the tape; suppose that TwoB has k states

e Construct a family of TMs C,, with (k+n) states as follows:
> start with an empty tape
> uses n states to write n on the tape in unary

> behaves like TwoB, using k states to compute b(2n)
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ol wien B2 g8

T
n states == = k states
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ol wien B2 g8

n states — = k states —

e Note that Cnis a Beaver

» Cncomputes b(2n) and has (k + n) states
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ol wien B2 g8

n states — = k states —

e Note that Cnis a Beaver
» Cncomputes b(2n) and has (k + n) states

» Cn writes b(2n) 1s and has (k + n) states
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ol wien B2 g8

n states — = k states —

e Note that Cnis a Beaver
» Cncomputes b(2n) and has (k + n) states
» Cn writes b(2n) 1s and has (k + n) states

»  Ck+1 writes b(2(k+1)) 1s and has (k + (k+1)) states

Portland State

IIIIIIIIII

Wednesday, 2 June 2010



ol wien B2 g8

n states — = k states —

 Note that Cnis a Beaver
» Cncomputes b(2n) and has (k + n) states
» Cn writes b(2n) 1s and has (k + n) states
> Ck+1 writes b(2(k+1)) 1s and has (k + (k+1)) states
»  Ck+1 writes b(2k+2) 1s and has (2k+1) states
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ol wien B2 g8

n states — = k states —

 Note that Cnis a Beaver
» Cncomputes b(2n) and has (k + n) states
» Cn writes b(2n) 1s and has (k + n) states
> Ck+1 writes b(2(k+1)) 1s and has (k + (k+1)) states
»  Ck+1 writes b(2k+2) 1s and has (2k+1) states

e (Ck+11is a Beaver with (2k+1) states and writes b(2k+2) 1s

e But a Busy Beaver with (2k+1) states can write only
b(2k+1) 1s, and b(2k+2) > b(2k+1) by the lemma
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ol wien B2 g8

T
n states — = k states

 Note that Cnis a Beaver
» Cn computes b(2n) and has (k + n) states
» Cn writes b(2n) 1s and has (k + n) states
> Ck+1 writes b(2(k+1)) 1s and has (k + (k+1)) states
> Ck+1 writes b(2k+2) 1s and has (2k+1) states

e (Ck+1is a Beaver with (2k+1) states and writes b(2k+2) 1s

e But a Busy Beaver with (2k+1) states can write only
b(2k+1) 1s, and b(2k+2) > b(2k+1) by the lemma

e So Ck+1 cannot exist — by definition of “Busy Beaver”
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Pumping Lemma for Regular languages

Pumping Lemma (Regular Languages) (11.13)

Let L be an infinite regular language over the alphabet A. Then there 1s
an integer m > 0 (m 1s the number of states in a DFA to recognize L) such
that for any string s € L where |s| > m there exist strings x, vy, z € A*,
where y # A, such that s = xyz, |xy| < m and xy*z € L for all k£ > 0. The
last property tells us that {xz, xyz, xy*z, ..., xy"z, ...} C L.

e How did we prove this lemma®?
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What is a PDA?

e Review the definition of a PDA

 Formal definition was in my Context-free
languages lecture (lecture 8)

> Be clear what happens on each transition!
> Is the top of the stack “popped”?
> What symbol(s) are “pushed”?

Portland State
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Pushdown Automata (PDA)

A pushdown automatonM is defined as a
/-tuple: M = (Q,%,T',0,q0, 2o, F) , Where:

> () is a set of states, ¢o € @ is the start state

» 2 Is the input alphabet,

> I'is the stack alphabet, Z, € I'is the initial stack symbol
» 0:(Q x X, xI'.) = P{Q x I'*} is the transition function
» [ C () Is a set of final states, and

» X. = X U{¢e}, the set X augmented with €
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Transitions

e We defined d: (Q x A. xT'.) — P{Q x T'*}

» The transitions 6(q, a, ) are applicable iff
o @ is the current state,
o a = &, or the next character on the input tape is a, and

o 7y = &, or the top of the stack is 7

> If you select a transition (¢',w) , then
o The new state is q’
o if v 7 €, 7Y is popped off of the stack, and

> the (possibly empty) sequence of symbols w is pushed
onto the stack

Portland State 2!
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Acceptance by Final State

A run of PDA M = (Q, A,T', 6, qo, 70, F') is a sequence

(Q(b/yo) o (Q1751) = aSl (Qnysn)
with qo,...,q9, € Q, s1,...,8, €', and ag,...,a,—1 € A

such that:
forall: € [0..n—1]. (gix1,7vir1) € 6(q;,ai,7y;) and
s; = v;t; and s;.1 = v;41t; for some t; € I'", and
W = apaias ...a,—i 1s the input.

The run accepts w if gn € F.

The language of M, L(M) is given by
L(M)={w &€ A" w is accepted by some run of M}
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Acceptance by Empty Stack

A run of PDA M = (Q, A,T',9,qo,70,0) is a sequence

Qpy—
(Q(b/yo) o (Q1751) =S (Qnysn)
with qo,...,q9, € Q, s1,...,8, €', and ag,...,a,—1 € A
such that:

for all 7 € [O M= 1] (Qi—|—17773—|—1) - 5(%,&7;,’7@') and
S; — Vz'ti and Si+1 — ’)/7;_|_1t7; for some ti - F*, and

W = apaias ...a,—i 1s the input.
The run accepts w if sn = €.

The language of M, L(M) is given by
L(M)={w &€ A" w is accepted by some run of M}
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e Assume that Xis initially on the stack
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Problem: what language
IS accepted by this PDA?

a, X
push(A)
a, A b A
ush(A ’
push(A) o
Start — > e, X
PP
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CFG to PDA Construction

e |t’'s easy to build a PDA give a Context-
free grammar:

> The PDA has one state: label it O

> The alphabet A consist of the terminal symbols of
the grammar

> The stack alphabet I' consists of {non-terminals of
the grammar} UA

> The initial symbol on the stack is the start symbol

Portland State 25

IIIIIIIIII

Wednesday, 2 June 2010



e The PDA’s transitions are as follows:
» For each terminal symbol a, define the transition
0(0,a, a) = (e, 0)

» For each production A = w, where w is a (possibly
empty) sequence of terminals and non-terminals, define

the transition 0(0, €, A) = (w, 0)

 Key idea: each transition in the PDA
corresponds to a derivation step in the
grammar

\ 8“ 0 W
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Try this example:

e Simple arithmetic expressions

E-VIV+E
V—-oali

for each rule A = w , w a sequence of
terminals and non-terminals

because E is the grammar's

push (E) start symbol 8, E 8, V
\ pop, push(V + E) pop, push(a)
¢ E £ v
pop, push(V) pop, push(1)

+, + 1,1 a,a

Pop pPop  POop

for each terminal € A

Portland State
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Proving things Uncomputable

e |sthere an effective enumeration of the
total functions N =@ IN?

e |s there an algorithm to decide if an
arbitrary computable function N = N is

total?
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Homework 9, Problem 3

3. Suppose we have the following effective enumeration of all the com-
putable functions that take a single argument:

fO’ f17 fza seey fn,

For each of the following functions g, explain what is wrong with the
following diagonalization argument claiming to show that g 1s a com-
putable function that isn’t in the list. “Since the enumeration 1s effective,
there 1s an algorithm to transform each n into the function f,. Since each
/., 1s computable, 1t follows that g is computable. It is easy to see that g
1s not in the list. Therefore g is a computable function that isn’t in the
list.”

a. g(n)=f,(n)+ 1.

b. g(n)=1f f (n) =4 then 3 else 4.

c. g(n)=1f f (n) halts and f (n) =4 then 3 else 4.

d. g(n)=1f f (n) halts and f (n) = 4 then 3 else loop forever.
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Turing Machine Construction

e Hein §13.1 Ex 6

6. Construct a Turing machine to test for equality of two strings over the al-
phabet {a, b}, where the strings are separated by a cell containing #. Out-
put a 0 if the strings are not equal and a 1 if they are equal.
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Grammar Transformations
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Grammar Transformations

e What is Chomsky Normal Form?
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Grammar Transformations

e What is Chomsky Normal Form?

» Productions have the form A—a or A—=BC.
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Grammar Transformations

e What is Chomsky Normal Form?
> Productions have the form A—a or A—BC.

> If the language contains €, then A—¢ is also
allowed if A does not appear on the rhs of any
production.
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Transforming a Grammar to Chomsky Normal Form

1. If there is a production A — A, where A 1s not the start symbol S, then
use the preceding algorithm to remove all productions that contain A.
If this process removes S — A, then add it back.

2. This step removes all unit productions A — B, where A and B are
nonterminals. For each pair of nonterminals A and B, if A — B 1s a
unit production or if there i1s a derivation A =% B, then add all
productions of the form A — w, where B — w 1s not a unit production.
Now remove all the unit productions.

3. For each production whose right side has two or more symbols,
replace all occurrences of each terminal a with a new nonterminal A,
and also add the new production A — a.

4. For each production of the form B — C,C,...C , where n > 2, replace it
with the following two productions, where D 1s a new nonterminal:

B—-CD and D-—C,.C.

Continue this step until all productions with nonterminal strings on
the right side have length 2.
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Algorithm to Remove Lambda Productions

1. Find the set of all nonterminals N such that IV derives A.
2. For each production of the form A — w, create all possible productions

of the form A — w', where w' is obtained from w by removing one or
more occurrences of the nonterminals found in Step 1.

3. The desired grammar consists of the original productions together
with the productions constructed 1n Step 2, minus any productions of

the form A — A.
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Example Problem

e Hein §12.4 Ex 2

2. Find a Chomsky normal form for each of the following grammars.

a. S—=aSa | bSb|c. b. S—=abC | babS | de ¢c. S—aSa| R
C — aCa | b. R— S| b.
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Properties of CFLs

Properties of Context-Free Languages (12.22)

1. The union of two context-free languages 1s context-free.

rj\

T'he language product of two context-free languages is context-free.

rj\

I'he intersection of a regular language with a context-free language is
context-free.

2
3. The closure of a context-free language 1s context-free.
4

Context-Free Language Morphisms (12.23)

Let f : A* — A* be a language morphism. In other words, (&) = &
and f(uv) = f(uw) f(v) for all strings v and v. Let L be a language over A.

1. If L 1s context-free, then f(L) 1s context-free.
2. If L is context-free, then f~'(L) is context-free.
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Example Problem

e Hein §12.4 Ex 5:

5. Show that the language {a"b"a" | n € N} 1s not context-free by performing
the following tasks:

a. Given the morphism f : {a, b, c¢}* — {a, b, ¢}* defined by f(a) =a,
f(b) =b, and f(c) = a, describe f'({a"b"a” | n € N}).

b. Show that
da"b"a” | nENY) N{a*d™c" | k, m,n €EN}={a"b"c" | n €EN}.

c. Argue that {a"b"a" | n € N} 1s not context-free by using parts (a) and
(b) together with (12.22) and (12.23).
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Pumping Lemma for
Context-free languages

e Hein §12.4.2

Pumping Lemma for Context-Free Languages (12.19)

Let L be an infinite context-free language. Then there 1s a positive
integer m such that for all strings z € L with |z| > m, z can be written in
the form z = uwvwxy, where the following properties hold:

lvx| > 1,
| vwx | < m,

uv'wx"y € L for all k> 0.

- m is called the pumping length for L
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Pumping Lemma

e Show that L ={a"b"a" | n = 0} is not
Context-free using the pumping lemma.
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Pumping Lemma

e Show that L ={a"b"a" | n = 0} is not
Context-free using the pumping lemma.

e Let’s suppose that L is CF

> Then by the pumping lemma, 3 z = a™b™a™ in L where
m is the pumping length and z = uvwxy where

lvx | =1
| vwx | < m
uvkwxky e Lforall k =0
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e \What can vwx be?
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