CS311 Computational Structures

Review

Lecture 19

Course Objectives

Upon the successful completion of this course students will be able to:

- 1. Find regular grammars and context-free grammars for simple languages whose strings are described by given properties.
- 2. Apply algorithms to: transform regular expressions to NFAs, NFAs to DFAs, and DFAs to minimum-state DFAs; construct regular expressions from NFAs or DFAs; and transform between regular grammars and NFAs.
- 3. Apply algorithms to transform: between PDAs that accept by final state and those that accept by empty stack; and between context-free grammars and PDAs that accept by empty stack.
- 4. Describe LL(k) grammars; perform factorization if possible to reduce the size of k; and write recursive descent procedures and parse tables for simple LL(1) grammars.
- 5. Transform grammars by removing all left recursion and by removing all possible productions that have the empty string on the right side.

- 6. Apply pumping lemmas to prove that some simple languages are not regular or not context-free.
- 7. State the Church-Turing Thesis and solve simple problems with some of the following models of computation: Turing machines (single-tape and multi-tape); while-loop programs; partial recursive functions; Markov algorithms; Post algorithms; the lambda calculus; and Post systems.
- 8. Describe the concepts of unsolvable and partially solvable; state the halting problem and prove that it is unsolvable and partially solvable; and use diagonalization to prove that the set of total computable functions cannot be enumerated.
- 9. Describe the hierarchy of languages and give examples of languages at each level that do not belong in a lower level.
- 10. Describe the complexity classes P, NP, and PSPACE.
- 11. Use an appropriate programming language as an experimental tool for testing properties of computational structures.

• What's a Grammar?

- What's a Grammar?
 - T, V, R, S>, where:

- What's a Grammar?
 - T, V, R, S>, where:

- What's a Grammar?
 - T, V, R, S, where:

• Grammar for $L_1 = ab^*$

- What's a Grammar?
 - T, V, R, S>, where:

- Grammar for $L_1 = ab^*$
 - What are the constraints on a regular grammar?

- What's a Grammar?
 - T, V, R, S>, where:

- Grammar for $L_1 = ab^*$
 - What are the constraints on a regular grammar?
 - S→ω, or S→ωV, where ω ∈ T* (a possibly empty sequence of terminals).

Context-free Languages

- Let $C = \{x \# y \mid x, y \in \{0, 1\}^* \text{ and } x \neq y \}$
 - Design a PDA that accepts C
 - Write a grammar that generates C

Non-deterministic PDA

Start in state 2:

- 1. Read next input symbol, push 1
- 2. Non-deterministically go to state 1 or 3
- 3. If current input is a, next state is 4.a
- 4.x Read input symbols until # is read
- 5.x Read next input, pop
- 6.x If stack empty, goto 7.x else goto 5.x
- 7.x Accept if current input is not x, otherwise reject

Grammar

$$T\rightarrow 0Y$$

$$T' \rightarrow 1Y$$

$$Y \rightarrow YX \mid \epsilon$$

Grammar

$$T' \rightarrow 1Y$$

$$S \Rightarrow RT \Rightarrow XRXT \Rightarrow XX$$

$$RXXT \Rightarrow * X^nRX^nT \Rightarrow$$

$$X^n1YX^nT \Rightarrow$$

$$X^n1YX^n0Y \Rightarrow ...$$

NP-Hard vs NP-Complete

- A problem is NP-hard if all NP problems can be polynomially reduced to it.
- So, the difference between NP-complete and NP-hard is that an NP-complete problem must be in NP
 - An NP-hard problem need not be in NP

Example NP-hard problem

- From Sipser Ex 7.33:
 - The problem D = "Does a polynomial p in several variables have integral solutions" is NP-hard.
 - ► Note: it's not in NP in fact, its undecidable
- But we can reduce the known NP-complete problem 3-CNF satisfiability to D

Proof Outline

 Take a formula in 3-CNF and transform it into a Polynomial q as follows:

```
variable x \rightarrow \text{variable } x

\neg x \rightarrow (1 - x)

x \wedge y \rightarrow xy

x \vee y = \neg (\neg x \wedge \neg y) \rightarrow (1 - (1-x)(1-y))
```

- ► So if the 3-CNF formula is satisfiable, the polynomial 1-q has has integral roots.
- But (1-q) might also have integral roots that do not correspond to a boolean
 - ∘ but $(1-q)^2 + (x(1-x))^2 + (y(1-y))^2 + ... + (z(1-z))^2$ does not!

λ-calculus

Recall:

```
#0 = \lambda z \cdot \lambda s \cdot z

#1 = \lambda z \cdot \lambda s \cdot s z

#2 = \lambda z \cdot \lambda s \cdot s \cdot (s z)

#3 = \lambda z \cdot \lambda s \cdot s \cdot (s \cdot (s z))

add = \lambda x \cdot \lambda y \cdot \lambda z \cdot \lambda s \cdot x \cdot (y z s) s
```

Reduce:

add #1 #2

- add #1 #2
- (λx.λy.λz.λs.x(yzs)s)#1#2
- (λy.λz.λs.#1 (yzs)s)#2
- λz.λs.#1 (#2zs)s
- $\lambda z . \lambda s . (\lambda z0 . \lambda s0 . s0 z0) (#2 z s) s$
- λ z . λ s . (λ s0 . s0 (#2 z s)) s
- λz.λs.s (#2 z s)
- $\lambda z \cdot \lambda s \cdot s \cdot ((\lambda z \cdot \lambda s0 \cdot s0 \cdot (s0 z)) z s)$
- $\lambda z . \lambda s . s ((\lambda s0 . s0 (s0 z)) s)$
- λz.λs.s(s(sz)

Busy Beavers

- Define: a Turing machine is a "Beaver" if
 - it is deterministic,
 - accepts the empty string,
 - writes only 1s to its tape, and
 - eventually halts
- A "Busy Beaver" writes as many 1s as any other Beaver with the same number of states.
- Let b(n) be the number of 1 that can be written by a Busy Beaver with n states (+ a halt state)

b(n)

$$b(1) = 1$$

$$b(2) = 4$$

$$b(3) = 6$$

$$b(4) = 13$$

Busy beaver with 2 states

- These particular values of b have been computed. But we can still ask:
- Is b(n) computable?

• To Prove: $\forall n > 0$, b(n+1) > b(n)

- To Prove: $\forall n > 0$, b(n+1) > b(n)
- Proof:

- To Prove: $\forall n > 0$, b(n+1) > b(n)
- Proof:
 - ► let T_n be a busy beaver with n states, n > 0.

- To Prove: $\forall n > 0$, b(n+1) > b(n)
- Proof:
 - let T_n be a busy beaver with n states, n > 0.
 - Construct T_{n+1} as follows:

- To Prove: $\forall n > 0$, b(n+1) > b(n)
- Proof:
 - let T_n be a busy beaver with n states, n > 0.
 - Construct T_{n+1} as follows:
 - replace the halt state in T_n by a state that skips to the right so long as it reads a 1, and when it finds a \square , writes a 1 and transfers to the halt state.

- To Prove: $\forall n > 0$, b(n+1) > b(n)
- Proof:
 - ► let T_n be a busy beaver with n states, n > 0.
 - Construct T_{n+1} as follows:
 - replace the halt state in T_n by a state that skips to the right so long as it reads a 1, and when it finds a \square , writes a 1 and transfers to the halt state.
 - Clearly, T_{n+1} has n+1 states, is a beaver, and writes b(n)+1 1s

- To Prove: $\forall n > 0$, b(n+1) > b(n)
- Proof:
 - ► let T_n be a busy beaver with n states, n > 0.
 - Construct T_{n+1} as follows:
 - replace the halt state in T_n by a state that skips to the right so long as it reads a 1, and when it finds a \square , writes a 1 and transfers to the halt state.
 - Clearly, T_{n+1} has n+1 states, is a beaver, and writes b(n)+1 1s
 - ► Hence, $b(n+1) \ge b(n)+1 > b(n)$

Proof: b(n) is not computable

- Suppose, by way of contradiction, that b(n) is computable.
- Then there is a TM B that computes b(n) in unary, starting with a tape containing n in unary.
 - There is also a TM TwoB that computes b(2n), starting with n on the tape; suppose that TwoB has k states
- Construct a family of TMs C_n with (k+n) states as follows:
 - start with an empty tape
 - uses n states to write n on the tape in unary
 - behaves like TwoB, using k states to compute b(2n)

Note that C_n is a Beaver

- Note that C_n is a Beaver
 - ► C_n computes b(2n) and has (k + n) states

- Note that C_n is a Beaver
 - C_n computes b(2n) and has (k + n) states
 - C_n writes b(2n) 1s and has (k + n) states

- Note that C_n is a Beaver
 - C_n computes b(2n) and has (k + n) states
 - C_n writes b(2n) 1s and has (k + n) states
 - C_{k+1} writes b(2(k+1)) 1s and has (k + (k+1)) states

- Note that C_n is a Beaver
 - C_n computes b(2n) and has (k + n) states
 - C_n writes b(2n) 1s and has (k + n) states
 - C_{k+1} writes b(2(k+1)) 1s and has (k + (k+1)) states
 - $ightharpoonup C_{k+1}$ writes b(2k+2) 1s and has (2k+1) states

- Note that C_n is a Beaver
 - C_n computes b(2n) and has (k + n) states
 - C_n writes b(2n) 1s and has (k + n) states
 - C_{k+1} writes b(2(k+1)) 1s and has (k + (k+1)) states
 - $ightharpoonup C_{k+1}$ writes b(2k+2) 1s and has (2k+1) states
- C_{k+1} is a Beaver with (2k+1) states and writes b(2k+2) 1s

- Note that C_n is a Beaver
 - C_n computes b(2n) and has (k + n) states
 - C_n writes b(2n) 1s and has (k + n) states
 - C_{k+1} writes b(2(k+1)) 1s and has (k + (k+1)) states
 - $ightharpoonup C_{k+1}$ writes b(2k+2) 1s and has (2k+1) states
- C_{k+1} is a Beaver with (2k+1) states and writes b(2k+2) 1s
- But a *Busy* Beaver with (2k+1) states can write only b(2k+1) 1s, and b(2k+2) > b(2k+1) by the lemma

- Note that C_n is a Beaver
 - C_n computes b(2n) and has (k + n) states
 - C_n writes b(2n) 1s and has (k + n) states
 - C_{k+1} writes b(2(k+1)) 1s and has (k + (k+1)) states
 - $ightharpoonup C_{k+1}$ writes b(2k+2) 1s and has (2k+1) states
- C_{k+1} is a Beaver with (2k+1) states and writes b(2k+2) 1s
- But a *Busy* Beaver with (2k+1) states can write only b(2k+1) 1s, and b(2k+2) > b(2k+1) by the lemma
- So C_{k+1} cannot exist by definition of "Busy Beaver"

Pumping Lemma for Regular languages

Pumping Lemma (Regular Languages)

(11.13)

Let L be an infinite regular language over the alphabet A. Then there is an integer m > 0 (m is the number of states in a DFA to recognize L) such that for any string $s \in L$ where $|s| \ge m$ there exist strings $x, y, z \in A^*$, where $y \ne \Lambda$, such that s = xyz, $|xy| \le m$ and $xy^kz \in L$ for all $k \ge 0$. The last property tells us that $\{xz, xyz, xy^2z, ..., xy^kz, ...\} \subset L$.

How did we prove this lemma?

What is a PDA?

- Review the definition of a PDA
- Formal definition was in my Context-free languages lecture (lecture 8)
 - Be clear what happens on each transition!
 - Is the top of the stack "popped"?
 - What symbol(s) are "pushed"?

Pushdown Automata (PDA)

- A pushdown automaton M is defined as a 7-tuple: $M = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$, where:
 - Q is a set of states, $q_0 \in Q$ is the start state
 - \triangleright Σ is the input alphabet,
 - Γ is the stack alphabet, $Z_0 \in \Gamma$ is the initial stack symbol
 - $\delta: (Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon}) \to \mathcal{P}\{Q \times \Gamma^*\}$ is the transition function
 - $F \subseteq Q$ is a set of final states, and
 - $X_{\varepsilon} = X \cup \{\varepsilon\}$, the set X augmented with ε

Transitions

- We defined $\delta: (Q \times A_{\varepsilon} \times \Gamma_{\varepsilon}) \to \mathcal{P}\{Q \times \Gamma^*\}$
 - The transitions $\delta(q, a, \gamma)$ are applicable iff
 - \circ q is the current state,
 - $\circ \quad a = arepsilon$, or the next character on the input tape is a , and
 - $\circ \quad \gamma = arepsilon$, or the top of the stack is γ
 - If you select a transition (q', ω) , then
 - \circ The new state is q'
 - \circ if $\gamma \neq \varepsilon$, γ is popped off of the stack, and
 - $\circ~$ the (possibly empty) sequence of symbols ω is pushed onto the stack

Acceptance by Final State

A run of PDA $M=(Q,A,\Gamma,\delta,q_0,\gamma_0,F)$ is a sequence

$$(q_0, \gamma_0) \stackrel{a_0}{\rightarrow} (q_1, s_1) \stackrel{a_1}{\rightarrow} \cdots \stackrel{a_{n-1}}{\rightarrow} (q_n, s_n)$$

with $q_0, \ldots, q_n \in Q$, $s_1, \ldots, s_n \in \Gamma^*$, and $a_0, \ldots, a_{n-1} \in A$ such that:

for all $i \in [0 ... n-1]$. $(q_{i+1}, \gamma_{i+1}) \in \delta(q_i, a_i, \gamma_i)$ and $s_i = \gamma_i t_i$ and $s_{i+1} = \gamma_{i+1} t_i$ for some $t_i \in \Gamma^*$, and $w = a_0 a_1 a_2 ... a_{n-1}$ is the input.

The run accepts w if $q_n \in F$.

The language of M, L(M) is given by

 $L(M) = \{ w \in A^* | w \text{ is accepted by some run of } M \}$

Acceptance by Empty Stack

A run of PDA $M=(Q,A,\Gamma,\delta,q_0,\gamma_0,\emptyset)$ is a sequence

$$(q_0, \gamma_0) \stackrel{a_0}{\rightarrow} (q_1, s_1) \stackrel{a_1}{\rightarrow} \cdots \stackrel{a_{n-1}}{\rightarrow} (q_n, s_n)$$

with $q_0, \ldots, q_n \in Q$, $s_1, \ldots, s_n \in \Gamma^*$, and $a_0, \ldots, a_{n-1} \in A$ such that:

for all $i \in [0 ... n-1]$. $(q_{i+1}, \gamma_{i+1}) \in \delta(q_i, a_i, \gamma_i)$ and $s_i = \gamma_i t_i$ and $s_{i+1} = \gamma_{i+1} t_i$ for some $t_i \in \Gamma^*$, and $w = a_0 a_1 a_2 ... a_{n-1}$ is the input.

The run accepts w if $s_n = \varepsilon$.

The language of M, L(M) is given by

 $L(M) = \{ w \in A^* | w \text{ is accepted by some run of } M \}$

Problem: what language is accepted by this PDA?

Assume that X is initially on the stack

CFG to PDA Construction

- It's easy to build a PDA give a Contextfree grammar:
 - The PDA has one state; label it 0
 - The alphabet A consist of the terminal symbols of the grammar
 - The stack alphabet Γ consists of {non-terminals of the grammar} ∪ A
 - The initial symbol on the stack is the start symbol

- The PDA's transitions are as follows:
 - For each terminal symbol a, define the transition $\delta(0, a, a) = (\epsilon, 0)$
 - For each production $A \to \omega$, where ω is a (possibly empty) sequence of terminals and non-terminals, define the transition $\delta(0, \varepsilon, A) = (\omega, 0)$
- Key idea: each transition in the PDA corresponds to a derivation step in the grammar

Try this example:

Simple arithmetic expressions

$$E \rightarrow V \mid V + E$$

V \rightarrow a \lambda 1

for each rule $A \rightarrow \omega$, ω a sequence of terminals and non-terminals

for each terminal $\in A$

Proving things Uncomputable

- Is there an effective enumeration of the total functions $\mathbb{N} \to \mathbb{N}$?
- Is there an algorithm to decide if an arbitrary computable function N → N is total?

Homework 9, Problem 3

3. Suppose we have the following effective enumeration of all the computable functions that take a single argument:

$$f_0, f_1, f_2, ..., f_n,$$

For each of the following functions g, explain what is wrong with the following diagonalization argument claiming to show that g is a computable function that isn't in the list. "Since the enumeration is effective, there is an algorithm to transform each n into the function f_n . Since each f_n is computable, it follows that g is computable. It is easy to see that g is not in the list. Therefore g is a computable function that isn't in the list."

- **a.** $g(n) = f_n(n) + 1$.
- b. $g(n) = \text{if } f_n(n) = 4 \text{ then } 3 \text{ else } 4.$
- **c.** $g(n) = \text{if } f_n(n) \text{ halts and } f_n(n) = 4 \text{ then } 3 \text{ else } 4.$
- d. $g(n) = \text{if } f_n(n) \text{ halts and } f_n(n) = 4 \text{ then } 3 \text{ else loop forever.}$

Turing Machine Construction

- Hein §13.1 Ex 6
- 6. Construct a Turing machine to test for equality of two strings over the alphabet $\{a, b\}$, where the strings are separated by a cell containing #. Output a 0 if the strings are not equal and a 1 if they are equal.

What is Chomsky Normal Form?

- What is Chomsky Normal Form?
 - ▶ Productions have the form $A \rightarrow a$ or $A \rightarrow BC$.

- What is Chomsky Normal Form?
 - ▶ Productions have the form $A \rightarrow a$ or $A \rightarrow BC$.
 - If the language contains ε, then A→ε is also allowed if A does not appear on the rhs of any production.

Transforming a Grammar to Chomsky Normal Form

- 1. If there is a production $A \to \Lambda$, where A is not the start symbol S, then use the preceding algorithm to remove all productions that contain Λ . If this process removes $S \to \Lambda$, then add it back.
- 2. This step removes all *unit* productions $A \to B$, where A and B are nonterminals. For each pair of nonterminals A and B, if $A \to B$ is a unit production or if there is a derivation $A \Rightarrow^+ B$, then add all productions of the form $A \to w$, where $B \to w$ is not a unit production. Now remove all the unit productions.
- 3. For each production whose right side has two or more symbols, replace all occurrences of each terminal a with a new nonterminal A, and also add the new production $A \rightarrow a$.
- 4. For each production of the form $B \to C_1 C_2 ... C_n$, where n > 2, replace it with the following two productions, where D is a new nonterminal:

$$B \to C_1 D$$
 and $D \to C_2 ... C_n$.

Continue this step until all productions with nonterminal strings on the right side have length 2.

Algorithm to Remove Lambda Productions

- 1. Find the set of all nonterminals N such that N derives Λ .
- 2. For each production of the form $A \to w$, create all possible productions of the form $A \to w'$, where w' is obtained from w by removing one or more occurrences of the nonterminals found in Step 1.
- 3. The desired grammar consists of the original productions together with the productions constructed in Step 2, minus any productions of the form $A \rightarrow \Lambda$.

Example Problem

- Hein §12.4 Ex 2
- 2. Find a Chomsky normal form for each of the following grammars.

a.
$$S \rightarrow aSa \mid bSb \mid c$$
.

a.
$$S \rightarrow aSa \mid bSb \mid c$$
. b. $S \rightarrow abC \mid babS \mid de$ **c.** $S \rightarrow aSa \mid R$

$$S \rightarrow abC \mid babS \mid de$$
 c. $S \rightarrow aSa \mid R$
 $C \rightarrow aCa \mid b$. $R \rightarrow S \mid b$.

Properties of CFLs

Properties of Context-Free Languages

(12.22)

- 1. The union of two context-free languages is context-free.
- 2. The language product of two context-free languages is context-free.
- 3. The closure of a context-free language is context-free.
- 4. The intersection of a regular language with a context-free language is context-free.

Context-Free Language Morphisms

(12.23)

Let $f: A^* \to A^*$ be a language morphism. In other words, $f(\mathcal{E}) = \mathcal{E}$ and f(uv) = f(u)f(v) for all strings u and v. Let L be a language over A.

- 1. If L is context-free, then f(L) is context-free.
- 2. If L is context-free, then $f^{-1}(L)$ is context-free.

Example Problem

- Hein §12.4 Ex 5:
- **5.** Show that the language $\{a^nb^na^n \mid n \in \mathbb{N}\}$ is not context-free by performing the following tasks:
 - **a.** Given the morphism $f: \{a, b, c\}^* \to \{a, b, c\}^*$ defined by f(a) = a, f(b) = b, and f(c) = a, describe $f^{-1}(\{a^nb^na^n \mid n \in \mathbb{N}\})$.
 - b. Show that

$$f^{-1}(\{a^nb^na^n \mid n \in \mathbb{N}\}) \cap \{a^kb^mc^n \mid k, m, n \in \mathbb{N}\} = \{a^nb^nc^n \mid n \in \mathbb{N}\}.$$

c. Argue that $\{a^nb^na^n \mid n \in \mathbb{N}\}$ is not context-free by using parts (a) and (b) together with (12.22) and (12.23).

Pumping Lemma for Context-free languages

Hein §12.4.2

Pumping Lemma for Context-Free Languages

(12.19)

Let L be an infinite context-free language. Then there is a positive integer m such that for all strings $z \in L$ with $|z| \ge m$, z can be written in the form z = uvwxy, where the following properties hold:

 $|vx| \ge 1,$ $|vwx| \le m,$ $uv^k wx^k y \in L \text{ for all } k \ge 0.$

- *m* is called the pumping length for *L*

Pumping Lemma

Pumping Lemma

• Show that $L = \{a^n b^n a^n \mid n \ge 0\}$ is not Context-free using the pumping lemma.

Pumping Lemma

- Show that $L = \{a^n b^n a^n \mid n \ge 0\}$ is not Context-free using the pumping lemma.
- Let's suppose that L is CF
 - Then by the pumping lemma, $\exists z = a^m b^m a^m$ in L where m is the pumping length and z = uvwxy where

```
|vx| \ge 1

|vwx| \le m

uv^k wx^k y \in L \text{ for all } k \ge 0
```


• What can vwx be?

