CS3 | |—Computational Structures

Regular Languages and
Regular Grammars

Lecture 6

IIIIIIIIII

What we know so far:

* RLs are closed under product, union and *

 Every RL can be written as a RE, and every
RE represents a RL

 Every RL can be recognized by a NFA

e and we know how to build it

* NFAs and DFA have the same “power”

* Every NFA can be turned in to a DFA

e “the subset construction”

Portland State

IIIIIIIIII

What’s Next?

* How to turn a FSA into a regular
grammar

e and vice-versa

e Minimal-state DFAs
 Myhill-Nerode Theorem

e Language indistinguishability

Portland State

IIIIIIIIII

Phrase-Structure Grammars

e Agrammar is a set of rules for
transforming strings

e Strings can involve variables and terminal
symbols

e S — abcT

 We derive a string of terminals by
repeatedly applying rules beginning from
a designated start variable (often S)

 The language defined by a grammar is the set of
strings that can be derived

Portland State

IIIIIIIIII

4

Phrase-Structure Grammars

e Agrammar is a set of rules for
transforming strings

e Strings can involve variables and terminal
symbols

(8 abd])

 We derive a string of terminals by
repeatedly applying rules beginning from
a designated start variable (often S)

 The language defined by a grammar is the set of
strings that can be derived

Portland State

IIIIIIIIII

4

Phrase-Structure Grammars

e Agrammar is a set of rules for
transforming strings

e Strings can involve variables and terminal

symbols _Vari
ariables
«(S5 abdT—
 We derive a string of terminals by
repeatedly applying rules beginning from
a designated start variable (often S)

 The language defined by a grammar is the set of
strings that can be derived

Portland State

IIIIIIIIII

4

Phrase-Structure Grammars

e Agrammar is a set of rules for
transforming strings

e Strings can involve variables and terminal
symbols

e S — abcT

 We derive a string of terminals by
repeatedly applying rules beginning from
a designated start variable (often S)

 The language defined by a grammar is the set of
strings that can be derived

Portland State

IIIIIIIIII

4

Phrase-Structure Grammars

e Agrammar is a set of rules for
transforming strings

e Strings can involve variables and terminal
symbols

® S—DT

 We derive a string of terminals by
repeatedly applying rules beginning from
a designated start variable (often S)

 The language defined by a grammar is the set of
strings that can be derived

Portland State

IIIIIIIIII

4

Phrase-Structure Grammars

e Agrammar is a set of rules for
transforming strings

e Strings can involve variables and terminal
symbols

* S _'T ~__Terminal symbols

 We derive a string of terminals by
repeatedly applying rules beginning from
a designated start variable (often S)

 The language defined by a grammar is the set of
strings that can be derived

Portland State

IIIIIIIIII

4

Reqgular Grammars

Hein Section 11.4.1

 What’s a Regular Grammar?

e A particular kind of grammar in which all the
productions have one of these forms:

S—»¢e¢ S—-w ST S-owl
* wis a sequence of terminal symbols

* at most one variable can appear on the rhs,
and it must be on the right.

 Examples:

S — abcY N S\AQ

Portland State

IIIIIIIIII

Examples

IIIIIIIIII

Examples

IIIIIIIIII

Examples

a*

Portland State

IIIIIIIIII

Examples

a* S—e¢|aS

IIIIIIIIII

Examples

a* S—e¢|aS
a+b

IIIIIIIIII

Examples

a* S—e¢|aS
atb S—al|b

IIIIIIIIII

Examples

a* S—e¢|aS
atb S—al|b
(a+b)*

IIIIIIIIII

Examples

a* S—e¢|aS
atb S—al|b
(a+b)* S—&|aS|bS

IIIIIIIIII

Examples

a* S—e¢|aS
atb S—al|b
(a+b)* S—&|aS|bS
a* +Db”

IIIIIIIIII

Examples

a* S—e¢|aS
atb S—al|b
(a+b)* S—&|aS|bS
a+b”™ S—A|B
A—¢E | aA
B—¢ | bB

IIIIIIIIII

Languages and Grammars

* Any regular language has a regular
grammar

* Any regular grammar generates a
regular language

IIIIIIIIII

From NFA to Regular Grammar

Hein Algorithm 11.11

1. Rename the states Q to a set of upper-case letters

2. The start symbol of the grammar is the name of

the start state Qo.

" a
3. For each transition @——)@ , create the

production |—ad.

4. For each transition @—8—)@ . create the

production |—J.

5. For each final state K, create the production K—¢.

Portland State

IIIIIIIIII

IIIIIIIIII

IIIIIIIIII

IIIIIIIIII

IIIIIIIIII

IIIIIIIIII

IIIIIIIIII

Example

A—aA
C
b
N “ e

C—cC

IIIIIIIIII

Example

A—aA
C
SN A
b
— Aj * A—aW

C—cC

IIIIIIIIII

Example

A—aA
C
b
N “ e

C—cC

IIIIIIIIII

IIIIIIIIII

Example

A m
b
. Aj » A—aA |bC|aW

IIIIIIIIII

Example

A m
b
. Aj » A—aA |bC|aW

C—cC|le

IIIIIIIIII

Example

A ﬂ
b
. Aj » A—aA |bC|aW

C—cC|le

IIIIIIIIII

N O O A WD

From Regular Grammar to FSM

Hein Algorithm 11.12

. Transform the grammar so that all productions are of the

form A = x or A =xB, where x is either a single letter or €.

. The start state of the NFA is the grammar’s start symbol.

. Create state Qr and add it to the set F of final states.

a
. For each production |—adJ, create the transition M
€
. For each production I—J, create the transition @——’@

For each production K—¢, add K to the set of final states F

a
For each production |—a, create the transition

Portland State 12

IIIIIIIIII

Example

IIIIIIIIII

Example

IIIIIIIIII

IIIIIIIIII

Example

IIIIIIIIII

Example
S—a
se (3

IIIIIIIIII

Example

O
S—a 8/3
(&

IIIIIIIIII

IIIIIIIIII

IIIIIIIIII

Example

8
o
RO
B—o¢ \/

B—bB 2

What's the language?

Portland State 13

IIIIIIIIII

S—a
S—B
B—¢
B—bB

Example

8
A
L

d

What's the language? a+b”

Portland State

IIIIIIIIII

Language Indistinguishabllity

 Consider a language L over an alphabet A.

e [Two strings X, y € A™ are L-
indistinguishable if for all z € A*, xz e L
wheneveryz e L. We write X =L y

e =_ IS an equivalence relation

e The index of L is the number of
equivalence classes induced by =

Portland State

IIIIIIIIII

Example: L=a + b*

e a+b"={¢, a, b, bb, bbb, bbbb, ...}
a=sLb?
e=Lb?
aa=_ab?

ab =L bb ?

IIIIIIIIII

Example: L=a + b*

* a+Db*={¢g, a, b, bb, bbb, bbbb, ...}

a=s_b?
e=_Lb?
aa=_ab ?

ab =L bb ?

IIIIIIIIII

 What are the equivalence
classes of =.?
1. {a}
2. {b, bb, bbb, bbbb, ...}
3. {€}

4. everything else

Myhill-Nerode Theorem

* The equivalence relation =. characterizes exactly what the

state of an automaton that accepts L needs to remember
about the read portion of the input:

e |f the read portion of the input is X, then the state needs to
remember the equivalence class [X].

* This is sufficient, because if x =y, then it does not matter if

the read portion of the input was x or y; all that matters (for
deciding whether to accept or reject) is the future portion of
the input, say z, because xz € L iff yz € L.

e Itis also necessary, because if x =Ly, then there is some
possible future portion z of the input such that xz needs to
be accepted and yz rejected (or vice versa).

Portland State

IIIIIIIIII

Theorem Statement (Part A)

If the index of a language A is k, then
there is a k-state DFA Ma such that
L(Ma) =A

IIIIIIIIII

Mimimum-state DFA

e For any language L, there is a unique
mimimum-state DFA that recognizes L

> unigue means “unique up to an isomorphism”, that
IS, @ renaming of the states.

 Any DFA can be transformed into a
minimum-state DFA

Portland State

IIIIIIIIII

Equivalent States

» Two states p and ¢ in a DFA
m={Q, 2, qo, d, F} are equivalent if,
forall z € 27,
0 (p, z) is a final state exactly when

A

0(q, z) is afinal state, i.e.,

A

quiff\V/ZEE*.(S(p,Z) c F')=(0(q,2) € I

e |s this an equivalence relation?

Portland State

IIIIIIIIII

How to Calculate State Equivalence

a a a, b
e Example: < 2 <2 b g
b
» 3 and 4 are not \ a
equivalent (why)?
> First guess:

* This works for strings w of length O

Portland State 20

IIIIIIIIII

. . e
- Take states 1 and 2 @
b
- for all single-character @
inputs, do we end up in 8 a 8 a 8
equivalent states?
b b a, b

« 9(1,a)=2; 06(2,a) =2
03(1,b)=5; 6(2,b)=3. 5=3in Eo

- So the pair <1, 2> stays in the same equivalence
class in the next guess, E

Portland State 21

IIIIIIIIII

() (+1) &&i

 What about states
3and5 ?

- for all single-character 8 % 8
inputs, do we end up in
equivalent states?

« 0(3,a)=3; 0(5,2)=6
3(3,b)=4; 8(5,b)=5. 5=4in Eo

« So the states 3 and 5 are not in the same

equivalence class in the next guess, E;

Portland State 2

IIIIIIIIII

IOION &&i

 What about states
1and 5 ?

- for all single-character 8 % 8
inputs, do we end up in
equivalent states?

« 3(1,a)=2; 98(5,a)=6
0(1,b)=5; 8(5,b)=5. 2=6in E;

« S0 the states 1 and 5 are not in the same
equivalence class in the next guess, E>

Portland State B

IIIIIIIIII

» Then we repeat to get the next guess E;

» The equivalence relation E, represents
states that act in the same way after
reading input strings of length »

* Remember, a relation is nothing more than
a set of pairs.

« SO0 we build
Eo2 E1 2 E22 ...

» When do we stop?

Portland State 24

IIIIIIIIII

Minimizing a DFA

How can we easily compute whether or
not two states p and ¢ in a DFA are
equivalent?

e Suppose that they are not equivalent:

Then some (finite) string z will be accepted when

the machine starts in p, and rejected when the
machine starts in q.

A

p#qiff 32 € 2*.(d(p, 2) € F) # (8(¢,2) € F)

Portland State 2>

IIIIIIIIII

Minimizing a DFA

How can we easily compute whether or
not two states p and ¢ in a DFA are
equivalent?

e Suppose that they are not equivalent:

Then some (finite) string z will be accepted when

the machine starts in p, and rejected when the
machine starts in q.

p#qiff 3z € X*.(0(p,2) € F) # (0(q,2) € F)
p=qiff Vz € *.(8(p,z) € F) = (6(q,2) € F)

Portland State 2>

IIIIIIIIII

Computing sets of equivalent states

FEo > (p,q) where pe F=q € F

Ey = Eo \ {(p;q) | 3a € £.{(p,a),d(q,a)) & Eo}

Portland State 26

IIIIIIIIII

Constructing a Minimal DFA

Hein Construction 11.10
Algorithm to Construct a Minimum-State DFA (11.10)

Given: A DFA with set of states S and transition table 7. Assume

that all states that cannot be reached from the start state
have already been thrown away.

Output: A minimum-state DFA recognizing the same regular lan-
oguage as the input DFA.

1. Construct the equivalent pairs of states by calculating the descending
sequence of sets of pairs £, D K, D ... defined as follows:

E,={{s,t} | sand t are distinct and either both states are final or
both states are nonfinal}.

E. =s t} | {s,t} € £ and for every a € A either 1{(s, a) = 1(¢, a) or
or {1(s, a), 1(t, a)} € L. }.

The computation stops when E, = E, ., for some index k. E, 1s the de-
sired set of equivalent pairs.

. Use the equivalence relation generated by the pairs in £, to partition
S 1nto a set of equivalence classes. These equivalence classes are the
states of the new DFA.

. The start state 1s the equivalence class containing the start state of
the imnput DFA.

. A final state 1s any equivalence class containing a final state of the
input DFA.

. The transition table 7' . for the minimum-state DFA 1s defined as
follows, where [s] denotes the equivalence class containing s and a 1s
any letter: T . ([s], a) = [1(s, a)].

