
CS311—Computational Structures

Regular Languages and 
Regular Grammars

Lecture 6
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What we know so far:
• RLs are closed under product, union and *

• Every RL can be written as a RE, and every 
RE represents a RL

• Every RL can be recognized by a NFA
• and we know how to build it

• NFAs and DFA have the same “power”

• Every NFA can be turned in to a DFA
• “the subset construction” 
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Whatʼs Next?

• How to turn a FSA into a regular 
grammar
• and vice-versa

• Minimal-state DFAs
• Myhill-Nerode Theorem

• Language indistinguishability
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Phrase-Structure Grammars
• A grammar is a set of rules for 

transforming strings
• Strings can involve variables and terminal 

symbols

• S → abcT

• We derive a string of terminals by 
repeatedly applying rules beginning from 
a designated start variable (often S)
• The language defined by a grammar is the set of 

strings that can be derived
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Regular Grammars
Hein Section 11.4.1

• Whatʼs a Regular Grammar?
• A particular kind of grammar in which all the 

productions have one of these forms:
S → ε
 
 S → w
 S → T

 S → wT

• w is a sequence of terminal symbols

• at most one variable can appear on the rhs, 
and it must be on the right.

• Examples: 
S → abcY

 Y → aZa
 
 S →AB
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a* S→ε | aS 
a+b S→ a | b 

(a+b)*    S→ε | aS | bS
a* + b* S→A | B

A→ε | aA
B→ε | bB
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Languages and Grammars

• Any regular language has a regular 
grammar

• Any regular grammar generates a 
regular language
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From NFA to Regular Grammar
Hein Algorithm 11.11

1. Rename the states Q to a set of upper-case letters
2. The start symbol of the grammar is the name of 

the start state q0.
3. For each transition                     , create the 

production I→aJ.
4. For each transition                     , create the 

production I→J.
5. For each final state K, create the production K→ε.
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From Regular Grammar to FSM
Hein Algorithm 11.12

1. Transform the grammar so that all productions are of the 
form A → x or A →xB, where x is either a single letter or ε.

2. The start state of the NFA is the grammarʼs start symbol.

3. Create state QF  and add it to the set F of final states.

4. For each production I→aJ, create the transition xxxxxxxxxxx

5. For each production I→J, create the transition xxxxxxxxxxxx

6. For each production K→ε, add K to the set of final states F

7. For each production I→a, create the transition 
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Language Indistinguishability

• Consider a language L over an alphabet A.

• Two strings x, y ∈ A* are L-
indistinguishable if for all z ∈ A*, xz ∈ L 
whenever yz ∈ L.  We write x ≡L y

• ≡L  is an equivalence relation

• The index of L is the number of 
equivalence classes induced by ≡L
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Example: L = a + b*

• a + b* = { ε, a, b, bb, bbb, bbbb, …}
a ≡L b ?

ε ≡L b ?

aa ≡L ab ?

ab ≡L bb ?
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• What are the equivalence 
classes of ≡L?
1. {a}
2. {b, bb, bbb, bbbb, …}
3. {ε}
4. everything else



Myhill-Nerode Theorem
• The equivalence relation ≡L characterizes exactly what the

state of an automaton that accepts L needs to remember 
about the read portion of the input: 

• if the read portion of the input is x, then the state needs to 
remember the equivalence class [x]. 

• This is sufficient, because if x ≡L y, then it does not matter if 
the read portion of the input was x or y; all that matters (for 
deciding whether to accept or reject) is the future portion of 
the input, say z, because xz ∈ L iff yz ∈ L. 

• It is also necessary, because if x ≢L y, then there is some 
possible future portion z of the input such that xz needs to 
be accepted and yz rejected (or vice versa).
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Theorem Statement (Part A)

If the index of a language A is k, then 
there is a k-state DFA MA such that 
L(MA) = A
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Mimimum-state DFA

18

• For any language L, there is a unique 
mimimum-state DFA that recognizes L
‣ unique means “unique up to an isomorphism”, that 

is, a renaming of the states.

• Any DFA can be transformed into a 
minimum-state DFA



Equivalent States

• Two states p and q in a DFA 
m={Q, Σ, q0, δ, F} are equivalent if, 
for all z ∈ Σ*, 
δ*(p, w) is a final state exactly when
δ*(q, w) is a final state, i.e.,

• Is this an equivalence relation?

19

p ≡ q iff ∀z ∈ Σ∗.(δ̂(p, z) ∈ F ) ≡ (δ̂(q, z) ∈ F )

δ̂(p, z)
δ̂(q, z)



How to Calculate State Equivalence

• Example:   
‣ 3 and 4 are not 

equivalent (why)?

‣ First guess:

• This works for strings w of length 0
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• Take states 1 and 2
• for all single-character 

inputs, do we end up in
equivalent states?

• δ(1, a) = 2;  δ(2, a) = 2
δ(1, b) = 5;  δ(2, b) = 3.   5 ≡ 3 in E0 

• So the pair ‹1, 2› stays in the same equivalence 
class in the next guess, E1
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• What about states
3 and 5 ?
• for all single-character 

inputs, do we end up in
equivalent states?

• δ(3, a) = 3;  δ(5, a) = 6
δ(3, b) = 4;  δ(5, b) = 5.   5 ≢ 4 in E0 

• So the states 3 and 5 are not in the same 
equivalence class in the next guess, E1
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• What about states
1 and 5 ?
• for all single-character 

inputs, do we end up in
equivalent states?

• δ(1, a) = 2;  δ(5, a) = 6
δ(1, b) = 5;  δ(5, b) = 5.   2 ≢ 6 in E1 

• So the states 1 and 5 are not in the same 
equivalence class in the next guess, E2
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• Then we repeat to get the next guess E2

• The equivalence relation En represents 
states that act in the same way after 
reading input strings of length n

• Remember, a relation is nothing more than 
a set of pairs.

• So we build
E0 ⊇ E1 ⊇ E2 ⊇ …

• When do we stop?
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Minimizing a DFA
How can we easily compute whether or 
not two states p and q in a DFA are 
equivalent?

• Suppose that they are not equivalent:

Then some (finite) string z will be accepted when 
the machine starts in p, and rejected when the 
machine starts in q.

25
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Computing sets of equivalent states

26

E0 ! 〈p, q〉 where p ∈ F ≡ q ∈ F

E1 = E0 \ {〈p, q〉 | ∃a ∈ Σ.〈δ(p, a), δ(q, a)〉 '∈ E0}

...

En+1 = En \ {〈p, q〉 |∃ a ∈ Σ.〈δ(p, a), δ(q, a)〉 '∈ En}



Constructing a Minimal DFA
Hein Construction 11.10
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E0 = {{0, 1}, {0, 2}, {1, 2}}. 

To construct E1 from E0, we throw away {0, 1} because  

{T(0, a), T(1, a)} = {1, 3}, 

which is not in E0. We must also throw away {0, 2} because 

{T(0, a), T(2, a)} = {1, 3}, 

which is not in E0. This leaves us with the set 

E1 = {{1, 2}}. 

We can’t throw away any pairs from E1. Therefore E2 = E1, which says that the 

desired set of equivalent pairs is E1 = {{1, 2}}. Notice that {1, 2} is a state in 

the minimum-state DFA shown in Figure 11.8. 

 Now we’re ready to present the actual algorithm to transform a DFA into 

a minimum-state DFA. 

Algorithm to Construct a Minimum-State DFA  (11.10) 

Given: A DFA with set of states S and transition table T. Assume 

that all states that cannot be reached from the start state 

have already been thrown away.  

Output: A minimum-state DFA recognizing the same regular lan-

guage as the input DFA. 

1. Construct the equivalent pairs of states by calculating the descending 

sequence of sets of pairs E0 ! E1 ! ... defined as follows: 

 E0 = {{s, t} | s and t are distinct and either both states are final or  

      both states are nonfinal}. 

 Ei+1 = {{s, t} | {s, t} " Ei and for every a " A either T(s, a) = T(t, a) or  

        or {T(s, a), T(t, a)} " Ei }. 

 The computation stops when Ek = Ek+1 for some index k. Ek is the de-

sired set of equivalent pairs. 

2. Use the equivalence relation generated by the pairs in Ek to partition 

S into a set of equivalence classes. These equivalence classes are the 

states of the new DFA.  

3. The start state is the equivalence class containing the start state of 
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the input DFA.  

4. A final state is any equivalence class containing a final state of the 

input DFA.  

5. The transition table Tmin for the minimum-state DFA is defined as 

follows, where [s] denotes the equivalence class containing s and a is 

any letter: Tmin([s], a) = [T(s, a)]. 
 

EXAMPLE 3 A Minimum-State DFA Construction 
 
 We’ll compute the minimum-state DFA for the following DFA.  

 

 The set of states is S = {0, 1, 2, 3, 4}. For Step 1 we’ll start by calculating E0 

as the set of pairs {s, t}, where s and t are both final or both nonfinal: 

E0 = {{0, 1}, {0, 2}, {0, 3}, {1, 2}, {1, 3}, {2, 3}}. 

 To calculate E1 we throw away {0, 3} because {T(0, b), T(3, b)} = {1, 4}, which 

is not in E0. We also throw away {1, 3} and {2, 3}. That leaves us with  

E1 = {{0, 1}, {0, 2}, {1, 2}}. 

 To calculate E2 we throw away {0, 2} because {T(0, a), T(2, a)} = {2, 3}, which 

is not in E1. That leaves us with 

E2 = {{1, 2}}. 

 To calculate E3 we don’t throw anything away from E2. So we stop with 

E3 = E2 = {{1, 2}}. 
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