CS311—Computational Structures

Regular Languages and Regular Grammars

Lecture 6

What we know so far:

- RLs are closed under product, union and *
- Every RL can be written as a RE, and every RE represents a RL
- Every RL can be recognized by a NFA
 - and we know how to build it
- NFAs and DFA have the same "power"
- Every NFA can be turned in to a DFA
 - "the subset construction"

What's Next?

- How to turn a FSA into a regular grammar
 - and vice-versa
- Minimal-state DFAs
 - Myhill-Nerode Theorem
 - Language indistinguishability

- A grammar is a set of rules for transforming strings
 - Strings can involve variables and terminal symbols
 - S → abcT
- We derive a string of terminals by repeatedly applying rules beginning from a designated start variable (often S)
 - The language defined by a grammar is the set of strings that can be derived

- A grammar is a set of rules for transforming strings
 - Strings can involve variables and terminal symbols
 - $S \rightarrow abc T$
- We derive a string of terminals by repeatedly applying rules beginning from a designated start variable (often S)
 - The language defined by a grammar is the set of strings that can be derived

- A grammar is a set of rules for transforming strings
 - Strings can involve variables and terminal symbols
 Variables
 - $S \rightarrow abcT$
- We derive a string of terminals by repeatedly applying rules beginning from a designated start variable (often S)
 - The language defined by a grammar is the set of strings that can be derived

- A grammar is a set of rules for transforming strings
 - Strings can involve variables and terminal symbols
 - S → abcT
- We derive a string of terminals by repeatedly applying rules beginning from a designated start variable (often S)
 - The language defined by a grammar is the set of strings that can be derived

- A grammar is a set of rules for transforming strings
 - Strings can involve variables and terminal symbols
 - S → abcT
- We derive a string of terminals by repeatedly applying rules beginning from a designated start variable (often S)
 - The language defined by a grammar is the set of strings that can be derived

- A grammar is a set of rules for transforming strings
 - Strings can involve variables and terminal symbols
 - S → abcT Terminal symbols
- We derive a string of terminals by repeatedly applying rules beginning from a designated start variable (often S)
 - The language defined by a grammar is the set of strings that can be derived

Regular Grammars

Hein Section 11.4.1

- What's a Regular Grammar?
 - A particular kind of grammar in which all the productions have one of these forms:

$$S \rightarrow \varepsilon$$
 $S \rightarrow w$ $S \rightarrow T$ $S \rightarrow wT$

- w is a sequence of terminal symbols
- at most one variable can appear on the rhs, and it must be on the right.
- Examples:

$$S \rightarrow abcY \quad Y \rightarrow aZa \quad S \rightarrow AB$$

a*	

a* S→ε | aS

$$a^*$$
 $S \rightarrow \epsilon \mid aS$
 $a+b$ $S \rightarrow a \mid b$

$$a^*$$
 $S \rightarrow \varepsilon \mid aS$
 $a+b$ $S \rightarrow a \mid b$
 $(a+b)^*$

$$a^* \quad S \rightarrow \varepsilon \mid aS$$
 $a+b \quad S \rightarrow a \mid b$
 $(a+b)^* \quad S \rightarrow \varepsilon \mid aS \mid bS$

$$a^*$$
 $S \rightarrow \varepsilon \mid aS$
 $a+b$ $S \rightarrow a \mid b$
 $(a+b)^*$ $S \rightarrow \varepsilon \mid aS \mid bS$
 $a^* + b^*$

$$a^*$$
 $S \rightarrow \varepsilon \mid aS$
 $a+b$ $S \rightarrow a \mid b$
 $(a+b)^*$ $S \rightarrow \varepsilon \mid aS \mid bS$
 $a^* + b^*$ $S \rightarrow A \mid B$
 $A \rightarrow \varepsilon \mid aA$
 $B \rightarrow \varepsilon \mid bB$

Languages and Grammars

- Any regular language has a regular grammar
- Any regular grammar generates a regular language

From NFA to Regular Grammar

Hein Algorithm 11.11

- 1. Rename the states Q to a set of upper-case letters
- 2. The start symbol of the grammar is the name of the start state q₀.
- 3. For each transition $(I) \xrightarrow{a} (J)$, create the production $I \rightarrow aJ$.
- For each transition (I) → (J), create the production I→J.
- 5. For each final state K, create the production $K \rightarrow \epsilon$.

From Regular Grammar to FSM

Hein Algorithm 11.12

- 1. Transform the grammar so that all productions are of the form $A \rightarrow x$ or $A \rightarrow xB$, where x is either a single letter or ϵ .
- 2. The start state of the NFA is the grammar's start symbol.
- 3. Create state Q_F and add it to the set F of final states.
- 4. For each production $I \rightarrow aJ$, create the transition $U \rightarrow aJ$
- 5. For each production $I \rightarrow J$, create the transition $(I) \xrightarrow{\varepsilon} (J)$
- 6. For each production $K \rightarrow \varepsilon$, add K to the set of final states F
- 7. For each production $I \rightarrow a$, create the transition $(I) \xrightarrow{a} (Q_F)$

$$S \rightarrow B$$

$$B\rightarrow \epsilon$$

$$S \rightarrow B$$

$$B \rightarrow \epsilon$$

B

 $B \rightarrow \epsilon$

B→bB

 $B\rightarrow \epsilon$

B→bB

B→ε

B→bB

B→ε

B→bB

What's the language?

B→ε

B→bB

What's the language?

$$a + b^*$$

Language Indistinguishability

- Consider a language L over an alphabet A.
- Two strings x, y ∈ A* are Lindistinguishable if for all z ∈ A*, xz ∈ L
 whenever yz ∈ L. We write x ≡ y
- ■L is an equivalence relation
- The *index* of L is the number of equivalence classes induced by ≡_L

Example: $L = a + b^*$

a + b* = { ε, a, b, bb, bbb, bbbb, ...}
 a = L b ?
 ε = L b ?
 aa = L ab ?
 ab = L bb ?

Example: $L = a + b^*$

• $a + b^* = \{ \epsilon, a, b, bb, bbb, bbb, ... \}$

$$a \equiv_L b$$
?

$$aa \equiv_{L} ab$$
?

$$ab \equiv_{L} bb$$
?

 What are the equivalence classes of ≡_L?

```
1. {a}
```

- 2. {b, bb, bbb, bbbb, ...}
- 3. $\{\epsilon\}$
- 4. everything else

Myhill-Nerode Theorem

- The equivalence relation ≡_L characterizes exactly what the state of an automaton that accepts L needs to remember about the read portion of the input:
 - if the read portion of the input is x, then the state needs to remember the equivalence class [x].
 - This is sufficient, because if x ≡_L y, then it does not matter if the read portion of the input was x or y; all that matters (for deciding whether to accept or reject) is the future portion of the input, say z, because xz ∈ L iff yz ∈ L.
 - It is also necessary, because if x ≠ y, then there is some possible future portion z of the input such that xz needs to be accepted and yz rejected (or vice versa).

Theorem Statement (Part A)

If the index of a language A is k, then there is a k-state DFA M_A such that $L(M_A) = A$

Mimimum-state DFA

- For any language L, there is a unique mimimum-state DFA that recognizes L
 - unique means "unique up to an isomorphism", that is, a renaming of the states.
- Any DFA can be transformed into a minimum-state DFA

Equivalent States

Two states p and q in a DFA
m={Q, Σ, q₀, δ, F} are equivalent if,
for all z ∈ Σ*,

 $\hat{\delta}(p,z)$ is a final state exactly when $\hat{\delta}(q,z)$ is a final state, i.e.,

$$p \equiv q \text{ iff } \forall z \in \Sigma^*. (\hat{\delta}(p, z) \in F) \equiv (\hat{\delta}(q, z) \in F)$$

Is this an equivalence relation?

How to Calculate State Equivalence

Example:

3 and 4 are not equivalent (why)?

First guess:

This works for strings w of length 0

- Take states 1 and 2
 - for all single-character inputs, do we end up in equivalent states?

•
$$\delta(1, a) = 2$$
; $\delta(2, a) = 2$
 $\delta(1, b) = 5$; $\delta(2, b) = 3$. $5 = 3$ in E_0

 So the pair <1, 2> stays in the same equivalence class in the next guess, E₁

E₀:
$$\begin{pmatrix} 1, 2, 3, \\ 5, 6 \end{pmatrix}$$
 $\begin{pmatrix} 4, 7 \end{pmatrix}$

- What about states 3 and 5?
 - for all single-character inputs, do we end up in equivalent states?

 So the states 3 and 5 are not in the same equivalence class in the next guess, E₁

- What about states1 and 5 ?
 - for all single-character inputs, do we end up in equivalent states?

•
$$\delta(1, a) = 2$$
; $\delta(5, a) = 6$
 $\delta(1, b) = 5$; $\delta(5, b) = 5$. $2 \neq 6$ in E₁

 So the states 1 and 5 are not in the same equivalence class in the next guess, E₂

- Then we repeat to get the next guess E₂
- The equivalence relation E_n represents states that act in the same way after reading input strings of length n
- Remember, a relation is nothing more than a set of pairs.
- So we build
 E₀ ⊇ E₁ ⊇ E₂ ⊇ ...
- When do we stop?

Minimizing a DFA

How can we easily compute whether or not two states p and q in a DFA are equivalent?

Suppose that they are not equivalent:

Then some (finite) string z will be accepted when the machine starts in p, and rejected when the machine starts in q.

$$p \not\equiv q \text{ iff } \exists z \in \Sigma^*. (\hat{\delta}(p,z) \in F) \not\equiv (\hat{\delta}(q,z) \in F)$$

Minimizing a DFA

How can we easily compute whether or not two states p and q in a DFA are equivalent?

Suppose that they are not equivalent:

Then some (finite) string z will be accepted when the machine starts in p, and rejected when the machine starts in q.

$$p \not\equiv q \text{ iff } \exists z \in \Sigma^*. (\hat{\delta}(p, z) \in F) \not\equiv (\hat{\delta}(q, z) \in F)$$

 $p \equiv q \text{ iff } \forall z \in \Sigma^*. (\hat{\delta}(p, z) \in F) \equiv (\hat{\delta}(q, z) \in F)$

Computing sets of equivalent states

$$E_0 \ni \langle p, q \rangle$$
 where $p \in F \equiv q \in F$

$$E_1 = E_0 \setminus \{\langle p, q \rangle \mid \exists a \in \Sigma. \langle \delta(p, a), \delta(q, a) \rangle \notin E_0\}$$

•

$$E_{n+1} = E_n \setminus \{\langle p, q \rangle \mid \exists \ a \in \Sigma. \langle \delta(p, a), \delta(q, a) \rangle \notin E_n \}$$

Constructing a Minimal DFA

Hein Construction 11.10

Algorithm to Construct a Minimum-State DFA

(11.10)

Given: A DFA with set of states S and transition table T. Assume

that all states that cannot be reached from the start state

have already been thrown away.

Output: A minimum-state DFA recognizing the same regular lan-

guage as the input DFA.

1. Construct the equivalent pairs of states by calculating the descending sequence of sets of pairs $E_0 \supset E_1 \supset \cdots$ defined as follows:

 $E_0 = \{\{s, t\} \mid s \text{ and } t \text{ are distinct and either both states are final or both states are nonfinal}\}.$

 $E_{i+1} = \{\{s, t\} \mid \{s, t\} \in E_i \text{ and for every } a \in A \text{ either } T(s, a) = T(t, a) \text{ or } \{T(s, a), T(t, a)\} \in E_i\}.$

The computation stops when $E_k = E_{k+1}$ for some index k. E_k is the desired set of equivalent pairs.

- 2. Use the equivalence relation generated by the pairs in E_k to partition S into a set of equivalence classes. These equivalence classes are the states of the new DFA.
- 3. The *start state* is the equivalence class containing the start state of the input DFA.
- 4. A *final state* is any equivalence class containing a final state of the input DFA.
- 5. The transition table T_{\min} for the minimum-state DFA is defined as follows, where [s] denotes the equivalence class containing s and a is any letter: $T_{\min}([s], a) = [T(s, a)]$.