
CS311—Computational Structures

Regular Languages and
Regular Grammars

Lecture 6

1

What we know so far:
• RLs are closed under product, union and *

• Every RL can be written as a RE, and every
RE represents a RL

• Every RL can be recognized by a NFA
• and we know how to build it

• NFAs and DFA have the same “power”

• Every NFA can be turned in to a DFA
• “the subset construction”

2

Whatʼs Next?

• How to turn a FSA into a regular
grammar
• and vice-versa

• Minimal-state DFAs
• Myhill-Nerode Theorem

• Language indistinguishability

3

Phrase-Structure Grammars
• A grammar is a set of rules for

transforming strings
• Strings can involve variables and terminal

symbols

• S → abcT

• We derive a string of terminals by
repeatedly applying rules beginning from
a designated start variable (often S)
• The language defined by a grammar is the set of

strings that can be derived
4

Phrase-Structure Grammars
• A grammar is a set of rules for

transforming strings
• Strings can involve variables and terminal

symbols

• S → abcT

• We derive a string of terminals by
repeatedly applying rules beginning from
a designated start variable (often S)
• The language defined by a grammar is the set of

strings that can be derived
4

Phrase-Structure Grammars
• A grammar is a set of rules for

transforming strings
• Strings can involve variables and terminal

symbols

• S → abcT

• We derive a string of terminals by
repeatedly applying rules beginning from
a designated start variable (often S)
• The language defined by a grammar is the set of

strings that can be derived
4

Variables

Phrase-Structure Grammars
• A grammar is a set of rules for

transforming strings
• Strings can involve variables and terminal

symbols

• S → abcT

• We derive a string of terminals by
repeatedly applying rules beginning from
a designated start variable (often S)
• The language defined by a grammar is the set of

strings that can be derived
4

Phrase-Structure Grammars
• A grammar is a set of rules for

transforming strings
• Strings can involve variables and terminal

symbols

• S → abcT

• We derive a string of terminals by
repeatedly applying rules beginning from
a designated start variable (often S)
• The language defined by a grammar is the set of

strings that can be derived
4

Phrase-Structure Grammars
• A grammar is a set of rules for

transforming strings
• Strings can involve variables and terminal

symbols

• S → abcT

• We derive a string of terminals by
repeatedly applying rules beginning from
a designated start variable (often S)
• The language defined by a grammar is the set of

strings that can be derived
4

Terminal symbols

Regular Grammars
Hein Section 11.4.1

• Whatʼs a Regular Grammar?
• A particular kind of grammar in which all the

productions have one of these forms:
S → ε

 S → w
 S → T

 S → wT

• w is a sequence of terminal symbols

• at most one variable can appear on the rhs,
and it must be on the right.

• Examples:
S → abcY

 Y → aZa

 S →AB

5

Examples

6

Examples

6

Examples

6

a* S→ε | aS
a+b S→ a | b

(a+b)* S→ε | aS | bS
a* + b* S→A | B

A→ε | aA
B→ε | bB

Examples

6

a* S→ε | aS
a+b S→ a | b

(a+b)* S→ε | aS | bS
a* + b* S→A | B

A→ε | aA
B→ε | bB

Examples

6

a* S→ε | aS
a+b S→ a | b

(a+b)* S→ε | aS | bS
a* + b* S→A | B

A→ε | aA
B→ε | bB

Examples

6

a* S→ε | aS
a+b S→ a | b

(a+b)* S→ε | aS | bS
a* + b* S→A | B

A→ε | aA
B→ε | bB

Examples

6

a* S→ε | aS
a+b S→ a | b

(a+b)* S→ε | aS | bS
a* + b* S→A | B

A→ε | aA
B→ε | bB

Examples

6

a* S→ε | aS
a+b S→ a | b

(a+b)* S→ε | aS | bS
a* + b* S→A | B

A→ε | aA
B→ε | bB

Examples

6

a* S→ε | aS
a+b S→ a | b

(a+b)* S→ε | aS | bS
a* + b* S→A | B

A→ε | aA
B→ε | bB

Examples

6

a* S→ε | aS
a+b S→ a | b

(a+b)* S→ε | aS | bS
a* + b* S→A | B

A→ε | aA
B→ε | bB

Languages and Grammars

• Any regular language has a regular
grammar

• Any regular grammar generates a
regular language

7

From NFA to Regular Grammar
Hein Algorithm 11.11

1. Rename the states Q to a set of upper-case letters
2. The start symbol of the grammar is the name of

the start state q0.
3. For each transition , create the

production I→aJ.
4. For each transition , create the

production I→J.
5. For each final state K, create the production K→ε.

8

I Ja

I Jε

Example

9

a c

b

a

c

A C

XW

a c

b

a

c

Example

10

a c

b

a

c

A C

XW

a c

b

a

c

Example

10

A→aAa c

b

a

c

A C

XW

a c

b

a

c

Example

10

A→aA
A→bC

a c

b

a

c

A C

XW

a c

b

a

c

Example

10

A→aA
A→bC
A→aW

a c

b

a

c

A C

XW

a c

b

a

c

Example

10

A→aA
A→bC
A→aW
C→cC

a c

b

a

c

A C

XW

a c

b

a

c

Example

10

A→aA
A→bC
A→aW
C→cC
C→ε

a c

b

a

c

A C

XW

a c

b

a

c

Example

10

A→aA
A→bC
A→aW
C→cC
C→ε
W→cX

a c

b

a

c

A C

XW

a c

b

a

c

Example

10

A→aA
A→bC
A→aW
C→cC
C→ε
W→cX
X→ε

a c

b

a

c

A C

XW

a c

b

a

c

Example

11

a c

b

a

c

A C

XW

a c

b

a

c

Example

11

A→aA ⎮bC⎮aW

a c

b

a

c

A C

XW

a c

b

a

c

Example

11

A→aA ⎮bC⎮aW

C→cC⎮ε

a c

b

a

c

A C

XW

a c

b

a

c

Example

11

A→aA ⎮bC⎮aW

C→cC⎮ε

W→c

a c

b

a

c

A C

XW

a c

b

a

c

From Regular Grammar to FSM
Hein Algorithm 11.12

1. Transform the grammar so that all productions are of the
form A → x or A →xB, where x is either a single letter or ε.

2. The start state of the NFA is the grammarʼs start symbol.

3. Create state QF and add it to the set F of final states.

4. For each production I→aJ, create the transition xxxxxxxxxxx

5. For each production I→J, create the transition xxxxxxxxxxxx

6. For each production K→ε, add K to the set of final states F

7. For each production I→a, create the transition

12

I Ja

I Jε

I a QF

S→a
S→B
B→ε
B→bB

Example

13

S→a
S→B
B→ε
B→bB

Example

13

S

S→a
S→B
B→ε
B→bB

Example

13

S QF

S→a
S→B
B→ε
B→bB

Example

13

S

B

QF

S→a
S→B
B→ε
B→bB

Example

13

S

B

b QF

S→a
S→B
B→ε
B→bB

Example

13

S

B
ε

b QF

S→a
S→B
B→ε
B→bB

Example

13

S

B
ε

b QF

S→a
S→B
B→ε
B→bB

Example

13

S

B
ε

b QF

a

S→a
S→B
B→ε
B→bB

Example

13

S

B
ε

b QF

a

Whatʼs the language?

S→a
S→B
B→ε
B→bB

Example

13

S

B
ε

b QF

a

a + b*Whatʼs the language?

Language Indistinguishability

• Consider a language L over an alphabet A.

• Two strings x, y ∈ A* are L-
indistinguishable if for all z ∈ A*, xz ∈ L
whenever yz ∈ L. We write x ≡L y

• ≡L is an equivalence relation

• The index of L is the number of
equivalence classes induced by ≡L

14

Example: L = a + b*

• a + b* = { ε, a, b, bb, bbb, bbbb, …}
a ≡L b ?

ε ≡L b ?

aa ≡L ab ?

ab ≡L bb ?

15

Example: L = a + b*

• a + b* = { ε, a, b, bb, bbb, bbbb, …}
a ≡L b ?

ε ≡L b ?

aa ≡L ab ?

ab ≡L bb ?

15

• What are the equivalence
classes of ≡L?
1. {a}
2. {b, bb, bbb, bbbb, …}
3. {ε}
4. everything else

Myhill-Nerode Theorem
• The equivalence relation ≡L characterizes exactly what the

state of an automaton that accepts L needs to remember
about the read portion of the input:

• if the read portion of the input is x, then the state needs to
remember the equivalence class [x].

• This is sufficient, because if x ≡L y, then it does not matter if
the read portion of the input was x or y; all that matters (for
deciding whether to accept or reject) is the future portion of
the input, say z, because xz ∈ L iff yz ∈ L.

• It is also necessary, because if x ≢L y, then there is some
possible future portion z of the input such that xz needs to
be accepted and yz rejected (or vice versa).

16

Theorem Statement (Part A)

If the index of a language A is k, then
there is a k-state DFA MA such that
L(MA) = A

17

Mimimum-state DFA

18

• For any language L, there is a unique
mimimum-state DFA that recognizes L
‣ unique means “unique up to an isomorphism”, that

is, a renaming of the states.

• Any DFA can be transformed into a
minimum-state DFA

Equivalent States

• Two states p and q in a DFA
m={Q, Σ, q0, δ, F} are equivalent if,
for all z ∈ Σ*,
δ*(p, w) is a final state exactly when
δ*(q, w) is a final state, i.e.,

• Is this an equivalence relation?

19

p ≡ q iff ∀z ∈ Σ∗.(δ̂(p, z) ∈ F) ≡ (δ̂(q, z) ∈ F)

δ̂(p, z)
δ̂(q, z)

How to Calculate State Equivalence

• Example:
‣ 3 and 4 are not

equivalent (why)?

‣ First guess:

• This works for strings w of length 0

20

1, 2, 3,
5, 6 4, 7

1

2

5 6

3a

b

b

b b

b

7

4

a, b

a, b

aa

• Take states 1 and 2
• for all single-character

inputs, do we end up in
equivalent states?

• δ(1, a) = 2; δ(2, a) = 2
δ(1, b) = 5; δ(2, b) = 3. 5 ≡ 3 in E0

• So the pair ‹1, 2› stays in the same equivalence
class in the next guess, E1

21

E0:
1, 2, 3,

5, 6
4, 7

1

2

5 6

3a

b

b

b b

b

7

4

a, b

a, b

aa

• What about states
3 and 5 ?
• for all single-character

inputs, do we end up in
equivalent states?

• δ(3, a) = 3; δ(5, a) = 6
δ(3, b) = 4; δ(5, b) = 5. 5 ≢ 4 in E0

• So the states 3 and 5 are not in the same
equivalence class in the next guess, E1

225

E0:
1, 2, 3,

5, 6
4, 7

1

2

5 6

3a

b

b

b b

b

7

4

a, b

a, b

aa

• What about states
1 and 5 ?
• for all single-character

inputs, do we end up in
equivalent states?

• δ(1, a) = 2; δ(5, a) = 6
δ(1, b) = 5; δ(5, b) = 5. 2 ≢ 6 in E1

• So the states 1 and 5 are not in the same
equivalence class in the next guess, E2

2365

1, 2, 5 4, 7E1:

1

2

5 6

3a

b

b

b b

b

7

4

a, b

a, b

aa

• Then we repeat to get the next guess E2

• The equivalence relation En represents
states that act in the same way after
reading input strings of length n

• Remember, a relation is nothing more than
a set of pairs.

• So we build
E0 ⊇ E1 ⊇ E2 ⊇ …

• When do we stop?

24

Minimizing a DFA
How can we easily compute whether or
not two states p and q in a DFA are
equivalent?

• Suppose that they are not equivalent:

Then some (finite) string z will be accepted when
the machine starts in p, and rejected when the
machine starts in q.

25

p !≡ q iff ∃z ∈ Σ∗.(δ̂(p, z) ∈ F) !≡ (δ̂(q, z) ∈ F)

Minimizing a DFA
How can we easily compute whether or
not two states p and q in a DFA are
equivalent?

• Suppose that they are not equivalent:

Then some (finite) string z will be accepted when
the machine starts in p, and rejected when the
machine starts in q.

25

p ≡ q iff ∀z ∈ Σ∗.(δ̂(p, z) ∈ F) ≡ (δ̂(q, z) ∈ F)

p !≡ q iff ∃z ∈ Σ∗.(δ̂(p, z) ∈ F) !≡ (δ̂(q, z) ∈ F)

Computing sets of equivalent states

26

E0 ! 〈p, q〉 where p ∈ F ≡ q ∈ F

E1 = E0 \ {〈p, q〉 | ∃a ∈ Σ.〈δ(p, a), δ(q, a)〉 '∈ E0}

...

En+1 = En \ {〈p, q〉 |∃ a ∈ Σ.〈δ(p, a), δ(q, a)〉 '∈ En}

Constructing a Minimal DFA
Hein Construction 11.10

48 Regular Languages and Finite Automata

E0 = {{0, 1}, {0, 2}, {1, 2}}.

To construct E1 from E0, we throw away {0, 1} because

{T(0, a), T(1, a)} = {1, 3},

which is not in E0. We must also throw away {0, 2} because

{T(0, a), T(2, a)} = {1, 3},

which is not in E0. This leaves us with the set

E1 = {{1, 2}}.

We can’t throw away any pairs from E1. Therefore E2 = E1, which says that the

desired set of equivalent pairs is E1 = {{1, 2}}. Notice that {1, 2} is a state in

the minimum-state DFA shown in Figure 11.8.

 Now we’re ready to present the actual algorithm to transform a DFA into

a minimum-state DFA.

Algorithm to Construct a Minimum-State DFA (11.10)

Given: A DFA with set of states S and transition table T. Assume

that all states that cannot be reached from the start state

have already been thrown away.

Output: A minimum-state DFA recognizing the same regular lan-

guage as the input DFA.

1. Construct the equivalent pairs of states by calculating the descending

sequence of sets of pairs E0 ! E1 ! ... defined as follows:

 E0 = {{s, t} | s and t are distinct and either both states are final or

 both states are nonfinal}.

 Ei+1 = {{s, t} | {s, t} " Ei and for every a " A either T(s, a) = T(t, a) or

 or {T(s, a), T(t, a)} " Ei }.

 The computation stops when Ek = Ek+1 for some index k. Ek is the de-

sired set of equivalent pairs.

2. Use the equivalence relation generated by the pairs in Ek to partition

S into a set of equivalence classes. These equivalence classes are the

states of the new DFA.

3. The start state is the equivalence class containing the start state of

 11.3 Constructing Efficient Finite Automata 49

the input DFA.

4. A final state is any equivalence class containing a final state of the

input DFA.

5. The transition table Tmin for the minimum-state DFA is defined as

follows, where [s] denotes the equivalence class containing s and a is

any letter: Tmin([s], a) = [T(s, a)].

EXAMPLE 3 A Minimum-State DFA Construction

 We’ll compute the minimum-state DFA for the following DFA.

 The set of states is S = {0, 1, 2, 3, 4}. For Step 1 we’ll start by calculating E0

as the set of pairs {s, t}, where s and t are both final or both nonfinal:

E0 = {{0, 1}, {0, 2}, {0, 3}, {1, 2}, {1, 3}, {2, 3}}.

 To calculate E1 we throw away {0, 3} because {T(0, b), T(3, b)} = {1, 4}, which

is not in E0. We also throw away {1, 3} and {2, 3}. That leaves us with

E1 = {{0, 1}, {0, 2}, {1, 2}}.

 To calculate E2 we throw away {0, 2} because {T(0, a), T(2, a)} = {2, 3}, which

is not in E1. That leaves us with

E2 = {{1, 2}}.

 To calculate E3 we don’t throw anything away from E2. So we stop with

E3 = E2 = {{1, 2}}.

48 Regular Languages and Finite Automata

E0 = {{0, 1}, {0, 2}, {1, 2}}.

To construct E1 from E0, we throw away {0, 1} because

{T(0, a), T(1, a)} = {1, 3},

which is not in E0. We must also throw away {0, 2} because

{T(0, a), T(2, a)} = {1, 3},

which is not in E0. This leaves us with the set

E1 = {{1, 2}}.

We can’t throw away any pairs from E1. Therefore E2 = E1, which says that the

desired set of equivalent pairs is E1 = {{1, 2}}. Notice that {1, 2} is a state in

the minimum-state DFA shown in Figure 11.8.

 Now we’re ready to present the actual algorithm to transform a DFA into

a minimum-state DFA.

Algorithm to Construct a Minimum-State DFA (11.10)

Given: A DFA with set of states S and transition table T. Assume

that all states that cannot be reached from the start state

have already been thrown away.

Output: A minimum-state DFA recognizing the same regular lan-

guage as the input DFA.

1. Construct the equivalent pairs of states by calculating the descending

sequence of sets of pairs E0 ! E1 ! ... defined as follows:

 E0 = {{s, t} | s and t are distinct and either both states are final or

 both states are nonfinal}.

 Ei+1 = {{s, t} | {s, t} " Ei and for every a " A either T(s, a) = T(t, a) or

 or {T(s, a), T(t, a)} " Ei }.

 The computation stops when Ek = Ek+1 for some index k. Ek is the de-

sired set of equivalent pairs.

2. Use the equivalence relation generated by the pairs in Ek to partition

S into a set of equivalence classes. These equivalence classes are the

states of the new DFA.

3. The start state is the equivalence class containing the start state of

