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Three important results

1. Any CFG can be “simulated” by a PDA
2. Any PDA can be “simulated” by a CFG
3. Pumping Lemma: not all languages are 

Context-free
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but first:

some notation from Hopcroft et al.
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PDA Acceptance, Revisted
• Consider a PDA M = (Q,Σ,Γ,δ,q0,Z0,F) 

• An instantaneous description (ID) of M 
has the form  (q,w,t)
where q ∈ Q is the current state,
           w ∈ Σ* is the unread input,
           t ∈ Γ* is the current stack

                    (with top of stack on the left)
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PDA  Acceptance, by ⊢

• We define a relation ⊢ on IDʼs;  ⊢ captures what 
it means for the PDA to take a single step:

(q,aw,bt) ⊢ (p,w,ct) 

iff
(p,c) ∈ δ(q,a,b) 

for some 
p,q ∈ Q;  a ∈ Σε;  w ∈ Σ*;  b,c ∈ Γε;  t ∈Γ*
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PDA Acceptance, by ⊢

• We write ⊢* to mean “zero or more steps 
using ⊢”

• Then we say M accepts w (by final state) 
iff (q0,w,ε) ⊢* (q,ε,t) for some q ∈ F and 
any t ∈ Γ*

• As usual, the language accepted by M is 
just {w ⎮ w is accepted by M}
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Non-determinism is 
fundamental

• Unlike with finite automata, PDA non-
determinism cannot be transformed away.

• Deterministic PDAʼs (DPDAʼs) recognize 
strictly fewer languages than non-
deteristic ones

• DPDAs are useful in practice as the basis 
for language parser implementations
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PDAʼs and CFGʼs are 
equivalent!

• If G is a CFG, we can build a (non-
deterministic) PDA M with L(M) = L(G)
‣ That is, we can build a parser for G

‣ This is an easy construction

• If M is a PDA, we can construct a CFG G 
with L(G) = L(M)
‣ This is harder
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• Parsing is the process of going from a 
sentence (string) in the language to a 
derivation tree.

• Top-down parsing starts at the “top”, 
with the start-symbol of the grammar 
and derives a string

• Bottom-up parsing starts at the “bottom” 
with a string and figures out how to 
derive that string from the start-symbol.
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e , A j w  forruleAjw 

a, a-+e for terminal a 

�  � � � 
 � � � � � �
State diagram of P 

That completes the proof of Lemma 2.2 1. 
........................................................................................................................................................................ 
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We use the procedure developed in Lemma 2.21 to construct a PDA fi from the 
following CFG G. 

5'- aTblb 

T - + T a . e  

The transition function is shown in the following diagram. 

�  � � � 
 � � � � � �
State diagram of Pi 

Now we prove the reverse direction of Theorem 2.20. For the forward di- 

rection we gave a procedure for converting a CFG into a PDA. The main idea 
was to design the automaton so that it simulates the grammar. Now we want 
to give a procedure for going the other way: converting a PDA into a CFG. We 
design the grammar to simulate the automaton. This task is a bit tricky because 
"programming" an automaton is easier than "programming" a grammar. 

If a pushdown automaton recognizes some language, then it is context free. 

� � � � � �  	 
 � � We have a PDA P ,  and we want to make a CFG G that generates 
all the strings that P accepts. In other words, G should generate a string if that 
string causes the PDA to go from its start state to an accept state. 

To achieve this outcome we design a grammar that does somewhat more. For 
each pair of states p and q in P the grammar will have a variable Apq, This 
variable generates all the strings that can take P from p with an empty stack to 

q with an empty stack. Observe that such strings can also take P from p to q, 

regardless of the stack contents at p, leaving the stack at q in the same condition 
as it was at p. 

First, we simplify our task by modifying P slightly to give it the following 
three features. 

1. It has a single accept state, 

� � � It empties its stack before accepting. 

� � � Each transition either pushes a symbol onto the stack (apush move) or pops 
one off the stack (a pop move), but it does not do both at the same time. 

Giving P features 1 and 2 is easy. To give it feature 3, we replace each transition 
that simultaneously pops and pushes with a two transition sequence dial goes 
through a new state, and we replace each transition that neither pops nor pushes 

with a two transition sequence that pushes then pops an arbitrary stack symbol, 
To design G so that Ann generates all strings that take P from p to q, starting 

and ending with an empty stack, we must "understand how P operates on these 
strings. For any such string a;, P's first move on x must be a push, because every 
move is either a push or a pop and P can't pop an empty stack. Similarly, the last 
move on x must be a pop, because the stack ends up empty. 

Two possibilities occur during P's computation on x. Either the symbol 
popped at the end is the symbol that was pushed at the beginning, or not. If 
so, the stack is empty only at the beginning and end of P's computation on a;. If 
not, the initially pushed symbol must get popped at some point before the end of 
a; and thus the stack becomes empty at this point. We simulate the former pos- 
sibility with the rule Ann Ã‘ aA,.&, where a is the input read at the first move, 
b is the input read at the last move, r is the state following p, and s is the state 
preceding q. We simulate the latter possibility with the rule Apq -+ AprArq, 
where r is the state when the stack becomes empty. 

Note: we’re allowing machine
to push multiple symbols onto

stack in one move

PDAs for Top-down parsing
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Top-down parsing PDA example
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S → aSa 
S → B
B → bB
B → ε ε,S →aSa 

ε,S → B
ε,B → bB
ε,B → ε
a,a → ε
b,b → ε



Top-down parsing PDA example
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ε,S →aSa 
ε,S → B
ε,B → bB
ε,B → ε
a,a → ε
b,b → ε

State    Input   Stack
start    aabaa
loop     aabaa      S$
loop     aabaa    aSa$
loop      abaa     Sa$
loop      abaa   aSaa$
loop       baa    Saa$
loop       baa    Baa$
loop       baa   bBaa$
loop        aa    Baa$
loop        aa     aa$
loop         a      a$
loop                 $
accept



Alternative: Bottom-up parsing
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ε,ε→$

a,ε→a         for each a∈Σ
ε,wR →A     for each rule A → w

ε,S$→ ε Note: we’re allowing machine
to pop multiple symbols from

stack in one move



Building a CFG G from a PDA P
[method from Sipser; IALC is somewhat different]

14

Key idea: each string derived from Apq, is capable of taking the PDA 
from state p with empty stack to state q with empty stack.

1. We seek to build a grammar that has the property in 
the box.

2. If an input string drives P from state p with empty stack 
to state q with empty stack, it will also move it from p 
to q with arbitrary stuff on the stack. 



Building a CFG G from a PDA P

• Start by simplifying the problem:
• Modify P so that it has a start state σ, a single 

final state φ, so that it starts and finishes with 
an empty stack, and so that each transition 
pushes or pops a single symbol onto the stack.  

• How to do this?

• Now we need to write a grammar with start 
symbol Aσφ, such that it satisfies the invariant 
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Invariant: each string derived from Apq, is capable of taking the PDA 
from state p with empty stack to state q with empty stack.



• How can P move from state p when its 
stack is empty?
• First move must be to push some symbol onto 

the stack
• Last move must be to pop a symbol off the 

stack.
• Maybe the stack does not become empty in 

between … or maybe it does.
• So, there are two cases
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• Suppose that the stack does not become 
empty in between.

• First, machine reads some a, pushes some X, and 
goes to some state, say r

• Then it does something (maybe complicated), ending 
in some state s

• Finally, it pops the same X, reads some b and goes 
to state q. 

• This corresponds to the grammar production 
Apq → aArsb, where Ars satisfies the invariant.

• Note that a and/or b might be ε
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• In pictures:
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PROOF Say that P = (Q, S ,  I?, 5, qo, {qaccept}) and construct G. The variables 

of G are { A p g  p, q E Q } .  The start variable is A q y , g , , .  Now we describe G's 
rules. 

For each p, q,  r, s E Q, t  E I?, and a,  b E Sg, i(6(p, a, E )  contains (r, t )  and 

S(s ,  b,  t) contains (q,  E) ,  put the rule Apq -+ &b in G. 

For each p, q,  r E Q ,  put the rule Apq -+ AprArq in G. 

Finally, for each p E Q, put the rule App -+ E in G. 

You may gain some insight for this construction from the following figures. 

t 
Stack 
height 

Input string 
+ 

T r 

generated generated 

by APT by Am 

FIGURE 2.28 

PDA computation corresponding to the rule Apq --+ ApTArq 

Input string 
+ 

7 

generated 
by Ars 

FIGURE 2.29 

PDA computation corresponding to the rule Apq + aAryb 

Now we prove that this construction works by demonstrating that Apq gener- 
ates x if and only if (iff) a; can bring P from p with empty stack to q with empty 
stack. We consider each direction of the iff as a separate claim. 

If Apq generates x, then a; can bring P from p with empty stack to q with empty 

stack. 

We prove this claim by induction on the number of steps in the derivation of 

x from Apg. 

Basis: The derivation has 1 step. 
A derivation with a single step must use a rule whose right-hand side contains no 

variables. The only rules in G where no variables occur on the right-hand side 
are App + e. Clearly, input E takes P from p with empty stack t o p  with empty 

stack so the basis is proved. 

Induction step: Assume true for derivations of length at most k, where k > 1, 

and prove true for derivations of length k + 1. 

Suppose that Am x with k -I- 1 steps. The first step in this derivation is either 

Apq => d S b  or Apq =?> AprArq. We handle these two cases separately. 

In the first case, consider the portion y of a; that Ars generates, so x = ayb. 

Because Ays =$ y with k steps, the induction hypothesis tells us that P can go 
from r on empty stack to s on empty stack. Because Ann -+ aArsb is a rule of 

G, 8(p, a, e) contains ( r ,  t )  and S{s, b, t )  contains (q,  e), for some stack symbol t. 
Hence, if P starts at p with an empty stack, after reading a it can go to state r 
and push t onto the stack. Then reading string y can bring it to s and leave t  
on the stack. Then after reading b it can go to state q and pop t  off the stack. 
Therefore x can bring it from p with empty stack to q with empty stack. 

In the second case, consider the portions y and z of x that Anr and ATa re- 

spectively generate, so x = yz. Because APT =$ y in at most k steps and Am =$ z 

in at most k steps, the induction hypothesis tells us that y can bring P from p 

to r, and z can bring P from r to q,  with empty stacks at the beginning and 
end. Hence x can bring it from p with empty stack to q with empty stack. This 

completes the induction step. 

If x can bring P from p with empty stack to q with empty stack, Apq generates x. 

We prove this claim by induction on the number of steps in the computation 

o f P  that goes from p to q with empty stacks on input x. 



• Suppose that the stack becomes empty 
again in between
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• then the rule Apq →AprArq does the job



• Let P = (Q, Σ, Γ, δ, σ, ε, {φ}).  Construct G with 
variables {Apq | p, q ∈ Q }, start symbol Aσφ, 
terminals  Σ, and rules R defined as follows:
1. For each p ∈ Q, the rule App → ε ∈ R.

2. For each p, q, r ∈ Q, the rule Apq → AprArq  ∈ R

3. For each p, q, r, s ∈ Q, x ∈ Γ, and a, b ∈ Σ ε,
δ(p, a, ε) ∋ (r, x) and δ(s, b, x) ∋ (q, ε), the rule 
Apq → aArsb ∈ R
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Proof Outline

• The proof that this construction works 
requires two things
1. Any string generated by Apq will in fact bring P 

from state p with empty stack to state q with 
empty stack, and

2. All strings capable of bringing P from state p 
with empty stack to state q with empty stack 
can in fact be generated by Apq  
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Example: PDA for an bn
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ε,ε→$ a,ε→A

ε,$→ ε b,A→ε

1 2

45

3

ε,ε→#

ε,#→e

Grammar:
from rule 1:
 A11 → ε    A22 → ε 
A33 → ε    A44 → ε    A55 → ε

from rule 2:
A15 → A11 A15 | A12 A25 | A13 A35

       | A14 A45 | A15 A55

 A24 → A21 A14 | A22 A24 | A23 A34

       | A24 A44 | A25 A54

A33 → A31 A13| A32 A23 | A33 A33

       | A34 A43 | A35 A53

etc. 

from rule 3:
A15 → ε A24 ε       (push/pop $)
A24 → a A24b        (push/pop A)
       | ε A33ε         (push/pop #)

the non-trivial part: 
A15 → A24

A24 → a A24 b  |  A33

A33 → ε



What do we know about CF Languages?
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What do we know about CF Languages?

✦ Any CF language can be recognized by a PDA
✦ The language recognized by a PDA is CF
✦ (Some CF languages are deterministic, but not all)
✦ The union of two CF languages is CF
✦ The product of two CF languages is CF
✦ The Kleene closure (*) of a CF language is CF
✦ Not all languages are CF
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Normal Forms

• When proving stuff using a grammar, the 
work is often simpler if the grammar is in a 
particular form

• Chomsky Normal Form is an example
‣ There are others, e.g. Greibach Normal Form

• Key idea: the Normal Forms do not restrict 
the power of the grammar

25



Chomsky Normal Form (CNF)

• CNF is a restricted form of grammar in 
which all rules are in one of the 
following forms:
• A → a   (a ∈ Σ)

• A → BC  (B,C ∈ V and are not the start symbol)

• S → ε   (allowed only if S is the start symbol)

• Any CFG can be rewritten to CNF

26



An application of CNF
• What is the shape of a CNF parse tree?

• Lemma: If G is a grammar in CNF, then 
for any string w ∈ L(G) of length n ≥ 1, 
any derivation of w requires exactly 2n-1 
steps.  Proof: Homework!

• Theorem: For any grammar G and string 
w, we can determine in finite time 
whether or not w ∈ L(G).
• Proof: try all possible derivations of up to 2n-1 

steps!
27



Strategy: transforming to CNF
• Add new start symbol S0 and rule S0 → S

• only strictly necessary if S appears on a RHS

• Remove all rules of the form A → ε 
• unless A is the start symbol

• Remove all unit rules of the form A → B

• Arrange that RHSʼs of length ≥ 2 contain 
only variables

• Arrange that all RHSʼs have length ≤ 2

• Weʼre done!
28



Remove ε-rules

• While there is a rule of the form A → ε :
• Remove the rule

• Wherever an A appears in the RHS of a rule, 
add an instance of that rule with the A omitted
• Ex: Given the rule B → uAv, add the rule B → uv

• Ex. Given the rule B → uAvAw, add the rules           
B → uvAw, B → uAvw, and B → uvw

• Ex. Given the rule B →A,  add the rule B →ε 
unless we have already removed that rule earlier
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Remove unit-rules

• While there is a rule of the form A → B :
• Remove it

• For every rule of the form B → u, add a rule    
A → u, unless this is a unit rule we previously 
removed
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Require variables on RHS

• For each terminal a ∈ Σ that appears on 
the right-hand side of some rule of the 
form V → w where ⎮w ⎮ ≥ 2 :
• Add a new variable A
• Add a rule A → a
• Substitute A for all occurrences of a in rules of 

the above form 
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Divide-up RHS

• For each rule of the form A → q1q2...qn, 
where n ≥ 3 :
• Remove the rule

• Add variables A1,A2,...,An-2

• Add rules A→ q1A1,  A1 → q2A2, ..., An-2 → 
qn-1qn
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Example: converting to CNF
• Initial grammar:

S → aSb ⎮ T         T→ cT ⎮ ε

• After start variable introduction:
      S0 → S      S → aSb ⎮ T     T→ cT ⎮ ε

• After ε-rule elimination:
      S0 → S ⎮ ε     S → aSb ⎮ ab ⎮ T     
      T→ cT ⎮ c

• After unit-rule elimination:
      S0 → aSb ⎮ ab ⎮ cT ⎮ c ⎮ ε
      S → aSb ⎮ ab ⎮ cT ⎮ c      T→ cT ⎮ c
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Example (continued)
• After variable introduction

         S0 → ASB ⎮ AB ⎮ CT ⎮ c ⎮ ε
         S → ASB ⎮ AB ⎮ CT ⎮ c
          T → CT ⎮ c       A → a     B→ b   C → c

• After RHS splitting
       S0 → AD ⎮ AB ⎮ CT ⎮ c ⎮ ε

         S → AD ⎮ AB ⎮ CT ⎮ c        D → SB
          T → CT ⎮ c       A → a     B→ b   C → c
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The Pumping Lemma
for Context-free Languages

• If a CF language has arbitrarily long strings, any 
grammar for it must contain a recursive chain of 
productions

• In the simplest case, it might contain a directly recursive 
production 

‣ e.g.,   S → uRy
  R → vRx ⎮ w
where either v or x must be non-empty

• then we can derive:
‣ S ⇒ uRy ⇒ uwy
‣ S ⇒ uRy ⇒ uvRxy ⇒ uvwxy
‣ S ⇒ uRy ⇒ uvRxy ⇒ uvvRxxy ⇒ uvvwxxy
‣ S ⇒ uRy ⇒ uvRxy ⇒ uvvRxxy ⇒ uvvvRxxxy ⇒ uvvvwxxxy
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More generally:
S ⇒* uvwxy

• If s is long enough, then some R must appear twice on 
the path from S to some terminal in s.  Why? 

• So we can write s = uvwxy  where...
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More generally:

37

S

u       v        w        x       y u y

w

S

x       y
  v        w        x      

u      v 

S



Theorem Statement

If L is a context-free language, then there is 
a number p (called the pumping length) 
such that for all strings z ∈ L, ⎮z,⎮ ≥ p,
z can be divided into 5 pieces z = uvwxy 
satisfying:

1. for each i ≥ 0, uviwxiy ∈ L
2. ⎮vx⎮ > 0
3. ⎮vwx ⎮ ≤ p
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Proof 
• Assume CFG for L is in Chomsky NF with variable set V.

• Take p = 2⎮v⎮ + 1. Then if ⎮z,⎮ ≥ p, any parse tree for z has 
height at least ⎮V⎮+1.  Why?

• Choose a parse tree with fewest nodes.

• The longest path from root to a terminal must have at least 
⎮V⎮+1 variables.  So some variable must appear at least 
twice among the bottom ⎮V⎮+1 nodes.  Why?

• Consider any such variable R and divide z into uvwxy  as in 
diagram.  Can see that uviwxiy is also in L for all i ≥ 0.

• ⎮vwx⎮ ≤ p because path from R has height at most ⎮V⎮+1.

• |vx| > 0; otherwise we could have a tree with fewer nodes
39



Using the Pumping Lemma
• Prove that L = {anbncn ⎮ n ≥ 0} is not CF
• Assume that L is CF and derive a contradiction:
‣ pick z = apbpcp where p is the pumping length
‣ ⎮ z ⎮ ≥ p, so we can write z=uvwxy where  vx  > 0,

vwx ≤ p, and uviwxiy is in L.  In particular, take i = 2.
‣ if v contains two letters, say a and b, then any string 

containing v2 canʼt be in L.  Same for x.  Why?
‣ so v and x must have the form aj,or  bj,or cj, or ε

° but at most one of them can be ε. Why?
‣ so at least one of the symbols a, b, or c does not appear in 

vx, but at least one does
‣ so uv2wx2y canʼt have the same number of aʼs bʼs and cʼs
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Pumping Lemma Example 2
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Pumping Lemma Example 2
• Prove that C = {aibjck ⎮ 0 ≤ i ≤ j ≤ k} is not CF

• Suppose C is CF.

• Let the pumping length be p, and again consider the 
string z = apbpcp in C.

• Then the pumping lemma says that we can divide 
z = uvwxy where vx > 0, vwx ≤ p, and uviwxiy is in C 
for all i

• As in the previous example, at least one of the symbols a, 
b, or c does not appear in vx but at least one does.
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• Now there are three cases to consider:
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2. The bʼs donʼt appear.  So either aʼs or cʼs must appear 
in v or x.  If aʼs appear, then uv2wx2y contains more aʼs 
than bʼs.  If cʼs appear, then uv0wx0y contains fewer cʼs 
than bʼs.  Either way, the pumped string ∉ C.

3. The cʼs donʼt appear.  In this case, uv2wx2y contains 
more aʼs and/or bs than cʼs, and so the string       
uv2wx2y ∉ C

• Thus, z canʼt be pumped, and we have a 
contradiction.  So C is not CF.
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Pumping Lemma Example 3
• Prove that D = { ww ⎮ w ∈ {0, 1}* } is not CF

• Suppose D is CF with pumping length p.

• Consider the string z = 0p1p0p1p in D. Certainly ⎮z⎮ ≥ p.

• Then the pumping lemma says that we can divide 
z = uvwxy where vx > 0, vwx ≤ p, and uviwxiy is in D for 
all i

• Consider the following three mutually exclusive cases:

• vwx falls in the first half of z. But then if we “pump up” to 
uv2wx2y, weʼll move a 1 into the first position of the second 
half. The resulting string canʼt be in D.

• vwx falls in the second half of z... a similar argument holds

• vwx straddles the midpoint of z. But then if we “pump 
down” to uwy, we get a string of the form 0p1i0j1p, where  
i and j cannot both be p. Resulting string canʼt be in D.
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