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Three important results

1. Any CFG can be “simulated” by a PDA
2. Any PDA can be “simulated” by a CFG

3. Pumping Lemma: not all languages are
Context-free
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but first:

some notation from Hopcroft et al.
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PDA Acceptance, Revisted

e Consider a PDAM =(Q,Z,T’,0,d0,Z0,F)

e An Iinstantaneous description (ID) of M
has the form (q,w,t)

where q € Q is the current state,
w € 2™ IS the unread Input,
t e I'" is the current stack

(with top of stack on the left)

Portland State
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PDA Acceptance, by -

e We define arelation ~ on ID’s; - captures what
it means for the PDA to take a single step:

(g,aw,bt) ~ (p,w,ct)
iff
(P,C) € 6(q,a,b)
for some

P,geQ; ae3s; we*; becelg tel™

Portland State >
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PDA Acceptance, by

e We define arelation ~ on ID’s; - captures what
it means for the PDA to take a single step:

/@aw, bt) ~ (p,w,ct)

iff State

(P.,C) € 6(q,a,b)

for some
P,geQ; ae3s; we*; becelg tel™
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PDA Acceptance, by -

e We define arelation ~ on ID’s; - captures what
it means for the PDA to take a single step:
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for some
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PDA Acceptance, by

e We define arelation ~ on ID’s; - captures what
it means for the PDA to take a single step:

(q@bt) ~ (p,w,ct)

Iff Input

for some
P,geQ; ae3s; we*; becelg tel™
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PDA Acceptance, by -

e We define arelation ~ on ID’s; - captures what
it means for the PDA to take a single step:

(g,aw,bt) ~ (p,w,ct)
iff
(P,C) € 6(q,a,b)
for some

P,geQ; ae3s; we*; becelg tel™
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PDA Acceptance, by

e We define arelation ~ on ID’s; - captures what
it means for the PDA to take a single step:

(q,aw@)\l—(p,w,ct)
Iff

Stack

(P.,C) € 6(q,a,b)

for some
P,geQ; ae3s; we*; becelg tel™
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PDA Acceptance, by -

e We define arelation ~ on ID’s; - captures what
it means for the PDA to take a single step:

(g,aw,bt) ~ (p,w,ct)
iff
(P,C) € 6(q,a,b)
for some

P,geQ; ae3s; we*; becelg tel™
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PDA Acceptance, by

e We write " to mean “zero or more steps
using "

e Then we say M accepts w (by final state)
iff (qo,w,€) —* (q,€,t) for some q € F and
anytel™

e As usual, the language accepted by M is
just{w | wis accepted by M}

Portland State é
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Non-determinism IS
fundamental

e Unlike with finite automata, PDA non-
determinism cannot be transformed away.

e Deterministic PDA’s (DPDA’s) recognize
strictly fewer languages than non-
deteristic ones

e DPDAs are useful in practice as the basis
for language parser implementations

Portland State
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PDA’s and CFG’s are
equivalent!

e |[f GisaCFG, we can build a (hon-
deterministic) PDA M with L(M) = L(G)

» That is, we can build a parser for G

> This is an easy construction

e [f Mis aPDA, we can construct a CFG G
with L(G) = L(M)

> This Is harder

Portland State
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Parsing: PDA from CFG

e Parsing is the process of going from a
sentence (string) in the language to a
derivation tree.

* Jop-down parsing starts at the “top”,
with the start-symbol of the grammar
and derives a string

 Bottom-up parsing starts at the “bottom”
with a string and figures out how to
derive that string from the start-symbol.

Portland State ?
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PDAs for Top-down parsing

e, A—>w forrule A—>w

a,a—¢E for terminal a

Note: we're allowing machine
to push multiple symbols onto
stack in one move

10
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Top-down parsing PDA example

S — aSa
S—B
B — bB
B¢ €,S »aSa
£,S—B
. €,B— bB
eB—E
a,a—¢€

b,b - ¢

Portland State '
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Top-down parsing PDA example

IIIIIIIIII

State
start
loop
loop
loop
loop
loop
loop
loop
loop
loop
loop
loop

accept

Input
aabaa
aabaa
aabaa
abaa
abaa
baa
baa
baa
aa

aa

a

Stack

S$
asSas
Sas
asSaas
Saa$
Baa$
bBaa$
Baas$
aas
as

S



Alternative: Bottom-up parsing

€S
a,E—a for each ae2
ewlk A for eachruleA = w
€S$— € . .
Note: we're allowing machine

to pop multiple symbols from
stack in one move

Portland State
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Building a CFG G from a PDA P

[method from Sipser; IALC is somewhat different]

Key idea: each string derived from A, is capable of taking the PDA
from state p with empty stack to state g with empty stack.

1. We seek to build a grammar that has the property in
the box.

2. If an input string drives P from state p with empty stack
to state g with empty stack, it will also move it from p
to g with arbitrary stuff on the stack.

Portland State
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Building a CFG G from a PDA P

Invariant: each string derived from A,q, is capable of taking the PDA
from state p with empty stack to state g with empty stack.

o Start by simplifying the problem:

 Modify P so that it has a start state o, a single
final state ¢, so that it starts and finishes with
an empty stack, and so that each transition
pushes or pops a single symbol onto the stack.

e How to do this?

* Now we need to write a grammar with start
symbol Agg, such that it satisfies the invariant

Portland State 15
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- How can P move from state p when its
stack is empty?

» First move must be to push some symbol onto
the stack

» Last move must be to pop a symbol off the
stack.

- Maybe the stack does not become empty In
between ... or maybe it does.

« S0, there are two cases

Portland State

IIIIIIIIII



« Suppose that the stack does not become
empty in between.

» First, machine reads some a, pushes some X, and
goes to some state, say r

- Then it does something (maybe complicated), ending
INn some state s

 Finally, it pops the same X, reads some b and goes
o state g.

» This corresponds to the grammar production
A,, = aA.b, where A, satisfies the invariant.

* Note that a and/or b might be ¢

Portland State
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* In pictures:

T

Stack
height generated
by Apg
Input string
-

generated
by Ars

Portland State
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» Suppose that the stack becomes empty
again in between

T

Stack

height —- generated
by Ayq
Input string
-

generated generated
by Ay by A,

» then the rule A,; = A,/A,, does the job

Portland State
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Construction

e letP=(Q,2,I',0,0,¢,{¢}). Construct G with
variables {A,;| p, ¢ € Q }, start symbol A,
terminals X, and rules R defined as follows:

1. Foreachp € Q, therule A,, @ € € R.
2. Foreachp,q,r € Q, therule A,;, = A,;A;; € R

3. Foreachp,q,r,s€ Q,xel,anda, b e 2,
o(p,a,€) > (r, X) and o(s, b, X) 3 (g, €), the rule

Portland State 20
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Proof Qutline

* The proof that this construction works
requires two things

1. Any string generated by A,, will in fact bring P
from state p with empty stack to state g with
empty stack, and

2. All strings capable of bringing P from state p
with empty stack to state g with empty stack
can in fact be generated by A,

Portland State 2l
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Example

EEE

Portland State
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. PDA for a"b”
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Example: PDA for anb”
é ’ ):2: N e Does not meet

EEE

the restrictions
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Example

EEE

1. Stack must start and
finish empty

Portland State
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. PDA for a"b”

e Does not meet
the restrictions

d> £—$ > a,e—A
EH

EH e

£$— € b,A—¢€
!
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Example

EEE

1. Stack must start and
finish empty

2. Single final state
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. PDA for a"b”

e Does not meet
the restrictions

EH e

a,E— A

b,A—¢
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Example: PDA for anb”

EEE

1. Stack must start and
finish empty

2. Single final state

3. Every transition must be a
push or a pop

Portland State
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e Does not meet
the restrictions

EH e

a,E— A

b,A—¢
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Example: PDA for anb”
é ’ ):2: o e Does not meet

o the restrictions

d> BE8 e~ A

1. Stack must start and
finish empty

EH e

2. Single final state E,$H : ( b Are

3. Every transition must be a
push or a pop

Portland State
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Grammar:

from rule I:

Al & Ap—E £E—$ e A

A3z > € A4 € Ass 2 E | > ’
E,EH

from rule 2:

Ais 2 At Ais |Ai Axs | Az Ass

| A4 Ags | Ais Ass
A4 = A2l A4 | A2 Aoa | A2z Aza fhe

| A24 A44 | A2s Asa

Azz = Azl Aiz| A2 Az | Asz Ass 3 £$— ¢ b,A— €
| A34 Ag3 | Ass As3 4

etc.

from rule 3: the non-trivial part:

Ais ™ €AuE (push/pop $) Ais = A

A4 = a Axsb (push/pop A) A4 = aAxb | Asz
| € A33€ (push/pop #) A3z > €

Portland State 23

IIIIIIIIII



What do we know about CF Languages?

Portland State 24
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What do we know about CF Languages?

+ Any CF language can be recognized by a PDA

+ The language recognized by a PDA is CF

+ (Some CF languages are deterministic, but not all)
+ The union of two CF languages is CF

+ The product of two CF languages is CF

+ The Kleene closure (*) of a CF language is CF

+ Not all languages are CF

Portland State 24
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Normal Forms

 When proving stuff using a grammar, the
work is often simpler if the grammar is in a
particular form

e Chomsky Normal Form is an example

» There are others, e.g. Greibach Normal Form

e Key idea: the Normal Forms do not restrict
the power of the grammar

Portland State 25
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Chomsky Normal Form (CNF)

* CNF is a restricted form of grammar in
which all rules are in one of the
following forms:

e A— a (a e )
e A—-BC (B,C € V and are not the start symbol)
e S—¢ (allowed onlyif S is the start symbol)

* Any CFG can be rewritten to CNF

Portland State 26
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An application of CNF
* What is the shape of a CNF parse tree?

e Lemma: If G is a grammar in CNF, then
for any string w € L(G) of length n=1,

any derivation of w requires exactly 2n-1
steps. Proof: Homework!

e Theorem: For any grammar G and string
w, we can determine in finite time
whether or not w € L(G).

* Proof: try all possible derivations of up to 2n-1
steps!

Portland State
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Strategy: transforming to CNF

 Add new start symbol Sp and rule So = S

e only strictly necessary if S appears on a RHS

e Remove all rules of the form A - ¢

e unless A s the start symbol

e Remove all unit rules of the form A - B

* Arrange that RHS’s of length = 2 contain
only variables

* Arrange that all RHS’s have length < 2

e We'’re done!

Portland State
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Remove g-rules

e While there is a rule of the form A — € :

e Remove the rule

e Wherever an A appears in the RHS of a rule,
add an instance of that rule with the A omitted

e Ex: Given the rule B — uAv, add the rule B — uv

e Ex. Given the rule B = uAvAw, add the rules
B — uvAw, B =& uAvw, and B = uvw

e Ex. Given the rule B @A, add the rule B —¢
unless we have already removed that rule earlier

Portland State 29
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Remove unit-rules

e While there is a rule of the form A - B :
e Remove it

* For every rule of the form B — u, add a rule
A — U, unless this is a unit rule we previously
removed

Portland State .
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Require variables on RHS

e For each terminal a € 2 that appears on
the right-hand side of some rule of the
formV - wwhere |w| =2

e Add a new variable A
* AddaruleA— a

e Substitute A for all occurrences of a in rules of
the above form

Portland State .
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Divide-up RHS

 For each rule of the form A = giqz...0n,
wheren =3 :

e Remove the rule
e Add variables A1,Ao,...,An-2

e Add rules A= giA1, A1 = Q2A2,
dn-1Qn

Portland State
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Example: converting to CNF

e Initial grammar:
S—aSb | T T—cT | €
» After start variable introduction:
So*S S—2aSb|T T-cT|e
» After e-rule elimination:
So—=+S|e S—aSb|lab | T
T—cT | c
» After unit-rule elimination:
So—~aSb |ab | cT|c| e
S—aSb|ab|cT|c T—-cT|c

Portland State
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Example (continued)

e After variable introduction
So—=»ASB |AB | CT |c ]| e
S—-ASB|AB | CT | c
T—-CT|c A—-a B—-b C-—-c

e After RHS splitting
So2AD |AB | CT | c| ¢
S—-AD |AB | CT | c D — SB
T—-CT|c A—-a B—-b C-—-c

Portland State
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The Pumping Lemma
for Context-free Languages

Portland State

IIIIIIIIII



The Pumping Lemma
for Context-free Languages
o |f a CF language has arbitrarily long strings, any

grammar for it must contain a recursive chain of
productions

Portland State 35
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The Pumping Lemma
for Context-free Languages

o |f a CF language has arbitrarily long strings, any

grammar for it must contain a recursive chain of
productions

In the simplest case, it might contain a directly recursive
production
> e.g., S — uRy
R-vRx | w
where either v or x must be non-empty
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The Pumping Lemma
for Context-free Languages

o |f a CF language has arbitrarily long strings, any
grammar for it must contain a recursive chain of
productions

* |nthe simplest case, it might contain a directly recursive
production

> e.g., S — uRy
R-vRx | w
where either v or x must be non-empty

e then we can derive:

> S = uRy = uwy

» S = uRy = wRxy = wwxy

» S = uRy = wRxy = uwvRxxy = wwvwxxy

> S = uRy = uwRxy = uwvRxxy = uvvvRxxxy = uvvvwxxxy

Portland State 35

IIIIIIIIII



More generally:

S =* UVWXYy S

u v W X Yy

o If sislong enough, then some R must appear twice on
the path from S to some terminal in s. Why?

« So we can write s = uvwxy where...

Portland State 36
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More generally:




Theorem Statement

If L is a context-free language, then there is
a number p (called the pumping length)
such that for all strings ze L, |z | =p,

Z can be divided into 5 pieces z = uvwxy
satisfying:

1. foreach i =0, uviwxiy e L
2. |vx| >0
3. |lvwx | =p

Portland State 38
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Proof

e Assume CFG for Lis in Chomsky NF with variable set V.

e Take p=2Ivl+1. Thenif | z| = p, any parse tree for z has
height at least |V |+1. Why?

* Choose a parse tree with fewest nodes.

* The longest path from root to a terminal must have at least
| V| +1 variables. So some variable must appear at least

twice among the bottom |V | +1 nodes. Why?

 Consider any such variable R and divide zinto uvwxy as in
diagram. Can see that uvwx'yis also in L for all i = 0.

e |vwx| =p because path from R has height at most |V | +1.

e Jvxl > 0; otherwise we could have a tree with fewer nodes

Portland State 39
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Using the Pumping Lemma

* Prove that L ={a"b"c” | n =0}is not CF

 Assume that L is CF and derive a contradiction:
> pick z = aPbPcP where p is the pumping length
> | z | =p, so we can write z=uvwxy where | vx | >0,
| vwx | <p, and uviwxiy is in L. In particular, take i = 2.

> if v contains two letters, say a and b, then any string
containing v2 can’t be in L. Same for x. Why?

> so v and x must have the forma/,or b/,or ¢/, or

- but at most one of them can be €. Why?

> so at least one of the symbols a, b, or c does not appear in
vx, but at least one does

> SO uv?wx?y can’t have the same number of a’'s b’s and C’s

Portland State 40
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Pumping Lemma Example 2
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Pumping Lemma Example 2

e Prove that C ={albick | 0 <i<j<k}is not CF

Portland State 4l

IIIIIIIIII



Pumping Lemma Example 2

e Prove that C ={albick | 0 <i<j<k}is not CF
e Suppose C is CF.
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Pumping Lemma Example 2

e Prove that C ={albick | 0 <i<j<k}is not CF
e Suppose C is CF.

 Letthe pumping length be p, and again consider the
string z = arbrerin C.
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Pumping Lemma Example 2

e Prove that C ={albick | 0 <i<j<k}is not CF
e Suppose C is CF.

 Letthe pumping length be p, and again consider the
string z = arbrerin C.

e Then the pumping lemma says that we can divide
z = uvwxy Where |vx| >0, |vwx]| <p, and uviwxiy is in C
for all i
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Pumping Lemma Example 2

e Prove that C ={albick | 0 <i<j<k}is not CF
e Suppose C is CF.

 Letthe pumping length be p, and again consider the
string z = arbrerin C.

e Then the pumping lemma says that we can divide
z = uvwxy Where |vx| >0, |vwx]| <p, and uviwxiy is in C
for all i

* As inthe previous example, at least one of the symbols a,
b, or ¢ does not appear in vx but at least one does.

Portland State 4l
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e Now there are three cases to consider:
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e Now there are three cases to consider:

1. The a’s don’t appear. Now consider uvwx%y and
compare with uvwxy. The string uvowxVy still has p a’s,
but fewer b’s and/or ¢’s. Hence, uvo'wx%y & C

Portland State 42
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e Now there are three cases to consider:

1. The a’s don’t appear. Now consider uvwx%y and

Portland State
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compare with uvwxy. The string uvowxVy still has p a’s,
but fewer b’s and/or ¢’s. Hence, uvo'wx%y & C

. The b’s don’t appear. So either a’s or ¢c’s must appear

iIn vorx. If a’s appear, then uv2wx?y contains more a’s
than b’s. If c’s appear, then uvYwx%y contains fewer c’s
than b’s. Either way, the pumped string ¢ C.
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e Now there are three cases to consider:

1.
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The a’s don’t appear. Now consider uvYwx%y and
compare with uvwxy. The string uvowxVy still has p a’s,
but fewer b’s and/or ¢’s. Hence, uvo'wx%y & C

. The b’s don’t appear. So either a’s or ¢c’s must appear

iIn vorx. If a’s appear, then uv2wx?y contains more a’s
than b’s. If c’s appear, then uvYwx%y contains fewer c’s
than b’s. Either way, the pumped string ¢ C.

. The c’s don’t appear. In this case, uv2wx?y contains

more a’s and/or bs than c¢’s, and so the string
uwx?y ¢ C
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e Now there are three cases to consider:

1. The a’s don’t appear. Now consider uvwx%y and
compare with uvwxy. The string uvowxVy still has p a’s,
but fewer b’s and/or ¢’s. Hence, uvo'wx%y & C

2. The b’s don’t appear. So either a’s or ¢’s must appear
iIn vorx. If a’s appear, then uv2wx?y contains more a’s
than b’s. If c’s appear, then uvYwx%y contains fewer c’s
than b’s. Either way, the pumped string ¢ C.

3. The c’s don’t appear. In this case, uv2wx2y contains
more a’s and/or bs than c¢’s, and so the string
uwx?y ¢ C

e Thus, z can’t be pumped, and we have a
contradiction. So C is not CF.

Portland State 42
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Pumping Lemma Example 3

e ProvethatD ={ww | we{0, 1}* }is not CF
e Suppose D is CF with pumping length p.

e Consider the string z = 0r170r1rin D. Certainly |z ]| =p.

e Then the pumping lemma says that we can divide
z = uvwxy Where |vx| >0, | vwx| <p, and uviwxiy is in D for

all i

 (Consider the following three mutually exclusive cases:

vwx falls in the first half of z. But then if we “pump up” to
uvewx?y, we’ll move a 1 into the first position of the second

half. T

vwx fa

ne resulting string can’t be in D.

Is in the second half of z... a similar argument holds

vwx straddles the midpoint of z. But then if we “pump

down”

fand j
Portland State
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to uwy, we get a string of the form 0r1:0/17, where
cannot both be p. Resulting string can'tbe in D.



