CS311—Computational Structures More about PDAs & Context-Free Languages

Lecture 9

Andrew P. Black Andrew Tolmach

Three important results

- 1. Any CFG can be "simulated" by a PDA
- 2. Any PDA can be "simulated" by a CFG
- 3. Pumping Lemma: not all languages are Context-free

but first:

some notation from Hopcroft et al.

PDA Acceptance, Revisted

- Consider a PDA M = $(Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$
- An instantaneous description (ID) of M has the form (q,w,t)

where $q \in Q$ is the current state, $w \in \Sigma^*$ is the unread input, $t \in \Gamma^*$ is the current stack

(with top of stack on the left)

 We define a relation ⊢ on ID's; ⊢ captures what it means for the PDA to take a single step:

 $(q,aw,bt) \vdash (p,w,ct)$

iff

$$(p,c)\in \delta(q,a,b)$$

 We define a relation ⊢ on ID's; ⊢ captures what it means for the PDA to take a single step:

$$(q,aw,bt) \vdash (p,w,ct)$$

State

 $(p,c)\in \delta(q,a,b)$

for some $p,q \in Q; \ a \in \Sigma_{\epsilon}; \ w \in \Sigma^*; \ b,c \in \Gamma_{\epsilon}; \ t \in \Gamma^*$

iff

 We define a relation ⊢ on ID's; ⊢ captures what it means for the PDA to take a single step:

 $(q,aw,bt) \vdash (p,w,ct)$

iff

$$(p,c)\in \delta(q,a,b)$$

 We define a relation ⊢ on ID's; ⊢ captures what it means for the PDA to take a single step:

iff

 $(p,c)\in \delta(q,a,b)$

 We define a relation ⊢ on ID's; ⊢ captures what it means for the PDA to take a single step:

 $(q,aw,bt) \vdash (p,w,ct)$

iff

$$(p,c)\in \delta(q,a,b)$$

 We define a relation ⊢ on ID's; ⊢ captures what it means for the PDA to take a single step:

$$(q,aw,bt) \vdash (p,w,ct)$$

Stack

iff

 $(p,c)\in \delta(q,a,b)$

 We define a relation ⊢ on ID's; ⊢ captures what it means for the PDA to take a single step:

 $(q,aw,bt) \vdash (p,w,ct)$

iff

$$(p,c)\in \delta(q,a,b)$$

- We write ⊢* to mean "zero or more steps using ⊢"
- Then we say M accepts w (by final state) iff (q₀,w,ε) ⊢* (q,ε,t) for some q ∈ F and any t ∈ Γ*
- As usual, the language accepted by M is just {w | w is accepted by M}

Non-determinism is fundamental

- Unlike with finite automata, PDA nondeterminism cannot be transformed away.
- Deterministic PDA's (DPDA's) recognize strictly fewer languages than nondeteristic ones
- DPDAs are useful in practice as the basis for language parser implementations

PDA's and CFG's are equivalent!

- If G is a CFG, we can build a (nondeterministic) PDA M with L(M) = L(G)
 - ► That is, we can build a **parser** for G
 - This is an easy construction
- If M is a PDA, we can construct a CFG G with L(G) = L(M)
 - This is harder

Parsing: PDA from CFG

- Parsing is the process of going from a sentence (string) in the language to a derivation tree.
- Top-down parsing starts at the "top", with the start-symbol of the grammar and derives a string
- Bottom-up parsing starts at the "bottom" with a string and figures out how to derive that string from the start-symbol.

PDAs for Top-down parsing

Top-down parsing PDA example

Top-down parsing PDA example

State
start
loop
accept

Input	Stack
aabaa	
aabaa	S\$
aabaa	aSa\$
abaa	Sa\$
abaa	aSaa\$
baa	Saa\$
baa	Baa\$
baa	bBaa\$
aa	Baa\$
aa	aa\$
a	a\$
	\$

Alternative: Bottom-up parsing

a, $\epsilon \rightarrow a$ for each $a \in \Sigma$ $\epsilon, w^R \rightarrow A$ for each rule $A \rightarrow w$

> Note: we're allowing machine to pop multiple symbols from stack in one move

Building a CFG G from a PDA P [method from Sipser; IALC is somewhat different]

Key idea: each string derived from Apq, is capable of taking the PDA from state p with empty stack to state q with empty stack.

- 1. We seek to build a grammar that has the property in the box.
- If an input string drives P from state p with empty stack to state q with empty stack, it will also move it from p to q with arbitrary stuff on the stack.

Building a CFG G from a PDA P

Invariant: each string derived from A_{pq} , is capable of taking the PDA from state p with empty stack to state q with empty stack.

- Start by simplifying the problem:
 - Modify P so that it has a start state σ, a single final state φ, so that it starts and finishes with an *empty stack*, and so that each transition *pushes* or *pops* a single symbol onto the stack.
- How to do this?
- Now we need to write a grammar with start symbol $A\sigma\varphi$, such that it satisfies the invariant

- How can P move from state p when its stack is empty?
 - First move must be to **push** some symbol onto the stack
 - Last move must be to pop a symbol off the stack.
 - Maybe the stack does not become empty in between ... or maybe it does.
 - So, there are two cases

- Suppose that the stack does *not* become empty in between.
 - First, machine reads some *a*, pushes some *X*, and goes to some state, say *r*
 - Then it does something (maybe complicated), ending in some state *s*
 - Finally, it pops the same *X*, reads some *b* and goes to state *q*.
- This corresponds to the grammar production $A_{pq} \rightarrow a A_{rs} b$, where A_{rs} satisfies the invariant.
- Note that a and/or b might be ε

• In pictures:

 Suppose that the stack becomes empty again in between

• then the rule $A_{pq} \rightarrow A_{pr}A_{rq}$ does the job

Construction

- Let P = (Q, Σ, Γ, δ, σ, ε, {φ}). Construct G with variables {A_{pq} | p, q ∈ Q }, start symbol A_{σφ}, terminals Σ, and rules R defined as follows:
 - 1. For each $p \in Q$, the rule $A_{pp} \rightarrow \varepsilon \in R$.
 - 2. For each $p, q, r \in \mathbb{Q}$, the rule $A_{pq} \rightarrow A_{pr}A_{rq} \in \mathbb{R}$
 - 3. For each $p, q, r, s \in \mathbb{Q}$, $\mathbf{x} \in \Gamma$, and $a, b \in \Sigma_{\varepsilon}$, $\delta(p, a, \varepsilon) \ni (r, \mathbf{x})$ and $\delta(s, b, \mathbf{x}) \ni (q, \varepsilon)$, the rule $A_{pq} \rightarrow aA_{rs}b \in \mathbb{R}$

Proof Outline

- The proof that this construction works requires two things
 - Any string generated by A_{pq} will in fact bring P from state p with empty stack to state q with empty stack, and
 - 2. All strings capable of bringing P from state *p* with empty stack to state *q* with empty stack can in fact be generated by A_{pq}

 Does not meet the restrictions

 Stack must start and finish empty

- 1. Stack must start and finish empty
- 2. Single final state

- Stack must start and finish empty
- 2. Single final state
- 3. Every transition must be a push or a pop

- Stack must start and finish empty
- 2. Single final state
- 3. Every transition must be a push or a pop

from rule 3:

$$\begin{array}{ll} A_{15} \rightarrow \epsilon \, A_{24} \, \epsilon & (push/pop \, \$) \\ A_{24} \rightarrow a \, A_{24} b & (push/pop \, A) \\ & \left| \epsilon \, A_{33} \epsilon & (push/pop \, \#) \right. \end{array}$$

the non-trivial part:

$$A_{15} \rightarrow A_{24}$$

 $A_{24} \rightarrow a A_{24} b \mid A_{33}$
 $A_{33} \rightarrow \epsilon$

What do we know about CF Languages?

What do we know about CF Languages?

- + Any CF language can be recognized by a PDA
- + The language recognized by a PDA is CF
- + (Some CF languages are deterministic, but not all)
- The union of two CF languages is CF
- + The product of two CF languages is CF
- + The Kleene closure (*) of a CF language is CF
- + Not all languages are CF

Normal Forms

- When proving stuff using a grammar, the work is often simpler if the grammar is in a particular form
- Chomsky Normal Form is an example
 - ► There are others, e.g. Greibach Normal Form
- Key idea: the Normal Forms do not restrict the power of the grammar

Chomsky Normal Form (CNF)

- CNF is a restricted form of grammar in which all rules are in one of the following forms:
 - $A \rightarrow a$ $(a \in \Sigma)$
 - $A \rightarrow BC$ (B,C $\in V$ and are not the start symbol)
 - $S \rightarrow \epsilon$ (allowed *only* if S is the start symbol)
- Any CFG can be rewritten to CNF

An application of CNF

- What is the shape of a CNF parse tree?
- Lemma: If G is a grammar in CNF, then for any string w ∈ L(G) of length n ≥ 1, any derivation of w requires exactly 2n-1 steps. Proof: Homework!
- Theorem: For any grammar G and string w, we can determine in finite time whether or not w ∈ L(G).
 - Proof: try all possible derivations of up to 2n-1 steps!

Strategy: transforming to CNF

- Add new start symbol S_0 and rule $S_0 \rightarrow S$
 - only strictly necessary if S appears on a RHS
- Remove all rules of the form $A \rightarrow \epsilon$
 - unless A is the start symbol
- Remove all **unit** rules of the form $A \rightarrow B$
- Arrange that RHS's of length ≥ 2 contain only variables
- Arrange that all RHS's have length ≤ 2
- We're done!

Remove ε-rules

- While there is a rule of the form $A \rightarrow \epsilon$:
 - Remove the rule
 - Wherever an A appears in the RHS of a rule, add an instance of that rule with the A omitted
 - Ex: Given the rule $B \rightarrow uAv$, add the rule $B \rightarrow uv$
 - Ex. Given the rule B → uAvAw, add the rules
 B → uvAw, B → uAvw, and B → uvw
 - Ex. Given the rule $B \rightarrow A$, add the rule $B \rightarrow \varepsilon$ unless we have already removed that rule earlier

Remove unit-rules

- While there is a rule of the form $A \rightarrow B$:
 - Remove it
 - For every rule of the form B → u, add a rule
 A → u, unless this is a unit rule we previously removed

Require variables on RHS

- For each terminal *a* ∈ Σ that appears on the right-hand side of some rule of the form V → *w* where | *w* | ≥ 2 :
 - Add a new variable A
 - Add a rule $A \rightarrow a$
 - Substitute A for all occurrences of a in rules of the above form

Divide-up RHS

- For each rule of the form $A \rightarrow q_1 q_2 \dots q_n$, where $n \ge 3$:
 - Remove the rule
 - Add variables A₁,A₂,...,A_{n-2}
 - Add rules $A \rightarrow q_1 A_1$, $A_1 \rightarrow q_2 A_2$, ..., $A_{n-2} \rightarrow q_{n-1} q_n$

Example: converting to CNF

• Initial grammar:

 $S \rightarrow aSb \mid T \qquad T \rightarrow cT \mid \epsilon$

• After start variable introduction:

 $S_0 \rightarrow S$ $S \rightarrow aSb \mid T$ $T \rightarrow cT \mid \epsilon$

After ε-rule elimination:

 $S_0 \rightarrow S \mid \epsilon \quad S \rightarrow aSb \mid ab \mid T$ $T \rightarrow cT \mid c$

• After unit-rule elimination:

 $S_0 \rightarrow aSb$ | ab | cT | c | εS → aSb | ab | cT | c T → cT | c

Portland State

Example (continued)

After variable introduction

$$\begin{split} S_0 &\to ASB \mid AB \mid CT \mid c \mid \epsilon \\ S &\to ASB \mid AB \mid CT \mid c \\ T &\to CT \mid c \qquad A \to a \qquad B \to b \quad C \to c \end{split}$$

• After RHS splitting

$$S_{0} \rightarrow AD \mid AB \mid CT \mid c \mid \epsilon$$
$$S \rightarrow AD \mid AB \mid CT \mid c \qquad D \rightarrow SB$$
$$T \rightarrow CT \mid c \qquad A \rightarrow a \qquad B \rightarrow b \quad C \rightarrow c$$

 If a CF language has arbitrarily long strings, any grammar for it must contain a recursive chain of productions

- If a CF language has arbitrarily long strings, any grammar for it must contain a recursive chain of productions
- In the simplest case, it might contain a directly recursive production

• e.g.,
$$S \rightarrow uRy$$

 $R \rightarrow vRx \mid w$

where either v or x must be non-empty

- If a CF language has arbitrarily long strings, any grammar for it must contain a recursive chain of productions
- In the simplest case, it might contain a directly recursive production

• e.g.,
$$S \rightarrow uRy$$

 $R \rightarrow vRx \mid w$

where either v or x must be non-empty

- then we can derive:
 - $S \Rightarrow uRy \Rightarrow uwy$
 - $S \Rightarrow uRy \Rightarrow uvRxy \Rightarrow uvwxy$
 - $S \Rightarrow uRy \Rightarrow uvRxy \Rightarrow uvvRxxy \Rightarrow uvvwxxy$
 - $S \Rightarrow uRy \Rightarrow uvRxy \Rightarrow uvvRxxy \Rightarrow uvvvRxxy \Rightarrow uvvvwxxxy$

More generally:

- If *s* is long enough, then some R must appear twice on the path from S to some terminal in *s*. Why?
- So we can write s = uvwxy where...

More generally:

Theorem Statement

If *L* is a context-free language, then there is a number *p* (called the pumping length) such that for all strings $z \in L$, $|z| \ge p$, *z* can be divided into 5 pieces z = uvwxysatisfying:

- 1. for each i ≥ 0, $uv^i wx^i y \in L$ 2. |vx| > 0
- 3. $|vwx| \le p$

Proof

- Assume CFG for L is in Chomsky NF with variable set V.
- Take p = 2|v|+1. Then if $|z| \ge p$, any parse tree for z has height at least |V|+1. Why?
- Choose a parse tree with fewest nodes.
- The longest path from root to a terminal must have at least |V|+1 variables. So some variable must appear at least twice among the bottom |V|+1 nodes. Why?
- Consider any such variable R and divide z into uvwxy as in diagram. Can see that uvⁱwxⁱy is also in L for all i ≥ 0.
- $|vwx| \le p$ because path from R has height at most |V|+1.
- Ivxl > 0; otherwise we could have a tree with fewer nodes

Using the Pumping Lemma

- Prove that $L = \{a^n b^n c^n \mid n \ge 0\}$ is not CF
- Assume that L is CF and derive a contradiction:
 - pick $z = a^p b^p c^p$ where p is the pumping length
 - ► $|z| \ge p$, so we can write *z*=*uvwxy* where |vx| > 0, $|vwx| \le p$, and uv^iwx^iy is in L. In particular, take i = 2.
 - if v contains two letters, say a and b, then any string containing v² can't be in L. Same for x. Why?
 - so v and x must have the form a^{j} , or b^{j} , or c^{j} , or ϵ
 - $\circ\,$ but at most one of them can be $\epsilon.$ Why?
 - so at least one of the symbols a, b, or c does not appear in vx, but at least one does
 - so uv²wx²y can't have the same number of a's b's and c's

• Prove that $C = \{a^i b^j c^k \mid 0 \le i \le j \le k\}$ is not CF

- Prove that $C = \{a^i b^j c^k \mid 0 \le i \le j \le k\}$ is not CF
 - Suppose C is CF.

- Prove that $C = \{a^i b^j c^k \mid 0 \le i \le j \le k\}$ is not CF
 - Suppose C is CF.
 - Let the pumping length be p, and again consider the string z = a^pb^pc^p in C.

- Prove that $C = \{a^i b^j c^k \mid 0 \le i \le j \le k\}$ is not CF
 - Suppose C is CF.
 - Let the pumping length be p, and again consider the string $z = a^p b^p c^p$ in C.
 - Then the pumping lemma says that we can divide
 z = uvwxy where |vx| > 0, |vwx| ≤ p, and uvⁱwxⁱy is in C for all i

- Prove that $C = \{a^i b^j c^k \mid 0 \le i \le j \le k\}$ is not CF
 - Suppose C is CF.
 - Let the pumping length be p, and again consider the string $z = a^p b^p c^p$ in C.
 - Then the pumping lemma says that we can divide
 z = uvwxy where |vx| > 0, |vwx| ≤ p, and uvⁱwxⁱy is in C for all i
 - As in the previous example, at least one of the symbols a,
 b, or c does not appear in vx but at least one does.

• Now there are three cases to consider:

- Now there are three cases to consider:
 - **1.** The a's don't appear. Now consider uv^0wx^0y and compare with uvwxy. The string uv^0wx^0y still has p a's, but fewer b's and/or c's. Hence, $uv^0wx^0y \notin C$

- Now there are three cases to consider:
 - **1.** The a's don't appear. Now consider uv^0wx^0y and compare with uvwxy. The string uv^0wx^0y still has p a's, but fewer b's and/or c's. Hence, $uv^0wx^0y \notin C$
 - The b's don't appear. So either a's or c's must appear in v or x. If a's appear, then uv²wx²y contains more a's than b's. If c's appear, then uv⁰wx⁰y contains fewer c's than b's. Either way, the pumped string ∉ C.

- Now there are three cases to consider:
 - **1.** The a's don't appear. Now consider uv^0wx^0y and compare with uvwxy. The string uv^0wx^0y still has p a's, but fewer b's and/or c's. Hence, $uv^0wx^0y \notin C$
 - The b's don't appear. So either a's or c's must appear in *v* or *x*. If a's appear, then *uv*²*wx*²*y* contains more a's than b's. If c's appear, then *uv*⁰*wx*⁰*y* contains fewer c's than b's. Either way, the pumped string ∉ C.
 - **3.** The c's don't appear. In this case, uv^2wx^2y contains more a's and/or bs than c's, and so the string $uv^2wx^2y \notin C$

- Now there are three cases to consider:
 - **1.** The a's don't appear. Now consider uv^0wx^0y and compare with uvwxy. The string uv^0wx^0y still has p a's, but fewer b's and/or c's. Hence, $uv^0wx^0y \notin C$
 - The b's don't appear. So either a's or c's must appear in *v* or *x*. If a's appear, then *uv*²*wx*²*y* contains more a's than b's. If c's appear, then *uv*⁰*wx*⁰*y* contains fewer c's than b's. Either way, the pumped string ∉ C.
 - 3. The c's don't appear. In this case, uv^2wx^2y contains more a's and/or bs than c's, and so the string $uv^2wx^2y \notin C$
- Thus, *z* can't be pumped, and we have a contradiction. So C is not CF.

- Prove that $D = \{ww \mid w \in \{0, 1\}^*\}$ is not CF
 - Suppose D is CF with pumping length p.
 - Consider the string $z = 0^p 1^p 0^p 1^p$ in D. Certainly $|z| \ge p$.
 - Then the pumping lemma says that we can divide z = uvwxy where |vx| > 0, $|vwx| \le p$, and uv^iwx^iy is in D for all *i*
 - Consider the following three mutually exclusive cases:
 - *vwx* falls in the first half of *z*. But then if we "pump up" to • uv^2wx^2y , we'll move a 1 into the first position of the second half. The resulting string can't be in D.
 - *vwx* falls in the second half of *z*... a similar argument holds •
 - *vwx* straddles the midpoint of *z*. But then if we "pump" • down" to *uwy*, we get a string of the form $0^p 1^i 0^j 1^p$, where *i* and *j* cannot both be *p*. Resulting string can't be in D.