
CS311—Computational Structures

More about PDAs &
Context-Free Languages

Lecture 9

Andrew P. Black
Andrew Tolmach

1

Three important results

1. Any CFG can be “simulated” by a PDA
2. Any PDA can be “simulated” by a CFG
3. Pumping Lemma: not all languages are

Context-free

2

but first:

some notation from Hopcroft et al.

3

PDA Acceptance, Revisted
• Consider a PDA M = (Q,Σ,Γ,δ,q0,Z0,F)

• An instantaneous description (ID) of M
has the form (q,w,t)
where q ∈ Q is the current state,
 w ∈ Σ* is the unread input,
 t ∈ Γ* is the current stack

 (with top of stack on the left)

4

PDA Acceptance, by ⊢

• We define a relation ⊢ on IDʼs; ⊢ captures what
it means for the PDA to take a single step:

(q,aw,bt) ⊢ (p,w,ct)

iff
(p,c) ∈ δ(q,a,b)

for some
p,q ∈ Q; a ∈ Σε; w ∈ Σ*; b,c ∈ Γε; t ∈Γ*

5

PDA Acceptance, by ⊢

• We define a relation ⊢ on IDʼs; ⊢ captures what
it means for the PDA to take a single step:

(q,aw,bt) ⊢ (p,w,ct)

iff
(p,c) ∈ δ(q,a,b)

for some
p,q ∈ Q; a ∈ Σε; w ∈ Σ*; b,c ∈ Γε; t ∈Γ*

5

State

PDA Acceptance, by ⊢

• We define a relation ⊢ on IDʼs; ⊢ captures what
it means for the PDA to take a single step:

(q,aw,bt) ⊢ (p,w,ct)

iff
(p,c) ∈ δ(q,a,b)

for some
p,q ∈ Q; a ∈ Σε; w ∈ Σ*; b,c ∈ Γε; t ∈Γ*

5

PDA Acceptance, by ⊢

• We define a relation ⊢ on IDʼs; ⊢ captures what
it means for the PDA to take a single step:

(q,aw,bt) ⊢ (p,w,ct)

iff
(p,c) ∈ δ(q,a,b)

for some
p,q ∈ Q; a ∈ Σε; w ∈ Σ*; b,c ∈ Γε; t ∈Γ*

5

Input

PDA Acceptance, by ⊢

• We define a relation ⊢ on IDʼs; ⊢ captures what
it means for the PDA to take a single step:

(q,aw,bt) ⊢ (p,w,ct)

iff
(p,c) ∈ δ(q,a,b)

for some
p,q ∈ Q; a ∈ Σε; w ∈ Σ*; b,c ∈ Γε; t ∈Γ*

5

PDA Acceptance, by ⊢

• We define a relation ⊢ on IDʼs; ⊢ captures what
it means for the PDA to take a single step:

(q,aw,bt) ⊢ (p,w,ct)

iff
(p,c) ∈ δ(q,a,b)

for some
p,q ∈ Q; a ∈ Σε; w ∈ Σ*; b,c ∈ Γε; t ∈Γ*

5

Stack

PDA Acceptance, by ⊢

• We define a relation ⊢ on IDʼs; ⊢ captures what
it means for the PDA to take a single step:

(q,aw,bt) ⊢ (p,w,ct)

iff
(p,c) ∈ δ(q,a,b)

for some
p,q ∈ Q; a ∈ Σε; w ∈ Σ*; b,c ∈ Γε; t ∈Γ*

5

PDA Acceptance, by ⊢

• We write ⊢* to mean “zero or more steps
using ⊢”

• Then we say M accepts w (by final state)
iff (q0,w,ε) ⊢* (q,ε,t) for some q ∈ F and
any t ∈ Γ*

• As usual, the language accepted by M is
just {w ⎮ w is accepted by M}

6

Non-determinism is
fundamental

• Unlike with finite automata, PDA non-
determinism cannot be transformed away.

• Deterministic PDAʼs (DPDAʼs) recognize
strictly fewer languages than non-
deteristic ones

• DPDAs are useful in practice as the basis
for language parser implementations

7

PDAʼs and CFGʼs are
equivalent!

• If G is a CFG, we can build a (non-
deterministic) PDA M with L(M) = L(G)
‣ That is, we can build a parser for G

‣ This is an easy construction

• If M is a PDA, we can construct a CFG G
with L(G) = L(M)
‣ This is harder

8

• Parsing is the process of going from a
sentence (string) in the language to a
derivation tree.

• Top-down parsing starts at the “top”,
with the start-symbol of the grammar
and derives a string

• Bottom-up parsing starts at the “bottom”
with a string and figures out how to
derive that string from the start-symbol.

9

Parsing: PDA from CFG

1 18 CHAPTER 2 / CONTEXT-FREE LANGUAGES

e , A j w forruleAjw

a, a-+e for terminal a

� � � �
 � � � � � �
State diagram of P

That completes the proof of Lemma 2.2 1.
..

 � � � � �
 � � � � � � ..

We use the procedure developed in Lemma 2.21 to construct a PDA fi from the
following CFG G.

5'- aTblb

T - + T a . e

The transition function is shown in the following diagram.

� � � �
 � � � � � �
State diagram of Pi

Now we prove the reverse direction of Theorem 2.20. For the forward di-

rection we gave a procedure for converting a CFG into a PDA. The main idea
was to design the automaton so that it simulates the grammar. Now we want
to give a procedure for going the other way: converting a PDA into a CFG. We
design the grammar to simulate the automaton. This task is a bit tricky because
"programming" an automaton is easier than "programming" a grammar.

If a pushdown automaton recognizes some language, then it is context free.

� � � � � � 	
 � � We have a PDA P , and we want to make a CFG G that generates
all the strings that P accepts. In other words, G should generate a string if that
string causes the PDA to go from its start state to an accept state.

To achieve this outcome we design a grammar that does somewhat more. For
each pair of states p and q in P the grammar will have a variable Apq, This
variable generates all the strings that can take P from p with an empty stack to

q with an empty stack. Observe that such strings can also take P from p to q,

regardless of the stack contents at p, leaving the stack at q in the same condition
as it was at p.

First, we simplify our task by modifying P slightly to give it the following
three features.

1. It has a single accept state,

� � � It empties its stack before accepting.

� � � Each transition either pushes a symbol onto the stack (apush move) or pops
one off the stack (a pop move), but it does not do both at the same time.

Giving P features 1 and 2 is easy. To give it feature 3, we replace each transition
that simultaneously pops and pushes with a two transition sequence dial goes
through a new state, and we replace each transition that neither pops nor pushes

with a two transition sequence that pushes then pops an arbitrary stack symbol,
To design G so that Ann generates all strings that take P from p to q, starting

and ending with an empty stack, we must "understand how P operates on these
strings. For any such string a;, P's first move on x must be a push, because every
move is either a push or a pop and P can't pop an empty stack. Similarly, the last
move on x must be a pop, because the stack ends up empty.

Two possibilities occur during P's computation on x. Either the symbol
popped at the end is the symbol that was pushed at the beginning, or not. If
so, the stack is empty only at the beginning and end of P's computation on a;. If
not, the initially pushed symbol must get popped at some point before the end of
a; and thus the stack becomes empty at this point. We simulate the former pos-
sibility with the rule Ann Ã‘ aA,.&, where a is the input read at the first move,
b is the input read at the last move, r is the state following p, and s is the state
preceding q. We simulate the latter possibility with the rule Apq -+ AprArq,
where r is the state when the stack becomes empty.

Note: we’re allowing machine
to push multiple symbols onto

stack in one move

PDAs for Top-down parsing

10

Top-down parsing PDA example

11

1 18 CHAPTER 2 / CONTEXT-FREE LANGUAGES

e , A j w forruleAjw

a, a-+e for terminal a

� � � �
 � � � � � �
State diagram of P

That completes the proof of Lemma 2.2 1.
..

 � � � � �
 � � � � � � ..

We use the procedure developed in Lemma 2.21 to construct a PDA fi from the
following CFG G.

5'- aTblb

T - + T a . e

The transition function is shown in the following diagram.

� � � �
 � � � � � �
State diagram of Pi

Now we prove the reverse direction of Theorem 2.20. For the forward di-

rection we gave a procedure for converting a CFG into a PDA. The main idea
was to design the automaton so that it simulates the grammar. Now we want
to give a procedure for going the other way: converting a PDA into a CFG. We
design the grammar to simulate the automaton. This task is a bit tricky because
"programming" an automaton is easier than "programming" a grammar.

If a pushdown automaton recognizes some language, then it is context free.

� � � � � � 	
 � � We have a PDA P , and we want to make a CFG G that generates
all the strings that P accepts. In other words, G should generate a string if that
string causes the PDA to go from its start state to an accept state.

To achieve this outcome we design a grammar that does somewhat more. For
each pair of states p and q in P the grammar will have a variable Apq, This
variable generates all the strings that can take P from p with an empty stack to

q with an empty stack. Observe that such strings can also take P from p to q,

regardless of the stack contents at p, leaving the stack at q in the same condition
as it was at p.

First, we simplify our task by modifying P slightly to give it the following
three features.

1. It has a single accept state,

� � � It empties its stack before accepting.

� � � Each transition either pushes a symbol onto the stack (apush move) or pops
one off the stack (a pop move), but it does not do both at the same time.

Giving P features 1 and 2 is easy. To give it feature 3, we replace each transition
that simultaneously pops and pushes with a two transition sequence dial goes
through a new state, and we replace each transition that neither pops nor pushes

with a two transition sequence that pushes then pops an arbitrary stack symbol,
To design G so that Ann generates all strings that take P from p to q, starting

and ending with an empty stack, we must "understand how P operates on these
strings. For any such string a;, P's first move on x must be a push, because every
move is either a push or a pop and P can't pop an empty stack. Similarly, the last
move on x must be a pop, because the stack ends up empty.

Two possibilities occur during P's computation on x. Either the symbol
popped at the end is the symbol that was pushed at the beginning, or not. If
so, the stack is empty only at the beginning and end of P's computation on a;. If
not, the initially pushed symbol must get popped at some point before the end of
a; and thus the stack becomes empty at this point. We simulate the former pos-
sibility with the rule Ann Ã‘ aA,.&, where a is the input read at the first move,
b is the input read at the last move, r is the state following p, and s is the state
preceding q. We simulate the latter possibility with the rule Apq -+ AprArq,
where r is the state when the stack becomes empty.

S → aSa
S → B
B → bB
B → ε ε,S →aSa

ε,S → B
ε,B → bB
ε,B → ε
a,a → ε
b,b → ε

Top-down parsing PDA example

12

1 18 CHAPTER 2 / CONTEXT-FREE LANGUAGES

e , A j w forruleAjw

a, a-+e for terminal a

� � � �
 � � � � � �
State diagram of P

That completes the proof of Lemma 2.2 1.
..

 � � � � �
 � � � � � � ..

We use the procedure developed in Lemma 2.21 to construct a PDA fi from the
following CFG G.

5'- aTblb

T - + T a . e

The transition function is shown in the following diagram.

� � � �
 � � � � � �
State diagram of Pi

Now we prove the reverse direction of Theorem 2.20. For the forward di-

rection we gave a procedure for converting a CFG into a PDA. The main idea
was to design the automaton so that it simulates the grammar. Now we want
to give a procedure for going the other way: converting a PDA into a CFG. We
design the grammar to simulate the automaton. This task is a bit tricky because
"programming" an automaton is easier than "programming" a grammar.

If a pushdown automaton recognizes some language, then it is context free.

� � � � � � 	
 � � We have a PDA P , and we want to make a CFG G that generates
all the strings that P accepts. In other words, G should generate a string if that
string causes the PDA to go from its start state to an accept state.

To achieve this outcome we design a grammar that does somewhat more. For
each pair of states p and q in P the grammar will have a variable Apq, This
variable generates all the strings that can take P from p with an empty stack to

q with an empty stack. Observe that such strings can also take P from p to q,

regardless of the stack contents at p, leaving the stack at q in the same condition
as it was at p.

First, we simplify our task by modifying P slightly to give it the following
three features.

1. It has a single accept state,

� � � It empties its stack before accepting.

� � � Each transition either pushes a symbol onto the stack (apush move) or pops
one off the stack (a pop move), but it does not do both at the same time.

Giving P features 1 and 2 is easy. To give it feature 3, we replace each transition
that simultaneously pops and pushes with a two transition sequence dial goes
through a new state, and we replace each transition that neither pops nor pushes

with a two transition sequence that pushes then pops an arbitrary stack symbol,
To design G so that Ann generates all strings that take P from p to q, starting

and ending with an empty stack, we must "understand how P operates on these
strings. For any such string a;, P's first move on x must be a push, because every
move is either a push or a pop and P can't pop an empty stack. Similarly, the last
move on x must be a pop, because the stack ends up empty.

Two possibilities occur during P's computation on x. Either the symbol
popped at the end is the symbol that was pushed at the beginning, or not. If
so, the stack is empty only at the beginning and end of P's computation on a;. If
not, the initially pushed symbol must get popped at some point before the end of
a; and thus the stack becomes empty at this point. We simulate the former pos-
sibility with the rule Ann Ã‘ aA,.&, where a is the input read at the first move,
b is the input read at the last move, r is the state following p, and s is the state
preceding q. We simulate the latter possibility with the rule Apq -+ AprArq,
where r is the state when the stack becomes empty.

ε,S →aSa
ε,S → B
ε,B → bB
ε,B → ε
a,a → ε
b,b → ε

State Input Stack
start aabaa
loop aabaa S$
loop aabaa aSa$
loop abaa Sa$
loop abaa aSaa$
loop baa Saa$
loop baa Baa$
loop baa bBaa$
loop aa Baa$
loop aa aa$
loop a a$
loop $
accept

Alternative: Bottom-up parsing

13

ε,ε→$

a,ε→a for each a∈Σ
ε,wR →A for each rule A → w

ε,S$→ ε Note: we’re allowing machine
to pop multiple symbols from

stack in one move

Building a CFG G from a PDA P
[method from Sipser; IALC is somewhat different]

14

Key idea: each string derived from Apq, is capable of taking the PDA
from state p with empty stack to state q with empty stack.

1. We seek to build a grammar that has the property in
the box.

2. If an input string drives P from state p with empty stack
to state q with empty stack, it will also move it from p
to q with arbitrary stuff on the stack.

Building a CFG G from a PDA P

• Start by simplifying the problem:
• Modify P so that it has a start state σ, a single

final state φ, so that it starts and finishes with
an empty stack, and so that each transition
pushes or pops a single symbol onto the stack.

• How to do this?

• Now we need to write a grammar with start
symbol Aσφ, such that it satisfies the invariant

15

Invariant: each string derived from Apq, is capable of taking the PDA
from state p with empty stack to state q with empty stack.

• How can P move from state p when its
stack is empty?
• First move must be to push some symbol onto

the stack
• Last move must be to pop a symbol off the

stack.
• Maybe the stack does not become empty in

between … or maybe it does.
• So, there are two cases

16

• Suppose that the stack does not become
empty in between.

• First, machine reads some a, pushes some X, and
goes to some state, say r

• Then it does something (maybe complicated), ending
in some state s

• Finally, it pops the same X, reads some b and goes
to state q.

• This corresponds to the grammar production
Apq → aArsb, where Ars satisfies the invariant.

• Note that a and/or b might be ε

17

• In pictures:

18

120 CHAPTER 2 / CONTEXT-FREE LANGUAGES 2.2 PUSHDOWN AUTOMATA 121

PROOF Say that P = (Q, S , I?, 5, qo, {qaccept}) and construct G. The variables

of G are { A p g p, q E Q } . The start variable is A q y , g , , . Now we describe G's
rules.

For each p, q, r, s E Q, t E I?, and a, b E Sg, i(6(p, a, E) contains (r, t) and

S(s , b, t) contains (q, E) , put the rule Apq -+ &b in G.

For each p, q, r E Q , put the rule Apq -+ AprArq in G.

Finally, for each p E Q, put the rule App -+ E in G.

You may gain some insight for this construction from the following figures.

t
Stack
height

Input string
+

T r

generated generated

by APT by Am

FIGURE 2.28

PDA computation corresponding to the rule Apq --+ ApTArq

Input string
+

7

generated
by Ars

FIGURE 2.29

PDA computation corresponding to the rule Apq + aAryb

Now we prove that this construction works by demonstrating that Apq gener-
ates x if and only if (iff) a; can bring P from p with empty stack to q with empty
stack. We consider each direction of the iff as a separate claim.

If Apq generates x, then a; can bring P from p with empty stack to q with empty

stack.

We prove this claim by induction on the number of steps in the derivation of

x from Apg.

Basis: The derivation has 1 step.
A derivation with a single step must use a rule whose right-hand side contains no

variables. The only rules in G where no variables occur on the right-hand side
are App + e. Clearly, input E takes P from p with empty stack t o p with empty

stack so the basis is proved.

Induction step: Assume true for derivations of length at most k, where k > 1,

and prove true for derivations of length k + 1.

Suppose that Am x with k -I- 1 steps. The first step in this derivation is either

Apq => d S b or Apq =?> AprArq. We handle these two cases separately.

In the first case, consider the portion y of a; that Ars generates, so x = ayb.

Because Ays =$ y with k steps, the induction hypothesis tells us that P can go
from r on empty stack to s on empty stack. Because Ann -+ aArsb is a rule of

G, 8(p, a, e) contains (r , t) and S{s, b, t) contains (q, e), for some stack symbol t.
Hence, if P starts at p with an empty stack, after reading a it can go to state r
and push t onto the stack. Then reading string y can bring it to s and leave t
on the stack. Then after reading b it can go to state q and pop t off the stack.
Therefore x can bring it from p with empty stack to q with empty stack.

In the second case, consider the portions y and z of x that Anr and ATa re-

spectively generate, so x = yz. Because APT =$ y in at most k steps and Am =$ z

in at most k steps, the induction hypothesis tells us that y can bring P from p

to r, and z can bring P from r to q, with empty stacks at the beginning and
end. Hence x can bring it from p with empty stack to q with empty stack. This

completes the induction step.

If x can bring P from p with empty stack to q with empty stack, Apq generates x.

We prove this claim by induction on the number of steps in the computation

o f P that goes from p to q with empty stacks on input x.

• Suppose that the stack becomes empty
again in between

19

120 CHAPTER 2 / CONTEXT-FREE LANGUAGES 2.2 PUSHDOWN AUTOMATA 121

PROOF Say that P = (Q, S , I?, 5, qo, {qaccept}) and construct G. The variables

of G are { A p g p, q E Q } . The start variable is A q y , g , , . Now we describe G's
rules.

For each p, q, r, s E Q, t E I?, and a, b E Sg, i(6(p, a, E) contains (r, t) and

S(s , b, t) contains (q, E) , put the rule Apq -+ &b in G.

For each p, q, r E Q , put the rule Apq -+ AprArq in G.

Finally, for each p E Q, put the rule App -+ E in G.

You may gain some insight for this construction from the following figures.

t
Stack
height

Input string
+

T r

generated generated

by APT by Am

FIGURE 2.28

PDA computation corresponding to the rule Apq --+ ApTArq

Input string
+

7

generated
by Ars

FIGURE 2.29

PDA computation corresponding to the rule Apq + aAryb

Now we prove that this construction works by demonstrating that Apq gener-
ates x if and only if (iff) a; can bring P from p with empty stack to q with empty
stack. We consider each direction of the iff as a separate claim.

If Apq generates x, then a; can bring P from p with empty stack to q with empty

stack.

We prove this claim by induction on the number of steps in the derivation of

x from Apg.

Basis: The derivation has 1 step.
A derivation with a single step must use a rule whose right-hand side contains no

variables. The only rules in G where no variables occur on the right-hand side
are App + e. Clearly, input E takes P from p with empty stack t o p with empty

stack so the basis is proved.

Induction step: Assume true for derivations of length at most k, where k > 1,

and prove true for derivations of length k + 1.

Suppose that Am x with k -I- 1 steps. The first step in this derivation is either

Apq => d S b or Apq =?> AprArq. We handle these two cases separately.

In the first case, consider the portion y of a; that Ars generates, so x = ayb.

Because Ays =$ y with k steps, the induction hypothesis tells us that P can go
from r on empty stack to s on empty stack. Because Ann -+ aArsb is a rule of

G, 8(p, a, e) contains (r , t) and S{s, b, t) contains (q, e), for some stack symbol t.
Hence, if P starts at p with an empty stack, after reading a it can go to state r
and push t onto the stack. Then reading string y can bring it to s and leave t
on the stack. Then after reading b it can go to state q and pop t off the stack.
Therefore x can bring it from p with empty stack to q with empty stack.

In the second case, consider the portions y and z of x that Anr and ATa re-

spectively generate, so x = yz. Because APT =$ y in at most k steps and Am =$ z

in at most k steps, the induction hypothesis tells us that y can bring P from p

to r, and z can bring P from r to q, with empty stacks at the beginning and
end. Hence x can bring it from p with empty stack to q with empty stack. This

completes the induction step.

If x can bring P from p with empty stack to q with empty stack, Apq generates x.

We prove this claim by induction on the number of steps in the computation

o f P that goes from p to q with empty stacks on input x.

• then the rule Apq →AprArq does the job

• Let P = (Q, Σ, Γ, δ, σ, ε, {φ}). Construct G with
variables {Apq | p, q ∈ Q }, start symbol Aσφ,
terminals Σ, and rules R defined as follows:
1. For each p ∈ Q, the rule App → ε ∈ R.

2. For each p, q, r ∈ Q, the rule Apq → AprArq ∈ R

3. For each p, q, r, s ∈ Q, x ∈ Γ, and a, b ∈ Σ ε,
δ(p, a, ε) ∋ (r, x) and δ(s, b, x) ∋ (q, ε), the rule
Apq → aArsb ∈ R

20

Construction

Proof Outline

• The proof that this construction works
requires two things
1. Any string generated by Apq will in fact bring P

from state p with empty stack to state q with
empty stack, and

2. All strings capable of bringing P from state p
with empty stack to state q with empty stack
can in fact be generated by Apq

21

Example: PDA for an bn

22

ε,ε→$ a,ε→A

ε,$→ $

ε,ε→ε

b,A→ε

1 2

34

ε,ε→$ a,ε→A

ε,$→ ε b,A→ε

1 2

45

3

ε,ε→#

ε,#→e

Example: PDA for an bn

• Does not meet
the restrictions

22

ε,ε→$ a,ε→A

ε,$→ $

ε,ε→ε

b,A→ε

1 2

34

ε,ε→$ a,ε→A

ε,$→ ε b,A→ε

1 2

45

3

ε,ε→#

ε,#→e

Example: PDA for an bn

• Does not meet
the restrictions

22

1. Stack must start and
finish empty

ε,ε→$ a,ε→A

ε,$→ $

ε,ε→ε

b,A→ε

1 2

34

ε,ε→$ a,ε→A

ε,$→ ε b,A→ε

1 2

45

3

ε,ε→#

ε,#→e

Example: PDA for an bn

• Does not meet
the restrictions

22

1. Stack must start and
finish empty

2. Single final state

ε,ε→$ a,ε→A

ε,$→ $

ε,ε→ε

b,A→ε

1 2

34

ε,ε→$ a,ε→A

ε,$→ ε b,A→ε

1 2

45

3

ε,ε→#

ε,#→e

Example: PDA for an bn

• Does not meet
the restrictions

22

1. Stack must start and
finish empty

2. Single final state

3. Every transition must be a
push or a pop

ε,ε→$ a,ε→A

ε,$→ $

ε,ε→ε

b,A→ε

1 2

34

ε,ε→$ a,ε→A

ε,$→ ε b,A→ε

1 2

45

3

ε,ε→#

ε,#→e

Example: PDA for an bn

• Does not meet
the restrictions

22

1. Stack must start and
finish empty

2. Single final state

3. Every transition must be a
push or a pop

ε,ε→$ a,ε→A

ε,$→ $

ε,ε→ε

b,A→ε

1 2

34

ε,ε→$ a,ε→A

ε,$→ ε b,A→ε

1 2

45

3

ε,ε→#

ε,#→e

23

ε,ε→$ a,ε→A

ε,$→ ε b,A→ε

1 2

45

3

ε,ε→#

ε,#→e

Grammar:
from rule 1:
 A11 → ε A22 → ε
A33 → ε A44 → ε A55 → ε

from rule 2:
A15 → A11 A15 | A12 A25 | A13 A35

 | A14 A45 | A15 A55

 A24 → A21 A14 | A22 A24 | A23 A34

 | A24 A44 | A25 A54

A33 → A31 A13| A32 A23 | A33 A33

 | A34 A43 | A35 A53

etc.

from rule 3:
A15 → ε A24 ε (push/pop $)
A24 → a A24b (push/pop A)
 | ε A33ε (push/pop #)

the non-trivial part:
A15 → A24

A24 → a A24 b | A33

A33 → ε

What do we know about CF Languages?

24

What do we know about CF Languages?

✦ Any CF language can be recognized by a PDA
✦ The language recognized by a PDA is CF
✦ (Some CF languages are deterministic, but not all)
✦ The union of two CF languages is CF
✦ The product of two CF languages is CF
✦ The Kleene closure (*) of a CF language is CF
✦ Not all languages are CF

24

Normal Forms

• When proving stuff using a grammar, the
work is often simpler if the grammar is in a
particular form

• Chomsky Normal Form is an example
‣ There are others, e.g. Greibach Normal Form

• Key idea: the Normal Forms do not restrict
the power of the grammar

25

Chomsky Normal Form (CNF)

• CNF is a restricted form of grammar in
which all rules are in one of the
following forms:
• A → a (a ∈ Σ)

• A → BC (B,C ∈ V and are not the start symbol)

• S → ε (allowed only if S is the start symbol)

• Any CFG can be rewritten to CNF

26

An application of CNF
• What is the shape of a CNF parse tree?

• Lemma: If G is a grammar in CNF, then
for any string w ∈ L(G) of length n ≥ 1,
any derivation of w requires exactly 2n-1
steps. Proof: Homework!

• Theorem: For any grammar G and string
w, we can determine in finite time
whether or not w ∈ L(G).
• Proof: try all possible derivations of up to 2n-1

steps!
27

Strategy: transforming to CNF
• Add new start symbol S0 and rule S0 → S

• only strictly necessary if S appears on a RHS

• Remove all rules of the form A → ε
• unless A is the start symbol

• Remove all unit rules of the form A → B

• Arrange that RHSʼs of length ≥ 2 contain
only variables

• Arrange that all RHSʼs have length ≤ 2

• Weʼre done!
28

Remove ε-rules

• While there is a rule of the form A → ε :
• Remove the rule

• Wherever an A appears in the RHS of a rule,
add an instance of that rule with the A omitted
• Ex: Given the rule B → uAv, add the rule B → uv

• Ex. Given the rule B → uAvAw, add the rules
B → uvAw, B → uAvw, and B → uvw

• Ex. Given the rule B →A, add the rule B →ε
unless we have already removed that rule earlier

29

Remove unit-rules

• While there is a rule of the form A → B :
• Remove it

• For every rule of the form B → u, add a rule
A → u, unless this is a unit rule we previously
removed

30

Require variables on RHS

• For each terminal a ∈ Σ that appears on
the right-hand side of some rule of the
form V → w where ⎮w ⎮ ≥ 2 :
• Add a new variable A
• Add a rule A → a
• Substitute A for all occurrences of a in rules of

the above form

31

Divide-up RHS

• For each rule of the form A → q1q2...qn,
where n ≥ 3 :
• Remove the rule

• Add variables A1,A2,...,An-2

• Add rules A→ q1A1, A1 → q2A2, ..., An-2 →
qn-1qn

32

Example: converting to CNF
• Initial grammar:

S → aSb ⎮ T T→ cT ⎮ ε

• After start variable introduction:
 S0 → S S → aSb ⎮ T T→ cT ⎮ ε

• After ε-rule elimination:
 S0 → S ⎮ ε S → aSb ⎮ ab ⎮ T
 T→ cT ⎮ c

• After unit-rule elimination:
 S0 → aSb ⎮ ab ⎮ cT ⎮ c ⎮ ε
 S → aSb ⎮ ab ⎮ cT ⎮ c T→ cT ⎮ c

33

Example (continued)
• After variable introduction

 S0 → ASB ⎮ AB ⎮ CT ⎮ c ⎮ ε
 S → ASB ⎮ AB ⎮ CT ⎮ c
 T → CT ⎮ c A → a B→ b C → c

• After RHS splitting
 S0 → AD ⎮ AB ⎮ CT ⎮ c ⎮ ε

 S → AD ⎮ AB ⎮ CT ⎮ c D → SB
 T → CT ⎮ c A → a B→ b C → c

34

The Pumping Lemma
for Context-free Languages

35

The Pumping Lemma
for Context-free Languages

• If a CF language has arbitrarily long strings, any
grammar for it must contain a recursive chain of
productions

35

The Pumping Lemma
for Context-free Languages

• If a CF language has arbitrarily long strings, any
grammar for it must contain a recursive chain of
productions

• In the simplest case, it might contain a directly recursive
production

‣ e.g., S → uRy
 R → vRx ⎮ w
where either v or x must be non-empty

35

The Pumping Lemma
for Context-free Languages

• If a CF language has arbitrarily long strings, any
grammar for it must contain a recursive chain of
productions

• In the simplest case, it might contain a directly recursive
production

‣ e.g., S → uRy
 R → vRx ⎮ w
where either v or x must be non-empty

• then we can derive:
‣ S ⇒ uRy ⇒ uwy
‣ S ⇒ uRy ⇒ uvRxy ⇒ uvwxy
‣ S ⇒ uRy ⇒ uvRxy ⇒ uvvRxxy ⇒ uvvwxxy
‣ S ⇒ uRy ⇒ uvRxy ⇒ uvvRxxy ⇒ uvvvRxxxy ⇒ uvvvwxxxy

35

More generally:
S ⇒* uvwxy

• If s is long enough, then some R must appear twice on
the path from S to some terminal in s. Why?

• So we can write s = uvwxy where...

36

S

u v w x y

More generally:

37

S

u v w x y u y

w

S

x y
 v w x

u v

S

Theorem Statement

If L is a context-free language, then there is
a number p (called the pumping length)
such that for all strings z ∈ L, ⎮z,⎮ ≥ p,
z can be divided into 5 pieces z = uvwxy
satisfying:

1. for each i ≥ 0, uviwxiy ∈ L
2. ⎮vx⎮ > 0
3. ⎮vwx ⎮ ≤ p

38

Proof
• Assume CFG for L is in Chomsky NF with variable set V.

• Take p = 2⎮v⎮ + 1. Then if ⎮z,⎮ ≥ p, any parse tree for z has
height at least ⎮V⎮+1. Why?

• Choose a parse tree with fewest nodes.

• The longest path from root to a terminal must have at least
⎮V⎮+1 variables. So some variable must appear at least
twice among the bottom ⎮V⎮+1 nodes. Why?

• Consider any such variable R and divide z into uvwxy as in
diagram. Can see that uviwxiy is also in L for all i ≥ 0.

• ⎮vwx⎮ ≤ p because path from R has height at most ⎮V⎮+1.

• |vx| > 0; otherwise we could have a tree with fewer nodes
39

Using the Pumping Lemma
• Prove that L = {anbncn ⎮ n ≥ 0} is not CF
• Assume that L is CF and derive a contradiction:
‣ pick z = apbpcp where p is the pumping length
‣ ⎮ z ⎮ ≥ p, so we can write z=uvwxy where vx > 0,

vwx ≤ p, and uviwxiy is in L. In particular, take i = 2.
‣ if v contains two letters, say a and b, then any string

containing v2 canʼt be in L. Same for x. Why?
‣ so v and x must have the form aj,or bj,or cj, or ε

° but at most one of them can be ε. Why?
‣ so at least one of the symbols a, b, or c does not appear in

vx, but at least one does
‣ so uv2wx2y canʼt have the same number of aʼs bʼs and cʼs

40

Pumping Lemma Example 2

41

Pumping Lemma Example 2
• Prove that C = {aibjck ⎮ 0 ≤ i ≤ j ≤ k} is not CF

41

Pumping Lemma Example 2
• Prove that C = {aibjck ⎮ 0 ≤ i ≤ j ≤ k} is not CF

• Suppose C is CF.

41

Pumping Lemma Example 2
• Prove that C = {aibjck ⎮ 0 ≤ i ≤ j ≤ k} is not CF

• Suppose C is CF.

• Let the pumping length be p, and again consider the
string z = apbpcp in C.

41

Pumping Lemma Example 2
• Prove that C = {aibjck ⎮ 0 ≤ i ≤ j ≤ k} is not CF

• Suppose C is CF.

• Let the pumping length be p, and again consider the
string z = apbpcp in C.

• Then the pumping lemma says that we can divide
z = uvwxy where vx > 0, vwx ≤ p, and uviwxiy is in C
for all i

41

Pumping Lemma Example 2
• Prove that C = {aibjck ⎮ 0 ≤ i ≤ j ≤ k} is not CF

• Suppose C is CF.

• Let the pumping length be p, and again consider the
string z = apbpcp in C.

• Then the pumping lemma says that we can divide
z = uvwxy where vx > 0, vwx ≤ p, and uviwxiy is in C
for all i

• As in the previous example, at least one of the symbols a,
b, or c does not appear in vx but at least one does.

41

42

• Now there are three cases to consider:

42

• Now there are three cases to consider:
1. The aʼs donʼt appear. Now consider uv0wx0y and

compare with uvwxy. The string uv0wx0y still has p aʼs,
but fewer bʼs and/or cʼs. Hence, uv0wx0y ∉ C

42

• Now there are three cases to consider:
1. The aʼs donʼt appear. Now consider uv0wx0y and

compare with uvwxy. The string uv0wx0y still has p aʼs,
but fewer bʼs and/or cʼs. Hence, uv0wx0y ∉ C

2. The bʼs donʼt appear. So either aʼs or cʼs must appear
in v or x. If aʼs appear, then uv2wx2y contains more aʼs
than bʼs. If cʼs appear, then uv0wx0y contains fewer cʼs
than bʼs. Either way, the pumped string ∉ C.

42

• Now there are three cases to consider:
1. The aʼs donʼt appear. Now consider uv0wx0y and

compare with uvwxy. The string uv0wx0y still has p aʼs,
but fewer bʼs and/or cʼs. Hence, uv0wx0y ∉ C

2. The bʼs donʼt appear. So either aʼs or cʼs must appear
in v or x. If aʼs appear, then uv2wx2y contains more aʼs
than bʼs. If cʼs appear, then uv0wx0y contains fewer cʼs
than bʼs. Either way, the pumped string ∉ C.

3. The cʼs donʼt appear. In this case, uv2wx2y contains
more aʼs and/or bs than cʼs, and so the string
uv2wx2y ∉ C

42

• Now there are three cases to consider:
1. The aʼs donʼt appear. Now consider uv0wx0y and

compare with uvwxy. The string uv0wx0y still has p aʼs,
but fewer bʼs and/or cʼs. Hence, uv0wx0y ∉ C

2. The bʼs donʼt appear. So either aʼs or cʼs must appear
in v or x. If aʼs appear, then uv2wx2y contains more aʼs
than bʼs. If cʼs appear, then uv0wx0y contains fewer cʼs
than bʼs. Either way, the pumped string ∉ C.

3. The cʼs donʼt appear. In this case, uv2wx2y contains
more aʼs and/or bs than cʼs, and so the string
uv2wx2y ∉ C

• Thus, z canʼt be pumped, and we have a
contradiction. So C is not CF.

42

Pumping Lemma Example 3
• Prove that D = { ww ⎮ w ∈ {0, 1}* } is not CF

• Suppose D is CF with pumping length p.

• Consider the string z = 0p1p0p1p in D. Certainly ⎮z⎮ ≥ p.

• Then the pumping lemma says that we can divide
z = uvwxy where vx > 0, vwx ≤ p, and uviwxiy is in D for
all i

• Consider the following three mutually exclusive cases:

• vwx falls in the first half of z. But then if we “pump up” to
uv2wx2y, weʼll move a 1 into the first position of the second
half. The resulting string canʼt be in D.

• vwx falls in the second half of z... a similar argument holds

• vwx straddles the midpoint of z. But then if we “pump
down” to uwy, we get a string of the form 0p1i0j1p, where
i and j cannot both be p. Resulting string canʼt be in D.

43

