CS3II—Computational Structures More about PDAs \& Context-Free Languages
 Lecture 9

Andrew P. Black
Andrew Tolmach

Three important results

1. Any CFG can be "simulated" by a PDA
 2. Any PDA can be "simulated" by a CFG

3. Pumping Lemma: not all languages are Context-free

but first:

some notation from Hopcroft et al.

PDA Acceptance, Revisted

- Consider a PDA $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, Z_{0}, F\right)$
- An instantaneous description (ID) of M has the form (q,w,t)
where $\mathrm{q} \in \mathrm{Q}$ is the current state,
$w \in \Sigma^{*}$ is the unread input,
$\mathrm{t} \in \Gamma^{*}$ is the current stack
(with top of stack on the left)

PDA Acceptance, by \vdash

- We define a relation \vdash on ID’s; \vdash captures what it means for the PDA to take a single step:

$$
(\mathrm{q}, \mathrm{aw}, \mathrm{bt}) \vdash(\mathrm{p}, \mathrm{w}, \mathrm{ct})
$$

iff

$$
(p, c) \in \delta(q, a, b)
$$

for some
$p, q \in Q ; a \in \Sigma_{\varepsilon} ; w \in \Sigma^{*} ; b, c \in \Gamma_{\varepsilon} ; t \in \Gamma^{*}$

PDA Acceptance, by \vdash

- We define a relation \vdash on ID’s; \vdash captures what it means for the PDA to take a single step:

$$
(p, c) \in \delta(q, a, b)
$$

for some
$\mathrm{p}, \mathrm{q} \in \mathrm{Q} ; \mathrm{a} \in \Sigma_{\varepsilon} ; \mathbf{w} \in \Sigma^{*} ; \mathrm{b}, \mathrm{c} \in \Gamma_{\varepsilon} ; \mathrm{t} \in \Gamma^{*}$

PDA Acceptance, by \vdash

- We define a relation \vdash on ID’s; \vdash captures what it means for the PDA to take a single step:

$$
(\mathrm{q}, \mathrm{aw}, \mathrm{bt}) \vdash(\mathrm{p}, \mathrm{w}, \mathrm{ct})
$$

iff

$$
(p, c) \in \delta(q, a, b)
$$

for some
$p, q \in Q ; a \in \Sigma_{\varepsilon} ; w \in \Sigma^{*} ; b, c \in \Gamma_{\varepsilon} ; t \in \Gamma^{*}$

PDA Acceptance, by \vdash

- We define a relation \vdash on ID’s; \vdash captures what it means for the PDA to take a single step:

$(q, a w, b t) \vdash(p, w, c t)$
 Input

iff

$$
(p, c) \in \delta(q, a, b)
$$

for some
$p, q \in Q ; a \in \Sigma_{\varepsilon} ; w \in \Sigma^{*} ; b, c \in \Gamma_{\varepsilon} ; t \in \Gamma^{*}$

PDA Acceptance, by \vdash

- We define a relation \vdash on ID’s; \vdash captures what it means for the PDA to take a single step:

$$
(\mathrm{q}, \mathrm{aw}, \mathrm{bt}) \vdash(\mathrm{p}, \mathrm{w}, \mathrm{ct})
$$

iff

$$
(p, c) \in \delta(q, a, b)
$$

for some
$p, q \in Q ; a \in \Sigma_{\varepsilon} ; w \in \Sigma^{*} ; b, c \in \Gamma_{\varepsilon} ; t \in \Gamma^{*}$

PDA Acceptance, by \vdash

- We define a relation \vdash on ID’s; \vdash captures what it means for the PDA to take a single step:

for some
$\mathrm{p}, \mathrm{q} \in \mathrm{Q} ; \mathrm{a} \in \Sigma_{\varepsilon} ; \mathbf{w} \in \Sigma^{*} ; \mathrm{b}, \mathrm{c} \in \Gamma_{\varepsilon} ; \mathrm{t} \in \Gamma^{*}$

PDA Acceptance, by \vdash

- We define a relation \vdash on ID’s; \vdash captures what it means for the PDA to take a single step:

$$
(\mathrm{q}, \mathrm{aw}, \mathrm{bt}) \vdash(\mathrm{p}, \mathrm{w}, \mathrm{ct})
$$

iff

$$
(p, c) \in \delta(q, a, b)
$$

for some
$p, q \in Q ; a \in \Sigma_{\varepsilon} ; w \in \Sigma^{*} ; b, c \in \Gamma_{\varepsilon} ; t \in \Gamma^{*}$

PDA Acceptance, by \vdash

- We write \vdash^{*} to mean "zero or more steps using \vdash "
- Then we say M accepts w (by final state) iff $\left(q_{0}, w, \varepsilon\right) \vdash^{*}(q, \varepsilon, t)$ for some $q \in F$ and any $t \in \Gamma^{*}$
- As usual, the language accepted by M is just $\{w \mid w$ is accepted by M\}

Non-determinism is fundamental

- Unlike with finite automata, PDA nondeterminism cannot be transformed away.
- Deterministic PDA's (DPDA's) recognize strictly fewer languages than nondeteristic ones
- DPDAs are useful in practice as the basis for language parser implementations

PDA's and CFG's are equivalent!

- If G is a CFG, we can build a (nondeterministic) PDA M with $L(M)=L(G)$
- That is, we can build a parser for G
- This is an easy construction
- If M is a PDA, we can construct a CFG G with $L(G)=L(M)$
- This is harder

Parsing: PDA from CFG

- Parsing is the process of going from a sentence (string) in the language to a derivation tree.
- Top-down parsing starts at the "top", with the start-symbol of the grammar and derives a string
- Bottom-up parsing starts at the "bottom" with a string and figures out how to derive that string from the start-symbol.

PDAs for Top-down parsing

Note: we're allowing machine to push multiple symbols onto stack in one move

Top-down parsing PDA example

$$
\begin{aligned}
& S \rightarrow a S a \\
& S \rightarrow B \\
& B \rightarrow b B \\
& B \rightarrow \varepsilon
\end{aligned}
$$

Top-down parsing PDA example

State	Input	Stack
start	aabaa	
loop	aabaa	S\$
loop	aabaa	aSa\$
loop	abaa	Sa\$
loop	abaa	aSaa\$
loop	baa	Saa\$
loop	baa	Baa\$
loop	baa	bBaa\$
loop	aa	Baa\$
loop	aa	aa\$
loop	a	a\$
loop		$\$$
accept		

Alternative: Bottom-up parsing

Building a CFG G from a PDA P [method from Sipser; IALC is somewhat different]

Key idea: each string derived from $A_{p q}$, is capable of taking the PDA from state p with empty stack to state q with empty stack.

1. We seek to build a grammar that has the property in the box.
2. If an input string drives P from state p with empty stack to state q with empty stack, it will also move it from p to q with arbitrary stuff on the stack.

Building a CFG G from a PDA P

Invariant: each string derived from A_{pq}, is capable of taking the PDA from state p with empty stack to state q with empty stack.

- Start by simplifying the problem:
- Modify P so that it has a start state σ, a single final state φ, so that it starts and finishes with an empty stack, and so that each transition pushes or pops a single symbol onto the stack.
- How to do this?
- Now we need to write a grammar with start symbol $\mathrm{A} \sigma \varphi$, such that it satisfies the invariant
- How can P move from state p when its stack is empty?
- First move must be to push some symbol onto the stack
- Last move must be to pop a symbol off the stack.
- Maybe the stack does not become empty in between ... or maybe it does.
- So, there are two cases
- Suppose that the stack does not become empty in between.
- First, machine reads some a, pushes some X, and goes to some state, say r
- Then it does something (maybe complicated), ending in some state s
- Finally, it pops the same X, reads some b and goes to state q.
- This corresponds to the grammar production $\mathrm{A}_{p q} \rightarrow a \mathrm{~A}_{r s} b$, where $\mathrm{A}_{r s}$ satisfies the invariant.
- Note that a and/or b might be ε
- In pictures:

- Suppose that the stack becomes empty again in between

- then the rule $\mathrm{A}_{p q} \rightarrow \mathrm{~A}_{p r} \mathrm{~A}_{r q}$ does the job

Construction

- Let $\mathrm{P}=(\mathrm{Q}, \Sigma, \Gamma, \delta, \sigma, \varepsilon,\{\varphi\})$. Construct G with variables $\left\{\mathrm{A}_{p q} \mid p, q \in \mathrm{Q}\right\}$, start symbol $\mathrm{A}_{\sigma \varphi}$, terminals Σ, and rules R defined as follows:

1. For each $p \in \mathrm{Q}$, the rule $\mathrm{A}_{p p} \rightarrow \varepsilon \in \mathrm{R}$.
2. For each $p, q, r \in \mathrm{Q}$, the rule $\mathrm{A}_{p q} \rightarrow \mathrm{~A}_{p r} \mathrm{~A}_{r q} \in \mathrm{R}$
3. For each $p, q, r, s \in \mathrm{Q}, \mathrm{x} \in \Gamma$, and $a, b \in \Sigma_{\varepsilon}$, $\delta(p, a, \varepsilon) \ni(r, \mathrm{X})$ and $\delta(s, b, \mathbf{x}) \ni(q, \varepsilon)$, the rule $\mathrm{A}_{p q} \rightarrow a \mathrm{~A}_{r s} b \in \mathrm{R}$

Proof Outline

- The proof that this construction works requires two things

1. Any string generated by $\mathrm{A}_{p q}$ will in fact bring P from state p with empty stack to state q with empty stack, and
2. All strings capable of bringing P from state p with empty stack to state q with empty stack can in fact be generated by $\mathrm{A}_{p q}$

Example: PDA for $\mathrm{a}^{n} \mathrm{~b}^{n}$

Example: PDA for $a^{n} b^{n}$

- Does not meet the restrictions

Example: PDA for $a^{n} b^{n}$

- Does not meet the restrictions

1. Stack must start and finish empty

Example: PDA for $a^{n} b^{n}$

- Does not meet the restrictions

1. Stack must start and finish empty
2. Single final state

Example: PDA for $a^{n} b^{n}$

- Does not meet the restrictions

1. Stack must start and finish empty
2. Single final state
3. Every transition must be a
 push or a pop

Example: PDA for $a^{n} b^{n}$

- Does not meet the restrictions

1. Stack must start and finish empty
2. Single final state
3. Every transition must be a
 push or a pop

$$
\begin{aligned}
& \text { Grammar: } \\
& \text { from rule I: } \\
& \mathrm{A}_{11} \rightarrow \varepsilon \quad \mathrm{~A}_{22} \rightarrow \varepsilon \\
& \mathrm{~A}_{33} \rightarrow \varepsilon \quad \mathrm{~A}_{44} \rightarrow \varepsilon \quad \mathrm{~A}_{55} \rightarrow \varepsilon \\
& \text { from rule 2: } \\
& A_{15} \rightarrow A_{11} A_{15}\left|A_{12} A_{25}\right| A_{13} A_{35} \\
& \left|A_{14} A_{45}\right| A_{15} A_{55} \\
& A_{24} \rightarrow A_{21} A_{14}\left|A_{22} A_{24}\right| A_{23} A_{34} \\
& \left|A_{24} A_{44}\right| A_{25} A_{54} \\
& A_{33} \rightarrow A_{31} A_{13}\left|A_{32} A_{23}\right| A_{33} A_{33} \\
& \left|A_{34} A_{43}\right| A_{35} A_{53} \\
& \text { etc. } \\
& \text { from rule 3: }
\end{aligned}
$$

the non-trivial part:
$\mathrm{A}_{15} \rightarrow \mathrm{~A}_{24}$
$\mathrm{A}_{24} \rightarrow \mathrm{a} \mathrm{A}_{24} \mathrm{~b} \mid \mathrm{A}_{33}$
$\mathrm{A}_{33} \rightarrow \varepsilon$

What do we know about CF Languages?

What do we know about CF Languages?

+ Any CF language can be recognized by a PDA
+ The language recognized by a PDA is CF
+ (Some CF languages are deterministic, but not all)
+ The union of two CF languages is CF
+ The product of two CF languages is CF
+ The Kleene closure (*) of a CF language is CF
+ Not all languages are CF

Normal Forms

- When proving stuff using a grammar, the work is often simpler if the grammar is in a particular form
- Chomsky Normal Form is an example
- There are others, e.g. Greibach Normal Form
- Key idea: the Normal Forms do not restrict the power of the grammar

Chomsky Normal Form (CNF)

- CNF is a restricted form of grammar in which all rules are in one of the following forms:
- $A \rightarrow a \quad(a \in \Sigma)$
- $A \rightarrow B C$
($B, C \in V$ and are not the start symbol)
- $S \rightarrow \varepsilon$
(allowed only if S is the start symbol)
- Any CFG can be rewritten to CNF

An application of CNF

- What is the shape of a CNF parse tree?
- Lemma: If G is a grammar in CNF, then for any string $w \in L(\mathrm{G})$ of length $n \geq 1$, any derivation of w requires exactly $2 n-1$ steps. Proof: Homework!
- Theorem: For any grammar G and string w , we can determine in finite time whether or not $w \in L(G)$.
- Proof: try all possible derivations of up to $2 n-1$ steps!

Strategy: transforming to CNF

- Add new start symbol S_{0} and rule $\mathrm{S}_{0} \rightarrow \mathrm{~S}$
- only strictly necessary if S appears on a RHS
- Remove all rules of the form $\mathrm{A} \rightarrow \varepsilon$
- unless A is the start symbol
- Remove all unit rules of the form $A \rightarrow B$
- Arrange that RHS's of length ≥ 2 contain only variables
- Arrange that all RHS's have length ≤ 2
- We're done!

Remove ε-rules

- While there is a rule of the form $A \rightarrow \varepsilon$:
- Remove the rule
- Wherever an A appears in the RHS of a rule, add an instance of that rule with the A omitted
- Ex: Given the rule $B \rightarrow u A v$, add the rule $B \rightarrow u v$
- Ex. Given the rule $B \rightarrow u A v A w$, add the rules $B \rightarrow$ uvAw, $B \rightarrow u A v w$, and $B \rightarrow u v w$
- Ex. Given the rule $B \rightarrow A$, add the rule $B \rightarrow \varepsilon$ unless we have already removed that rule earlier

Remove unit-rules

- While there is a rule of the form $A \rightarrow B$:
- Remove it
- For every rule of the form $B \rightarrow u$, add a rule $A \rightarrow u$, unless this is a unit rule we previously removed

Require variables on RHS

- For each terminal $a \in \Sigma$ that appears on the right-hand side of some rule of the form $V \rightarrow w$ where $|w| \geq 2$:
- Add a new variable A
- Add a rule A \rightarrow a
- Substitute A for all occurrences of a in rules of the above form

Divide-up RHS

- For each rule of the form $A \rightarrow q_{1} q_{2} \ldots q_{n}$, where $\mathrm{n} \geq 3$:
- Remove the rule
- Add variables $\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{n-2}$
- Add rules $A \rightarrow q_{1} A_{1}, A_{1} \rightarrow q_{2} A_{2}, \ldots, A_{n-2} \rightarrow$ $q_{n-1} q_{n}$

Example: converting to CNF

- Initial grammar:

$$
\mathrm{S} \rightarrow \mathrm{aSb}|\mathrm{~T} \quad \mathrm{~T} \rightarrow \mathrm{cT}| \varepsilon
$$

- After start variable introduction:

$$
\mathrm{S}_{0} \rightarrow \mathrm{~S} \quad \mathrm{~S} \rightarrow \mathrm{aSb}|\mathrm{~T} \quad \mathrm{~T} \rightarrow \mathrm{cT}| \varepsilon
$$

- After ε-rule elimination:

$$
\begin{aligned}
& \mathrm{S}_{0} \rightarrow \mathrm{~S}|\varepsilon \quad \mathrm{~S} \rightarrow \mathrm{aSb}| \mathrm{ab} \mid \mathrm{T} \\
& \mathrm{~T} \rightarrow \mathrm{cT} \mid \mathrm{c}
\end{aligned}
$$

- After unit-rule elimination:

$$
\begin{aligned}
& \mathrm{S}_{0} \rightarrow \mathrm{aSb}|\mathrm{ab}| \mathrm{cT}|\mathrm{c}| \varepsilon \\
& \mathrm{S} \rightarrow \mathrm{aSb}|\mathrm{ab}| \mathrm{cT}|\mathrm{c} \quad \mathrm{~T} \rightarrow \mathrm{cT}| \mathrm{c}
\end{aligned}
$$

Example (continued)

- After variable introduction

$$
\begin{aligned}
& S_{0} \rightarrow \mathrm{ASB}|\mathrm{AB}| \mathrm{CT}|c| \varepsilon \\
& \mathrm{S} \rightarrow \mathrm{ASB}|\mathrm{AB}| \mathrm{CT} \mid \mathrm{c} \\
& \mathrm{~T} \rightarrow \mathrm{CT} \mid \mathrm{C} \quad \mathrm{~A} \rightarrow \mathrm{a} \quad \mathrm{~B} \rightarrow \mathrm{~b} \quad \mathrm{C} \rightarrow \mathrm{c}
\end{aligned}
$$

- After RHS splitting

$$
\begin{aligned}
& S_{0} \rightarrow \mathrm{AD}|\mathrm{AB}| \mathrm{CT}|\mathrm{c}| \varepsilon \\
& \mathrm{S} \rightarrow \mathrm{AD}|\mathrm{AB}| \mathrm{CT} \mid \mathrm{c} \quad \mathrm{D} \rightarrow \mathrm{SB} \\
& \mathrm{~T} \rightarrow \mathrm{CT} \mid \mathrm{C} \quad \mathrm{~A} \rightarrow \mathrm{a} \quad \mathrm{~B} \rightarrow \mathrm{~b} \mathrm{C} \rightarrow \mathrm{c}
\end{aligned}
$$

The Pumping Lemma for Context-free Languages

The Pumping Lemma for Context-free Languages

- If a CF language has arbitrarily long strings, any grammar for it must contain a recursive chain of productions

The Pumping Lemma for Context-free Languages

- If a CF language has arbitrarily long strings, any grammar for it must contain a recursive chain of productions
- In the simplest case, it might contain a directly recursive production

$$
\begin{aligned}
\text { e.g., } & \mathrm{S} \rightarrow u \mathrm{R} y \\
& \mathrm{R} \rightarrow v \mathrm{R} x \mid w
\end{aligned}
$$

where either v or x must be non-empty

The Pumping Lemma for Context-free Languages

- If a CF language has arbitrarily long strings, any grammar for it must contain a recursive chain of productions
- In the simplest case, it might contain a directly recursive production
- e.g., $\quad \begin{aligned} \mathrm{S} & \rightarrow u \mathrm{R} y \\ & \mathrm{R} \rightarrow v \mathrm{R} x \mid w\end{aligned}$
where either v or x must be non-empty
- then we can derive:
- $\mathrm{S} \Rightarrow u \mathrm{R} y \Rightarrow u w y$
- $\mathrm{S} \Rightarrow u \mathrm{R} y \Rightarrow u v \mathrm{R} x y \Rightarrow u v w x y$
- $\mathrm{S} \Rightarrow u \mathrm{R} y \Rightarrow u v \mathrm{R} x y \Rightarrow u v v \mathrm{R} x x y \Rightarrow u v v w x x y$
- $\mathrm{S} \Rightarrow u \mathrm{R} y \Rightarrow u v \mathrm{R} x y \Rightarrow u v v \mathrm{R} x x y \Rightarrow u v \nu v \mathrm{R} x x x y \Rightarrow u v v \nu w x x x y$

More generally:

$$
\mathrm{S} \Rightarrow^{*} u v w x y
$$

- If s is long enough, then some R must appear twice on the path from S to some terminal in s. Why?
- So we can write $s=u v w x y$ where...

More generally:

Theorem Statement

If L is a context-free language, then there is a number p (called the pumping length) such that for all strings $z \in L,|z| \geq p$, z can be divided into 5 pieces $z=u v w x y$ satisfying:

1. for each $i \geq 0, u v^{i} w x^{i} y \in L$
2. $|v x|>0$
3. $|v w x| \leq p$

Proof

- Assume CFG for L is in Chomsky NF with variable set V.
- Take $p=2|v|+1$. Then if $|z| \geq p$, any parse tree for z has height at least $|V|+1$. Why?
- Choose a parse tree with fewest nodes.
- The longest path from root to a terminal must have at least $|\mathrm{V}|+1$ variables. So some variable must appear at least twice among the bottom |V|+1 nodes. Why?
- Consider any such variable R and divide z into $u v w x y$ as in diagram. Can see that $u v^{i} w x^{i} y$ is also in L for all $i \geq 0$.
- $|v w x| \leq p$ because path from R has height at most $|V|+1$.
- IvxI > 0; otherwise we could have a tree with fewer nodes

Using the Pumping Lemma

- Prove that $\mathrm{L}=\left\{\mathrm{a}^{n} \mathrm{~b}^{n} \mathbf{C}^{n} \mid n \geq 0\right\}$ is not CF
- Assume that L is CF and derive a contradiction:
- pick $z=a^{p} \mathrm{~b}^{p} \mathrm{C}^{p}$ where p is the pumping length
- $|z| \geq p$, so we can write $z=u v w x y$ where $|v x|>0$, $|v w x| \leq p$, and $u v^{i} w x^{i} y$ is in L. In particular, take $i=2$.
- if v contains two letters, say a and b , then any string containing v^{2} can't be in L. Same for x. Why?
- so v and x must have the form a^{j},or b^{j},or c^{j}, or ε
- but at most one of them can be ε. Why?
- so at least one of the symbols a, b, or c does not appear in $v x$, but at least one does
- so $u v^{2} w x^{2} y$ can't have the same number of a's b's and c's

Pumping Lemma Example 2

Pumping Lemma Example 2

- Prove that $\mathrm{C}=\left\{\mathrm{a}^{i} \mathrm{~b}^{j} \mathrm{c}^{k} \mid 0 \leq i \leq j \leq k\right\}$ is not CF

Pumping Lemma Example 2

- Prove that $\mathrm{C}=\left\{\mathrm{a}^{i} \mathrm{~b}^{j} \mathrm{c}^{k} \mid 0 \leq i \leq j \leq k\right\}$ is not CF
- Suppose C is CF.

Pumping Lemma Example 2

- Prove that $\mathrm{C}=\left\{\mathrm{a}^{i} \mathrm{~b}^{j} \mathrm{c}^{k} \mid 0 \leq i \leq j \leq k\right\}$ is not CF
- Suppose C is CF.
- Let the pumping length be p, and again consider the string $z=\mathrm{a}^{p} \mathrm{~b}^{p} \mathrm{C}^{p}$ in C .

Pumping Lemma Example 2

- Prove that $\mathrm{C}=\left\{\mathrm{a}^{i} \mathrm{~b}^{j} \mathrm{c}^{k} \mid 0 \leq i \leq j \leq k\right\}$ is not CF
- Suppose C is CF.
- Let the pumping length be p, and again consider the string $z=\mathrm{a}^{p} \mathrm{~b}^{p} \mathrm{C}^{p}$ in C .
- Then the pumping lemma says that we can divide $z=u v w x y$ where $|v x|>0,|v w x| \leq p$, and $u v^{i} w x^{i} y$ is in C for all i

Pumping Lemma Example 2

- Prove that $\mathrm{C}=\left\{\mathrm{a}^{i} \mathrm{~b}^{j} \mathrm{c}^{k} \mid 0 \leq i \leq j \leq k\right\}$ is not CF
- Suppose C is CF.
- Let the pumping length be p, and again consider the string $z=\mathrm{a}^{p} \mathrm{~b}^{p} \mathrm{C}^{p}$ in C.
- Then the pumping lemma says that we can divide $z=u v w x y$ where $|v x|>0,|v w x| \leq p$, and $u v^{i} w x^{i} y$ is in C for all i
- As in the previous example, at least one of the symbols a, b, or c does not appear in $v x$ but at least one does.
- Now there are three cases to consider:
- Now there are three cases to consider:

1. The a's don't appear. Now consider $u \nu^{0} w x^{0} y$ and compare with $u v w x y$. The string $u v^{0} w x^{0} y$ still has p a's, but fewer b's and/or c's. Hence, $u v^{0} w x^{0} y \notin \mathrm{C}$

- Now there are three cases to consider:

1. The a's don't appear. Now consider $u v^{0} w x^{0} y$ and compare with $u v w x y$. The string $u v^{0} w x^{0} y$ still has p a's, but fewer b's and/or c's. Hence, $u v^{0} w x^{0} y \notin \mathrm{C}$
2. The b's don't appear. So either a's or c's must appear in v or x. If a's appear, then $u v^{2} w x^{2} y$ contains more a's than b's. If c's appear, then $u \nu^{0} w x^{0} y$ contains fewer c's than b's. Either way, the pumped string $\notin \mathrm{C}$.

- Now there are three cases to consider:

1. The a's don't appear. Now consider $u \nu^{0} w x^{0} y$ and compare with $u v w x y$. The string $u v^{0} w x^{0} y$ still has p a's, but fewer b's and/or c's. Hence, $u \nu^{0} w x^{0} y \notin \mathrm{C}$
2. The b's don't appear. So either a's or c's must appear in v or x. If a's appear, then $u v^{2} w x^{2} y$ contains more a's than b's. If c's appear, then $u \nu^{0} w x^{0} y$ contains fewer c's than b's. Either way, the pumped string $\notin \mathrm{C}$.
3. The c's don't appear. In this case, $u v^{2} w x^{2} y$ contains more a's and/or bs than c's, and so the string $u v^{2} w x^{2} y \notin \mathrm{C}$

- Now there are three cases to consider:

1. The a's don't appear. Now consider $u \nu^{0} w x^{0} y$ and compare with $u v w x y$. The string $u v^{0} w x^{0} y$ still has p a's, but fewer b's and/or c's. Hence, $u v^{0} w x^{0} y \notin \mathrm{C}$
2. The b's don't appear. So either a's or c's must appear in v or x. If a's appear, then $u v^{2} w x^{2} y$ contains more a's than b's. If c's appear, then $u \nu^{0} w x^{0} y$ contains fewer c's than b's. Either way, the pumped string $\notin \mathrm{C}$.
3. The c's don't appear. In this case, $u v^{2} w x^{2} y$ contains more a's and/or bs than c's, and so the string $u v^{2} w x^{2} y \notin \mathrm{C}$

- Thus, z can't be pumped, and we have a contradiction. So C is not CF.

Pumping Lemma Example 3

- Prove that $\mathrm{D}=\left\{w w \mid w \in\{0,1\}^{*}\right\}$ is not CF
- Suppose D is CF with pumping length p.
- Consider the string $z=0{ }^{p 1 p 0^{p} 1 p}$ in D. Certainly $|z| \geq p$.
- Then the pumping lemma says that we can divide $z=u v w x y$ where $|v x|>0,|v w x| \leq p$, and $u v^{i} w x^{i} y$ is in D for all i
- Consider the following three mutually exclusive cases:
- $v w x$ falls in the first half of z. But then if we "pump up" to $u v^{2} w x^{2} y$, we'll move a 1 into the first position of the second half. The resulting string can't be in D.
- $v w x$ falls in the second half of $z \ldots$ a similar argument holds
- $v w x$ straddles the midpoint of z. But then if we "pump down" to $u w y$, we get a string of the form $0^{p} 11^{10} 1 p$, where i and j cannot both be p. Resulting string can't be in D .

