CS311 Computational Structures

Other models of Computation

Lecture 13

Andrew Black Andrew Tolmach

What is Computation?

- What does "computable" mean?
 - ► A computer can calculate it?
 - There is some (formally described execution) process and a (formally described) set of instructions — an algorithm — that describes how to get the answer

- Examples:
 - Generating strings from a grammars:
 - derivation is the process; the algorithm is encoded in the rules of the grammar
 - Accepting a string in a state machine

- Executing an ML program
- These are all Models of Computation

The Power of a Model

- We know that some models of computation are more powerful than others:
 - CFG are more powerful than Regular Grammars
 - DFAs have the same power as NFAs
 - Turing machines are more powerful than PDAs
- Is there a "most powerful model"

Turing's Thesis

- Our intuitive notion of "computation" is precisely captured by the formal device known as a Turing Machine
- There is no model of computation more powerful than a Turing machine

Steam-powered Turing machine Sieg Hall, 1987

Recall: Church-Turing Thesis

- Thesis: the problems that can be decided by an algorithm are exactly those that can be decided by a Turing machine.
- This cannot be proved; it is essentially a definition of the word "algorithm."
- But there's lots of evidence that our intuitive notion of algorithm is equivalent to a TM, and no convincing counterexamples have been found yet.

What about Alonzo Church?

- The Turing thesis is usually called the Church-Turing Thesis, in honor of Alonzo Church (1903–1995)
 - Working with his students (J. Barkley Rosser, Steven C. Kleene, and Alan M. Turing) Church established the equivalence of the Lambda calculus, recursive function theory, and Turing machines
 - They all capture the notion of computability

Other Notions of Computability

- Many other notions of computability have been proposed, e.g.
 - Grammars
 - Partial Recursive Functions
 - Lambda calculus
 - Markov Algorithms
 - Post Algorithms
 - Post Canonical Systems
 - Simple programming language with while loops
- All have been shown equivalent to Turing machines by simulation proofs

Simple (Hein p 776)

A *Simple* program is defined as follows:

- 1. V, an infinite set of variables that take values in Nat₀, and are initially 0
- 2. S, statements, which are either
 - 2.1. While statements: while V≠0 do S od
 - 2.2. Assignments: V := 0, $V_1 := succ(V_2)$, $V_1 := pred(V_2)$, or
 - 2.3. a sequence of statements separated by ;
- 3. S is a simple program

- Note that pred(0) = 0, to ensure that we stay in \mathbb{N}_0
- Can we compute anything interesting with this language?
 - yes!

Macro Statement	Simple Code for Macro
X := Y	$X := \operatorname{succ}(Y); X := \operatorname{pred}(X)$
X:= 3	$X := 0; X := \operatorname{succ}(X);$ $X := \operatorname{succ}(X); X := \operatorname{succ}(X)$
X := X + Y	I := Y; while $I \neq 0$ do X := succ(X); I := pred(I) od
Loop Forever	X := 0; X := succ(X); while $X \neq 0$ do $Y := 0$ od
repeat S until $X = 0$	S; while $X \neq 0$ do S od

Figure 13.2 Some simple macros.

Let's try: x-y, x<y, while x<y do S od

Other Notions of Computability

- Many other notions of computability have been proposed, e.g.
 - Grammars
 - Partial Recursive Functions
 - Lambda calculus
 - Markov Algorithms
 - Post Algorithms
 - Post Canonical Systems
 - Simple programming language with while loops
- All have been shown equivalent to Turing machines by simulation proofs

Markov Algorithms

 A Markov Algorithm over an alphabet A is a finite ordered sequence of productions x→y, where x, y ∈ A*. Some productions may be "Halt" productions.

• Execution proceeds as follows:

- 1. Let the input string be w
- 2. The productions are scanned in sequence, looking for a production $x \rightarrow y$ where x is a substring of w
- 3. the left-most x in w is replaced by y
- 4. If the production is a halt production, we halt
- 5. If no matching production is found, the process halts
- 6. If a replacement was made, we repeat from step 2.

- Note that a production ε → a inserts a at the start of the string.
- What does this Markov algorithm do?

```
aba \rightarrow b
ba \rightarrow b
b \rightarrow a
```


Other Notions of Computability

- Many other notions of computability have been proposed, e.g.
 - ► (Type 0 *a.k.a.* Unrestricted) **Grammars**
 - Partial Recursive Functions
 - Lambda calculus
 - Markov Algorithms
 - Post Algorithms

Portland State

- Post Canonical Systems, etc. etc. etc.
- All have been shown equivalent to Turing machines by simulation proofs

- We can extend the notion of context-free grammars to a more general mechanism
- An (unrestricted) grammar G = (V,Σ,R,S) is just like a CFG except that rules in R can take the more general form α→β where α,β are arbitrary strings of terminals and variables (α must contain a variable).
- If $\alpha \rightarrow \beta$ then $u\alpha v \Rightarrow u\beta v$ ("yields") in one step
- Define ⇒* ("derives") as reflexive transitive closure of ⇒.

Example: counting

- Grammar generating {w ∈ {a,b,c}*I w has equal numbers of a's, b's, and c's }
- G = ({S,A,B,C},{a,b,c},R,S) where R is

$$S \rightarrow \varepsilon$$

$$S \rightarrow ABCS$$

$$AB \rightarrow BA \ AC \rightarrow CA \quad BC \rightarrow CB$$

$$BA \rightarrow AB \ CA \rightarrow AC \quad CB \rightarrow BC$$

$$A \rightarrow a \qquad B \rightarrow b \qquad C \rightarrow c$$

$$try \ generating \ ccbaba$$

Example: $\{a^{2^n}, n \ge 0\}$

- Here's a set of grammar rules
 - 1. S → a
 - 2. S→ ACaB
 - 3. Ca \rightarrow aaC
 - 4. CB \rightarrow DB

try generating 2³ a's

- 5. CB \rightarrow E
- 6. aD \rightarrow Da
- 7. AD \rightarrow AC
- 8. $aE \rightarrow Ea$
- 9. AE $\rightarrow \epsilon$

(Unrestricted) Grammars and Turing machines have equivalent power

- For any grammar G we can find a TM M such that L(M) = L(G).
- For any TM M, we can find a grammar G such that L(G) = L(M).

From Grammar to TM (1)

- For any grammar G we can find a TM M such that L(M) = L(G).
- Use a non-deterministic 2-tape TM
 - First tape holds input.
 - Second tape holds a non-deterministically generated string of symbols derivable in G
- Initialize second tape to start symbol S

From Grammar to TM (2)

- Machine M repeatedly does the following:
 - Nondeterministically move to some position *i* in the active part of the second tape.
 - Nondeterministically select a rule $\alpha \rightarrow \beta$
 - If α matches the tape contents starting at *i*, rewrite the tape replacing α with β
 - If the string on tape 2 matches the input on tape 1, accept; otherwise loop.
- Easy to see that M accepts exactly the strings derivable in G.

From TM to Grammar

- For any TM M, we can find a grammar G such that L(G) = L(M).
- Key idea: represent each TM configuration *C* as a string [*C*] and construct grammar rules such that:
 *C*₁ yields *C*₂ in the TM iff
 [*C*₁] yields [*C*₂] in the grammar.
- As usual, we rely on the fact that only a finite portion of the TM tape is in use at any time.

Simulating machine transitions

- Given $M = (Q, \Sigma, \Gamma, \delta, q_{0, \sqcup}, F)$, define $G = (V, \Sigma, \mathbf{R}, S)$ as follows:
 - $V = Q \cup \Gamma \cup \{[,]\}$ S doesn't matter
 - If $\delta(q,a) = (p,b,R)$ then **R** contains $qa \rightarrow bp$
 - If $\delta(q, \downarrow) = (p, b, R)$ then **R** also contains $q] \rightarrow bp]$
 - If δ(q,a) = (p,b,L) then R contains cqa → pcb (∀c ∈ Γ) and [qa → [p⊔b
 - If $\delta(q, ⊔) = (p, b, L)$ then **R** also contains
 cq] → pcb] (∀c ∈ Γ) and [q] → [p⊔b]

Full set of grammar rules (1)

- 1. From start symbol S, generate a random string <w> where $w \in \Sigma^*$ and <,> are variables $\notin \Gamma$
 - $S \rightarrow \langle S_1 \rangle$
 - $S_1 \rightarrow xS_1$ for each $x \in \Sigma$
 - $S_1 \rightarrow \varepsilon$
- 2. Convert $\langle w \rangle$ to $w[q_0w]$

Full set of grammar rules (2)

- 3. Simulate computation between [and]
 - See previous slides
- If the string [z] contains a state in F, erase
 [z] leaving the string w
 - $xq_a \rightarrow q_a$ and $q_ax \rightarrow q_a$ for each $x \in \Gamma$ and $q_a \in F$
 - $[q_a] \rightarrow \epsilon$ for each q_a in F
- Putting all rules together, we get grammar where $S \Rightarrow^* w$ iff $q_0 w \Rightarrow^* ... q_a...$ in TM

Other Notions of Computability

- Many other notions of computability have been proposed, e.g.
 - Grammars
 - Partial Recursive Functions
 - Lambda calculus
 - Markov Algorithms
 - Post Algorithms
 - Post Canonical Systems
 - Simple programming language with while loops
- All have been shown equivalent to Turing machines by simulation proofs

Computation using Numerical Functions

- We're used to thinking about computation as something we do with **numbers** (e.g. on the naturals)
- What kinds of functions from numbers to numbers can we actually compute?
- To study this, we make a very careful selection of building blocks

Primitive Recursive Functions

- The primitive recursive functions from $\mathbb{N} \times \mathbb{N} \times \dots \times \mathbb{N} \to \mathbb{N}$ are those built from these primitives:
 - ► zero(x) = 0 succ(x) = x+1
 - $\pi_{k,j}(x_{1,}x_{2,}...,x_{k}) = x_{j}$ for $0 < j \le k$
- using these mechanisms:
 - Function composition, and
 - Primitive recursion

Function Composition

 Define a new function f in terms of functions h and g₁, g₂, ..., g_m as follows:

•
$$f(x_1,...,x_n) = h(g_1(x_1,...,x_n),...,g_m(x_1,...,x_n))$$

 Example: f(x) = x + 3 can be expressed using two compositions as f
 (x) = succ(succ(succ(x)))

Primitive Recursion

 Primitive recursion defines a new function f in terms of functions h and g as follows:

•
$$f(x_1, ..., x_k, 0) = h(x_{1,...,x_k})$$

- $f(x_1, ..., x_{k_1} \operatorname{succ}(n)) = g(x_1, ..., x_k, n, f(x_1, ..., x_{k_1}n))$
- Many ordinary functions can be defined using primitive recursion, e.g.
 - $add(x,0) = \pi_{1,1}(x)$
 - $add(x, succ(y)) = succ(\pi_{3,3}(x, y, add(x, y)))$

More P.R. Functions

- For simplicity, we omit projection functions and write 0 for zero(_) and 1 for succ(0)
 - add(x,0) = x add(x,succ(y)) = succ(add(x,y))
 - mult(x,0) = 0 mult(x,succ(y)) = add(x,mult(x,y))
 - factorial(0) = 1 factorial(succ(n)) = mult(succ(n),factorial(n))
 - exp(n,0) = 1 exp(n, succ(n)) = mult(n,exp(n,m))
 - ► pred(0) = 0 pred(succ(n)) = n
- Essentially all practically useful arithmetic functions are primitive recursive, but...

Ackermann's Function is not Primitive Recursive

- A famous example of a function that is clearly well-defined but not primitive recursive
- A(m, n) = if m = 0 then n + 1else if n = 0 then A(m - 1, 1)else A(m - 1, A(m, n - 1))

• This function grows extremely fast!

Values	of A	(<i>m</i> ,	n)
--------	------	--------------	----

<i>m</i> ∖n	0	1	2	3	4	n
0	1	2	3	4	5	<i>n</i> + 1
1	2	3	4	5	6	n + 2 = 2 + (n + 3) - 3
2	3	5	7	9	11	$2n + 3 = 2 \cdot (n + 3) - 3$
3	5	13	29	61	125	$2^{(n+3)} - 3$
4	13	65533	2 ⁶⁵⁵³⁶ – 3	$2^{2^{65536}} - 3$	<i>A</i> (3, <i>A</i> (4, 3))	$\underbrace{2^{2}}_{n+3}^{2} - 3$ twos
5	65533	$2^{2^{2^{2^{2^{2^{2^{2^{2^{2^{2^{2^{2^{$		<i>A</i> (4, <i>A</i> (5, 2))	<i>A</i> (4, <i>A</i> (5, 3))	<i>A</i> (4, <i>A</i> (5, n-1))
6	<i>A</i> (5, 1)	<i>A</i> (5, <i>A</i> (6, 0))	<i>A</i> (5, A(6, 1))	<i>A</i> (5, <i>A</i> (6, 2))	<i>A</i> (5, <i>A</i> (6, 3))	<i>A</i> (5, <i>A</i> (6, n-1))

A is not primitive recursive

- Ackermann's function grows faster than any primitive recursive function, that is:
 - for any primitive recursive function f, there is an n such that

A(n, x) > f x

• So A can't be primitive recursive

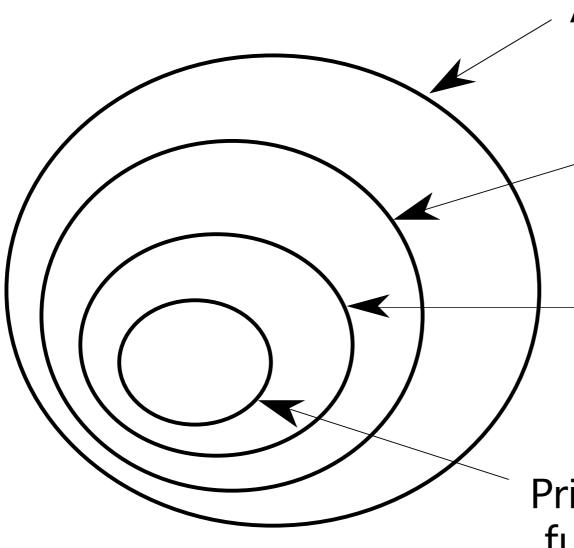
Partial Recursive Functions

- A belongs to class of **partial recursive functions**, a superset of the primitive recursive functions.
- Can be built from primitive recursive operators & new minimization operator
 - ► Let *g* be a (k+1)-argument function.
 - Define $f(x_1,...,x_k)$ as the **smallest** m such that $g(x_1,...,x_k,m) = 0$ (if such an m exists)
 - Otherwise, $f(x_1,...,x_n)$ is undefined

ortland State

- We write $f(x_1,...,x_k) = \mu m.[g(x_1,...,x_k,m) = 0]$
 - Example: μ m.[mult(n,m) = 0] = zero(_)

Hierarchy of Numeric Functions



All natural number functions

Partial recursive functions

Partial recursive functions that are total

Primitive recursive functions

Turing-computable functions

- To formalize the connection between partial recursive functions and Turing machines, we need to describe how to use TM's to compute functions on N.
- We say a function $f : \mathbb{N} \times \mathbb{N} \times ... \times \mathbb{N} \to \mathbb{N}$ is **Turing**-

computable if there exists a TM that, when started in configuration $q_0 1^{n_1} \sqcup 1^{n_2} \sqcup \ldots \sqcup 1^{n_k}$, halts with just $1^{f(n_1, n_2, \ldots, n_k)}$ on the tape.

• Fact: f is Turing-computable iff it is partial recursive.

