CS311 Computational Structures

Other models of
Computation

Lecture |3

Andrew Black
Andrew Tolmach

Portland State

IIIIIIIIII

What is Computation?

e What does “computable” mean?
> A computer can calculate it?

> There is some (formally described execution)
process and a (formally described) set of

instructions — an algorithm — that describes how
to get the answer

Portland State 2

IIIIIIIIII

e Examples:

e Generating strings from a grammars:

» derivation is the process; the algorithm is encoded in
the rules of the grammar

* Accepting a string in a state machine

4

 Executing an ML program

4

e These are all Models of Computation

Portland State

IIIIIIIIII

The Power of a Model

e We know that some models of
computation are more powerful than
others:

» CFG are more powerful than Regular Grammars
> DFAs have the same power as NFAs

> Turing machines are more powerful than PDAs

e |s there a "most powerful model”

Portland State 4

IIIIIIIIII

Turing’s Thesis

e Qur intuitive notion of “computation” is
precisely captured by the formal device
known as a Turing Machine

e There is no model of computation more
powerful than a Turing machine

Portland State

IIIIIIIIII

Steam-powered
Turing machine

Sieg Hall, 1987

0'7‘ !'\ Ve
, .l!!') \:{/ 4 ,.
l!' . 5o A

RN T T A
I

Recall: Church-Turing Thesis

e Thesis: the problems that can be decided
by an algorithm are exactly those that can
be decided by a Turing machine.

e This cannot be proved; it is essentially a
definition of the word “algorithm.”

e But there’s lots of evidence that our
intuitive notion of algorithm is equivalent
to a TM, and no convincing counter-
examples have been found vyet.

Portland State /

IIIIIIIIII

What about Alonzo Church’?

e The Turing thesis is usually
called the Church-Turing
Thesis, in honor of Alonzo
Church (1903-1995)

> Working with his students (J.
Barkley Rosser, Steven C.
Kleene, and Alan M. Turing)
Church established the
equivalence of the Lambda
calculus, recursive function
theory, and Turing machines

> They all capture the notion
of computability

Portland State 8

IIIIIIIIII

Other Notions of Computabillity

e Many other notions of computability have
been proposed, e.g.
> Grammars
> Partial Recursive Functions
> Lambda calculus
> Markov Algorithms
> Post Algorithms
» Post Canonical Systems
» Simple programming language with while loops

e All have been shown equivalent to Turing
machines by simulation proofs

Portland State 7

IIIIIIIIII

Simple (Hein p 776)

A Simple program is defined as follows:

1. V, an infinite set of variables that take values in
Nato, and are initially O

2. S, statements, which are either
2.1. While statements: while V0 do S od
2.2. Assignments: V :=0, V1 := succ(V2), Vi = pred(V2), or

2.3. a sequence of statements separated by ;

3. Sis a simple program

Portland State 10

IIIIIIIIII

e Note that pred(0) = 0, to ensure that we
stay in Np

e Can we compute anything interesting with
this language?

e yes!

Portland State

IIIIIIIIII

Macro Statement Simple Code for Macro

X=Y X :=succ(Y); X :=pred(X)
X:=5 X :=0; X := succ(X);

X := succe(X); X := succ(X)
X=X+Y I:=Y;

while /# 0 do
X := suce(X); I :=pred(J)

od
Loop Forever X:=0; X := succ(X);
while X# 0do Y:=0 od
repeat Suntil X=0 S; while X#0 do S od

Figure 13.2 Some simple macros.
o Let’s try: x-y, x<y, while x<y do S od

Portland State

IIIIIIIIII

Other Notions of Computabillity

e Many other notions of computability have
been proposed, e.g.
> Grammars
> Partial Recursive Functions
> Lambda calculus
> Markov Algorithms
> Post Algorithms
» Post Canonical Systems
» Simple programming language with while loops

e All have been shown equivalent to Turing
machines by simulation proofs

Portland State 3

IIIIIIIIII

Markov Algorithms

e A Markov Algorithm over an alphabet A is
a finite ordered sequence of productions
X—V, where X, y € A*. Some productions

may be “Halt” productions.

» e.g. abc— Db
ba — x (halt)

e EXxecution proceeds as follows:

Portland State 4

IIIIIIIIII

1. Let the input string be w

2. The productions are scanned in sequence,
looking for a production x = y where x is a
substring of w

3. the left-most x in w is replaced by y
4. If the production is a halt production, we halt

5. If no matching production is found, the process
halts

6. If a replacement was made, we repeat from
step 2.

Portland State

IIIIIIIIII

 Note that a production € — a inserts a at
the start of the string.

e What does this Markov algorithm do?

aba -2 Db
ba—Db
b — a

Portland State 16

IIIIIIIIII

Other Notions of Computabillity

e Many other notions of computability have
been proposed, e.g.

> (Type 0 a.k.a. Unrestricted) Grammars

> Partial Recursive Functions

> Lambda calculus

> Markov Algorithms

> Post Algorithms

» Post Canonical Systems, etc. etc. etc.

e All have been shown equivalent to Turing
machines by simulation proofs

Portland State

IIIIIIIIII

|7

Grammars

e We can extend the notion of context-free
grammars to a more general mechanism

e An (unrestricted) grammar G = (V,2,R,S) is
just like a CFG except that rules in R can take
the more general form a—3 where q,[3 are
arbitrary strings of terminals and variables
(a must contain a variable).

e If a— then uav = ufBv (“yields”) in one step

e Define =" (“derives”) as reflexive transitive
closure of =.

Portland State '8

IIIIIIIIII

Example: counting

e« Grammar generating {w € {a,b,c}*l w has
equal numbers of a’s, b’s, and c’s }

e G=({S,AB,C}{a,b,c},R,S)whereRis

S ¢
S = ABCS try generating
AB - BA AC—- CA BC—CB ccbaba

BA—- AB CA—-AC CB — BC
A— a B—Db C—oc

Portland State

IIIIIIIIII

Example: {a*, n =0}

e Here’s a set of grammar rules
1.5 7 a

. S— ACaB

. Ca ™ aaC

.CB — DB try generating 23 a’s

.CB—E
.aD ™ Da
. AD 2 AC
.aE ™ Ea
.AE P ¢

© 00O N 6O O & W N

Portland State

IIIIIIIIII

(Unrestricted) Grammars
and Turing machines have
equivalent power

e For any grammar G we can finda TM M
such that L(M) = L(G).

e Forany TM M, we can find a grammar G
such that L(G) = L(M).

Portland State 2|

IIIIIIIIII

From Grammarto TM (1)

e For any grammar G we can finda TM M
such that L(M) = L(G).

e Use a non-deterministic 2-tape TM
> First tape holds input.

» Second tape holds a non-deterministically
generated string of symbols derivable in G

e Initialize second tape to start symbol S

Portland State 22

IIIIIIIIII

From Grammar to TM (2)

e Machine M repeatedly does the following:

> Nondeterministically move to some position /in
the active part of the second tape.

> Nondeterministically select a rule a—f3

> If a matches the tape contents starting at /, rewrite
the tape replacing a with 3

> If the string on tape 2 matches the input on tape 1,
accept; otherwise loop.

e Easy to see that M accepts exactly the
strings derivable in G.

Portland State

IIIIIIIIII

23

From TM to Grammar

e Forany TM M, we can find a grammar G
such that L(G) = L(M).

e Key idea: represent each TM
configuration C as a string [C] and
construct grammar rules such that:
Ciyields Cz2in the TM iff
[C1] yields [C7] in the grammat.

e As usual, we rely on the fact that only a
finite portion of the TM tape is in use at

any time.

Portland State

IIIIIIIIII

24

Simulating machine transitions

e Given M =(Q,2,I',0,00,u,F),
define G = (V,2,R,S) as follows:

> V=QuT u{,]} S doesn’tmatter
If d(q,a) = (p,b,R) then R contains ga — bp

>

>

>

If d(q,u) = (p,b,R) then R also contains gq] — bp]

It d(g,a) = (p,b,L) then R contains cga — pcb (vc € I')

and [ga — [pub

If d(q,u) = (p,b,L) then R a
cq] — pcb] (vceI’) and

Portland State

IIIIIIIIII

SO contains

q] = [Pub]

25

Full set of grammar rules (1)

1. From start symbol S, generate a random
string <w> where w € 2™ and <,> are

variables €T
» S 2 <S>

» S1 = xS¢ for each xe 2
> S1— ¢

2. Convert <w> to w[qow]

Portland State 26

IIIIIIIIII

Full set of grammar rules (2)

3. Simulate computation between [and]

» See previous slides

4. If the string [z] contains a state in F, erase
[z] leaving the string w

> X(Ja — Ja and gaX = ga foreachxeI'and qa € F
> [ga] @ € foreach gain F

o Putting all rules together, we get grammar
where S =* w iff gow =% ...qa... IN TM

Portland State 27

IIIIIIIIII

Other Notions of Computabillity

e Many other notions of computability have
been proposed, e.g.
> Grammars
> Partial Recursive Functions
> Lambda calculus
> Markov Algorithms
> Post Algorithms
» Post Canonical Systems
» Simple programming language with while loops

e All have been shown equivalent to Turing
machines by simulation proofs

Portland State 28

IIIIIIIIII

Computation using
Numerical Functions

e We’'re used to thinking about computation
as something we do with numbers (e.qg.
on the naturals)

e \What kinds of functions from numbers to
numbers can we actually compute?

e To study this, we make a very careful
selection of building blocks

Portland State 29

IIIIIIIIII

Primitive Recursive Functions

e The primitive recursive functions from
NxNx...xN — N are those built from these
primitives:

> zero(x) =0 succ(x) = x+1

> Tikj(X1 X2..,Xk) =% forO<j=Kk
* using these mechanisms:

> Function composition, and

> Primitive recursion

Portland State 30

IIIIIIIIII

Function Composition

e Define a new function f in terms of
functions h and g1, g2, .., gm as follows:

> f(X1,...Xn) = h(g1(X1.... Xn),...gm(X1,... Xn))

» Example: f(X) = X + 3 can be expressed
using two compositions as f
(X) = succ(succ(succ(x)))

Portland State 31

IIIIIIIIII

Primitive Recursion

* Primitive recursion defines a new function f in
terms of functions h and g as follows:

> f(X1, ..., Xk, 0) = h(X1,...,Xk)
> f(X1, ..., Xk, succ(n)) = g(xi,...,Xk, N, f(X1,...,Xk,N))

* Many ordinary functions can be defined using
primitive recursion, e.g.

> add(x,0) = 111,1(X)
> add(x, succ(y)) = succ(ts 3(X, y, add(x,y)))

Portland State 32

IIIIIIIIII

More P.R. Functions

* For simplicity, we omit projection functions and
write O for zero(_) and 1 for succ(0)

» add(x,0) = x add(x,succ(y)) = succ(add(x,y))
> mult(x,0) =0 mult(x,succ(y)) = add(x,mult(x,y))

» factorial(0) =1 factorial(succ(n)) =
mult(succ(n),factorial(n))

> exp(n,0) =1 exp(n, succ(n)) = mult(n,exp(n,m))
> pred(0) =0 pred(succ(n)) =n

 Essentially all practically useful arithmetic
functions are primitive recursive, but...

Portland State

IIIIIIIIII

33

Ackermann’s Function 1S not
Primitive Recursive

e Afamous example of a function that is

clearly well-defined but not primitive
recursive

e Alm, n) = it m=0then n+ 1
else if n=0then A(m—-1, 1)
else Al(m—-1, A(m, n—1))

Portland State 34

IIIIIIIIII

e This function grows extremely fast!

Values of A(m, n)

m\n 0 1 2 3 4 n
0 1 2 3 4 5 n+1
1 2 3 4 5 6 n+2=2+Mn+3)-3
2 3 5 7 9 11 2n+3=2-(n+3) -3
3 5 13 29 61 125 2 +3) _3

p ')-'-- ‘
4 13 65533 085536 _ g 209936 o1 am aa gy 27— 3

y, — 3 ABA43) &
n -+ 3 twos
22 _3
5 65533 , 2 A4, A(5, 1)) A4, A5,2) A4, A, 3)) A4, A5, n-1))
65530 twos

6 A5, 1) AB5, A6, 0)) A5, A(6, 1)) A(5, A6,2)) A5, A6, 3)) A5, A6, n-1))

Portland State 35

IIIIIIIIII

A IS not primitive recursive

 Ackermann’s function grows faster than any
primitive recursive function, that is:

> for any primitive recursive function f, there is
an n such that

An,x)>fx

e SO0 A can’t be primitive recursive

Portland State 36

IIIIIIIIII

Partial Recursive Functions

* A belongs to class of partial recursive
functions, a superset of the primitive recursive
functions.

e Can be built from primitive recursive operators &
new minimization operator

» Let g be a (k+1)-argument function.

» Define f(x4,...,xk) as the smallest m such that g(xi....,xx,m)
=0 (if such an m exists)

o Otherwise, f(X1,...,Xn) is undefined
> We write f(x1,...,Xx) = um.[g(X1,...,Xk,m) = O]
o Example: um.[mult(n,m) = 0] = zero(_)

Portland State 37

IIIIIIIIII

Hierarchy of Numeric Functions

All natural number

/ functions

Partial recursive
functions

<< Partial recursive
functions that are
total

Primitive recursive
functions

Portland State 38

IIIIIIIIII

Turing-computable functions

 To formalize the connection between partial
recursive functions and Turing machines,
we need to describe how to use TM’s to
compute functions on N.

* Wesayafunctionf:NxNx...xN — N is Turing-

computable if there exists a TM that, when
started in configuration go1n1,1n2,...,, 17k halts with

just 1f(n1.n2...nk) on the tape.

 Fact: f is Turing-computable iff it is partial
recursive.

Portland State 39

IIIIIIIIII

