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What is Computation?

• What does “computable” mean?
‣ A computer can calculate it?

‣ There is some (formally described execution) 
process and a (formally described) set of 
instructions — an algorithm — that describes how 
to get the answer
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• Examples:
• Generating strings from a grammars: 
▸ derivation is the process; the algorithm is encoded in 

the rules of the grammar

• Accepting a string in a state machine
▸  

• Executing an ML program
▸  

• These are all Models of Computation
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• We know that some models of 
computation are more powerful than 
others:
‣ CFG are more powerful than Regular Grammars

‣ DFAs have the same power as NFAs

‣ Turing machines are more powerful than PDAs

• Is there a “most powerful model”
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The Power of a Model



Turingʼs Thesis

• Our intuitive notion of “computation” is 
precisely captured by the formal device 
known as a Turing Machine

• There is no model of computation more 
powerful than a Turing machine
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Steam-powered 
Turing machine

Sieg Hall, 1987



Recall: Church-Turing Thesis
• Thesis: the problems that can be decided 

by an algorithm are exactly those that can 
be decided by a Turing machine.

• This cannot be proved; it is essentially a 
definition of the word “algorithm.”

• But thereʼs lots of evidence that our 
intuitive notion of algorithm is equivalent 
to a TM, and no convincing counter-
examples have been found yet.
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What about Alonzo Church?
• The Turing thesis is usually 

called the Church-Turing 
Thesis, in honor of Alonzo 
Church (1903–1995)

‣ Working with his students (J. 
Barkley Rosser, Steven C. 
Kleene, and Alan M. Turing) 
Church established the 
equivalence of the Lambda 
calculus, recursive function 
theory, and Turing machines

‣ They all capture the notion 
of computability
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Other Notions of Computability
• Many other notions of computability have 

been proposed, e.g.
‣ Grammars
‣ Partial Recursive Functions
‣ Lambda calculus
‣ Markov Algorithms
‣ Post Algorithms
‣ Post Canonical Systems
‣ Simple programming language with while loops 

• All have been shown equivalent to Turing 
machines by simulation proofs
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Simple (Hein p 776)

A Simple program is defined as follows:
1. V, an infinite set of variables that take values in 

Nat0, and are initially 0

2. S, statements, which are either
2.1. While statements: while V≠0 do S od
2.2. Assignments: V := 0, V1 := succ(V2), V1 := pred(V2), or
2.3. a sequence of statements separated by ;

3. S is a simple program
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• Note that pred(0) = 0, to ensure that we 
stay in ℕ0

• Can we compute anything interesting with 
this language?
• yes!
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• Letʼs try: x-y, x<y, while x<y do S od
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 Let’s see whether this language can do anything. In Figure 13.2 we have 

listed some “macro statments” together with the code for each macro in the 

Simple language. With the aid of macros, we can construct some familiar-

looking programs. We’ll leave some more problems as exercises.   ! 
  
 

Macro Statement Simple Code for Macro 

X := Y X := succ(Y); X := pred(X) 

X := 3 X := 0; X := succ(X);  

X := succ(X); X := succ(X) 

X := X + Y I := Y;  

while I ! 0 do  

X := succ(X); I := pred(I)  

od 

Loop Forever X := 0; X := succ(X); 

while X !  0 do Y := 0 od  

repeat S until X = 0 S; while X ! 0 do S od 

Figure 13.2     Some simple macros. 

 The simple language has the same power as a Turing machine. In other 

words, any problem that can be solved by a Turing machine can be solved with 

a simple program; conversely, any problem that can be solved by a simple 

program can be solved by a Turing machine. The details can be found in many 

books, so we’ll gladly omit them. 

Recursive Functions 

Now we’ll look at a collection of functions whose arguments and values are 

natural numbers. If we believe anything, we most likely believe that the 

following three functions are computable.  

ƒ(x) = 0,     g(x) = x + 1,     and     h(x, y, z) = x.  

Interestingly, functions like these together with some simple combining rules 

are all we need to construct all possible computable functions. What follows is 

a description of the functions and combining rules used to construct the 

collection of functions, which are called partial recursive functions. 

Initial Functions      (13.2) 

zero(x) = 0  (the zero function) 



Other Notions of Computability
• Many other notions of computability have 

been proposed, e.g.
‣ Grammars
‣ Partial Recursive Functions
‣ Lambda calculus
‣ Markov Algorithms
‣ Post Algorithms
‣ Post Canonical Systems
‣ Simple programming language with while loops 

• All have been shown equivalent to Turing 
machines by simulation proofs
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• A Markov Algorithm over an alphabet A is 
a finite ordered sequence of productions 
x→y, where x, y ∈ A*.  Some productions 
may be “Halt” productions.
‣ e.g.  abc → b
        ba → x (halt)

• Execution proceeds as follows:

14

Markov Algorithms



1. Let the input string be w

2. The productions are scanned in sequence, 
looking for a production x → y where x is a 
substring of w

3. the left-most x in w is replaced by y

4. If the production is a halt production, we halt

5. If no matching production is found, the process 
halts

6. If a replacement was made, we repeat from 
step 2. 
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• Note that a production ε → a inserts a at 
the start of the string.

• What does this Markov algorithm do?
aba → b
ba → b
b → a
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Other Notions of Computability
• Many other notions of computability have 

been proposed, e.g.
‣ (Type 0 a.k.a. Unrestricted) Grammars

‣ Partial Recursive Functions

‣ Lambda calculus

‣ Markov Algorithms

‣ Post Algorithms

‣ Post Canonical Systems, etc. etc. etc. 

• All have been shown equivalent to Turing 
machines by simulation proofs
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Grammars
• We can extend the notion of context-free 

grammars to a more general mechanism

• An (unrestricted) grammar G = (V,Σ,R,S) is 
just like a CFG except that rules in R can take 
the more general form α→β where α,β are 
arbitrary strings of terminals and variables   
(α must contain a variable).

• If α→β then uαv ⇒ uβv  (“yields”) in one step

• Define ⇒* (“derives”) as reflexive transitive 
closure of ⇒.
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Grammars



Example: counting
• Grammar generating {w ∈ {a,b,c}*| w has 

equal numbers of aʼs, bʼs, and cʼs }

• G = ({S,A,B,C},{a,b,c},R,S) where R is
S → ε
S → ABCS
AB → BA  AC → CA    BC → CB
BA → AB  CA → AC    CB → BC
A → a        B → b         C → c

19

try generating
ccbaba



Example: {a  , n ≥ 0}
• Hereʼs a set of grammar rules

1. S → a
2. S→ ACaB
3. Ca → aaC
4. CB → DB
5. CB → E
6. aD → Da
7. AD →AC
8. aE → Ea
9. AE → ε
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try generating 23 a’s

2n



(Unrestricted) Grammars
and Turing machines have 

equivalent power

• For any grammar G we can find a TM M 
such that L(M) = L(G).

• For any TM M, we can find a grammar G 
such that L(G) = L(M).
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From Grammar to TM (1)

• For any grammar G we can find a TM M 
such that L(M) = L(G).

• Use a non-deterministic 2-tape TM
‣ First tape holds input.

‣ Second tape holds a non-deterministically 
generated string of symbols derivable in G

• Initialize second tape to start symbol S
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From Grammar to TM (2)
• Machine M repeatedly does the following:
‣ Nondeterministically move to some position i in 

the active part of the second tape.

‣ Nondeterministically select a rule α→β

‣ If α matches the tape contents starting at i, rewrite 
the tape replacing α with β

‣ If the string on tape 2 matches the input on tape 1, 
accept; otherwise loop.

• Easy to see that M accepts exactly the 
strings derivable in G.
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From TM to Grammar
• For any TM M, we can find a grammar G 

such that L(G) = L(M). 

• Key idea: represent each TM 
configuration C as a string [C] and 
construct grammar rules such that:                    
C1 yields C2 in the TM iff                         
[C1] yields [C2] in the grammar. 

• As usual, we rely on the fact that only a 
finite portion of the TM tape is in use at 
any time.
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Simulating machine transitions

• Given M = (Q,Σ,Γ,δ,q0,⊔,F),                        
define G = (V,Σ,R,S) as follows:
‣ V = Q ∪ Γ ∪ {[,]}   S doesnʼt matter    
‣ If δ(q,a) = (p,b,R) then R contains qa → bp

‣ If δ(q,⊔) = (p,b,R) then R also contains q] → bp]

‣ If δ(q,a) = (p,b,L) then R contains cqa → pcb (∀c ∈ Γ)          
and  [qa → [p⊔b

‣ If δ(q,⊔) = (p,b,L) then R also contains                          
cq] → pcb]  (∀c ∈ Γ)  and  [q] → [p⊔b]
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Full set of grammar rules (1)

1. From start symbol S, generate a random 
string <w> where w ∈ Σ* and <,> are 
variables ∉ Γ

‣ S → <S1>    

‣ S1 → xS1  for each x∈ Σ   
‣ S1 → ε

2. Convert <w> to w[q0w]
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Full set of grammar rules (2)

3. Simulate computation between [ and ]  
‣ See previous slides

4. If the string [z] contains a state in F, erase 
[z] leaving the string w
‣ xqa → qa  and qax → qa  for each x ∈ Γ and qa ∈ F
‣ [qa] → ε for each qa in F

• Putting all rules together, we get grammar 
where S ⇒* w iff q0w ⇒* ...qa... in TM
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Other Notions of Computability
• Many other notions of computability have 

been proposed, e.g.
‣ Grammars
‣ Partial Recursive Functions
‣ Lambda calculus
‣ Markov Algorithms
‣ Post Algorithms
‣ Post Canonical Systems
‣ Simple programming language with while loops 

• All have been shown equivalent to Turing 
machines by simulation proofs
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Computation using
Numerical Functions

• Weʼre used to thinking about computation 
as something we do with numbers (e.g. 
on the naturals) 

• What kinds of functions from numbers to 
numbers can we actually compute?

• To study this, we make a very careful 
selection of building blocks
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Primitive Recursive Functions

• The primitive recursive functions from          
ℕ x ℕ x ... x ℕ → ℕ  are those built from these 
primitives:

‣ zero(x) = 0        succ(x) = x+1

‣ π k,j (x1,x2,...,xk) = xj    for 0 < j ≤ k

• using these mechanisms:

‣ Function composition, and 

‣ Primitive recursion
30



Function Composition

• Define a new function f in terms of 
functions h and g1, g2, ..., gm as follows:

‣ f(x1,...xn) = h(g1(x1,...,xn),...gm(x1,...,xn))

‣ Example: f(x) = x + 3 can be expressed 
using two compositions as                     f
(x) = succ(succ(succ(x)))
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Primitive Recursion

• Primitive recursion defines a new function f in 
terms of functions h and g as follows:

‣ f(x1, ..., xk, 0) = h(x1,...,xk)

‣ f(x1, ..., xk, succ(n)) = g(x1,...,xk, n, f(x1,...,xk,n))

• Many ordinary functions can be defined using 
primitive recursion, e.g. 

‣ add(x,0) = π1,1(x)

‣ add(x, succ(y)) = succ(π3,3(x, y, add(x,y)))
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More P.R. Functions
• For simplicity, we omit projection functions and 

write 0 for zero(_) and 1 for succ(0)
‣ add(x,0) = x       add(x,succ(y)) = succ(add(x,y))

‣ mult(x,0) = 0      mult(x,succ(y)) = add(x,mult(x,y))

‣ factorial(0) = 1   factorial(succ(n)) = 
% % % % % % % % % mult(succ(n),factorial(n))

‣ exp(n,0) = 1      exp(n, succ(n)) = mult(n,exp(n,m))

‣ pred(0)  = 0       pred(succ(n)) = n

• Essentially all practically useful arithmetic 
functions are primitive recursive, but...
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Ackermannʼs Function is not
Primitive Recursive

• A famous example of a function that is 
clearly well-defined but not primitive 
recursive

• A(m, n) =  if m = 0 then n + 1
                 else if n = 0 then A(m – 1, 1)
                 else A(m – 1, A(m, n – 1))

34



•   This function grows extremely fast!
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A is not primitive recursive

• Ackermannʼs function grows faster than any 
primitive recursive function, that is:

‣ for any primitive recursive function f, there is 
an n such that 

% % % % % % % A(n, x) > f x

• So A canʼt be primitive recursive
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Partial Recursive Functions
• A belongs to class of partial recursive 

functions, a superset of the primitive recursive 
functions. 

• Can be built from primitive recursive operators & 
new minimization operator 
‣ Let g be a (k+1)-argument function. 

‣ Define f(x1,...,xk) as the smallest m such that g(x1,...,xk,m) 
= 0  (if such an m exists)
° Otherwise, f(x1,...,xn) is undefined

‣ We write f(x1,...,xk) = μm.[g(x1,...,xk,m) = 0] 
° Example: μm.[mult(n,m) = 0] = zero(_)
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Hierarchy of Numeric Functions
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  A(x, y) =  if x = 0 then y + 1 

    else if y = 0 then A(x – 1, 1) 

    else A(x – 1, A(x, y – 1)). 

Since we can implement A in most computer languages, it follows by the 

Church-Turing thesis that A is a partial recursive function. But it can’t be 

defined using only initial functions, composition, and primitive recursion. The 

proof follows from the fact (which we won’t prove) that for any primitive 

recursive function ƒ(x) there is a natural number n such that ƒ(x) < A(n, x) for 

all x ! N. So if A was primitive recursive, then there would be a natural 

number n such that A(x, x) < A(n, x) for all x ! N. Letting x = n, we get the 

contradiction A(n, n) < A(n, n). 

 We know that there are an uncountable number of natural number 

functions, and it’s easy to see that the collection of partial recursive functions 

is countable. So the collections of functions that we have been discussing can 

be pictured as proper subsets in the Venn diagram shown in Figure 13.5. 

Primitive recursive

 functions

Partial recursive

functions

All natural number

 functions

Partial recursive

functions that are

total

 

Figure 13.5     A hierarchy of functions. 

Machines That Transform Strings 

We’ll turn our attention now to some powerful models that process strings 

rather than numbers. 

Markov Algorithms 

A Markov algorithm over an alphabet A is a finite ordered sequence of pro-

ductions x " y, where x, y ! A*. Some productions may be labeled with the 

word “halt,” although this is not a requirement. A Markov algorithm trans-

forms an input string into an output string. In other words, a Markov algo-

rithm computes a function from A* to A*. Here’s how the execution proceeds.  



Turing-computable functions
• To formalize the connection between partial 

recursive functions and Turing machines, 
we need to describe how to use TMʼs to 
compute functions on ℕ.

• We say a function f : ℕ x ℕ x ... x ℕ → ℕ is Turing-
computable if there exists a TM that, when 
started in configuration q01n1⊔1n2⊔...⊔1nk, halts with 
just 1f(n1,n2,...nk) on the tape.

• Fact: f is Turing-computable iff it is partial 
recursive.
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