CS311 Computational Structures

Other models of

Computation

Lecture 13

Andrew Black
Andrew Tolmach

What is Computation?

- What does "computable" mean?
- A computer can calculate it?
- There is some (formally described execution) process and a (formally described) set of instructions - an algorithm - that describes how to get the answer
- Examples:
- Generating strings from a grammars:
- derivation is the process; the algorithm is encoded in the rules of the grammar
- Accepting a string in a state machine
- Executing an ML program
- These are all Models of Computation

The Power of a Model

- We know that some models of computation are more powerful than others:
- CFG are more powerful than Regular Grammars
- DFAs have the same power as NFAs
- Turing machines are more powerful than PDAs
- Is there a "most powerful model"

Turing's Thesis

- Our intuitive notion of "computation" is precisely captured by the formal device known as a Turing Machine
- There is no model of computation more powerful than a Turing machine

Steam-powered Turing machine Sieg Hall, 1987

Recall: Church-Turing Thesis

- Thesis: the problems that can be decided by an algorithm are exactly those that can be decided by a Turing machine.
- This cannot be proved; it is essentially a definition of the word "algorithm."
- But there's lots of evidence that our intuitive notion of algorithm is equivalent to a TM, and no convincing counterexamples have been found yet.

What about Alonzo Church?

- The Turing thesis is usually called the Church-Turing Thesis, in honor of Alonzo Church (1903-1995)
- Working with his students (J. Barkley Rosser, Steven C. Kleene, and Alan M. Turing) Church established the equivalence of the Lambda calculus, recursive function theory, and Turing machines
- They all capture the notion of computability

Other Notions of Computability

- Many other notions of computability have been proposed, e.g.
- Grammars
- Partial Recursive Functions
- Lambda calculus
- Markov Algorithms
- Post Algorithms
- Post Canonical Systems
- Simple programming language with while loops
- All have been shown equivalent to Turing machines by simulation proofs

Simple (Hein p 776)

A Simple program is defined as follows:

1. V, an infinite set of variables that take values in Nato, and are initially 0
2. S, statements, which are either
2.1. While statements: while $\mathrm{V} \neq 0$ do S od
2.2. Assignments: $\mathrm{V}:=0, \mathrm{~V}_{1}:=\operatorname{succ}\left(\mathrm{V}_{2}\right), \mathrm{V}_{1}:=\operatorname{pred}\left(\mathrm{V}_{2}\right)$, or
2.3. a sequence of statements separated by ;
3. S is a simple program

- Note that pred $(0)=0$, to ensure that we stay in \mathbb{N}_{0}
- Can we compute anything interesting with this language?
- yes!

Macro Statement	Simple Code for Macro
$X:=Y$	$X:=\operatorname{succ}(Y) ; X:=\operatorname{pred}(X)$
$X:=3$	$X:=0 ; X:=\operatorname{succ}(X) ;$
	$X:=\operatorname{succ}(X) ; X:=\operatorname{succ}(X)$
$X:=X+Y$	$I:=Y ;$
	while $I \neq 0$ do
	$X:=\operatorname{succ}(X) ; I:=\operatorname{pred}(I)$
	od
Loop Forever	$X:=0 ; X:=\operatorname{succ}(X) ;$
	while $X \neq 0$ do $Y:=0$ od
repeat S until $X=0$	$S ;$ while $X \neq 0$ do S od

Figure 13.2 Some simple macros.

- Let's try: $x-y, x<y$, while $x<y$ do S od

Other Notions of Computability

- Many other notions of computability have been proposed, e.g.
- Grammars
- Partial Recursive Functions
- Lambda calculus
- Markov Algorithms
- Post Algorithms
- Post Canonical Systems
- Simple programming language with while loops
- All have been shown equivalent to Turing machines by simulation proofs

Markov Algorithms

- A Markov Algorithm over an alphabet A is a finite ordered sequence of productions $x \rightarrow y$, where $x, y \in A^{*}$. Some productions may be "Halt" productions.
- e.g. $a b c \rightarrow b$ ba $\rightarrow \mathrm{x}$ (halt)
- Execution proceeds as follows:

1. Let the input string be w
2. The productions are scanned in sequence, looking for a production $\mathrm{x} \rightarrow \mathrm{y}$ where x is a substring of w
3. the left-most x in w is replaced by y
4. If the production is a halt production, we halt
5. If no matching production is found, the process halts
6. If a replacement was made, we repeat from step 2.

- Note that a production $\varepsilon \rightarrow$ a inserts a at the start of the string.
- What does this Markov algorithm do?

$$
\begin{aligned}
& \mathrm{aba} \rightarrow \mathrm{~b} \\
& \mathrm{ba} \rightarrow \mathrm{~b} \\
& \mathrm{~b} \rightarrow \mathrm{a}
\end{aligned}
$$

Other Notions of Computability

- Many other notions of computability have been proposed, e.g.
- (Type 0 a.k.a. Unrestricted) Grammars
- Partial Recursive Functions
- Lambda calculus
- Markov Algorithms
- Post Algorithms
- Post Canonical Systems, etc. etc. etc.
- All have been shown equivalent to Turing machines by simulation proofs

Grammars

- We can extend the notion of context-free grammars to a more general mechanism
- An (unrestricted) grammar $G=(V, \Sigma, R, S)$ is just like a CFG except that rules in R can take the more general form $\alpha \rightarrow \beta$ where α, β are arbitrary strings of terminals and variables (a must contain a variable).
- If $\alpha \rightarrow \beta$ then uav $\Rightarrow u \beta v$ ("yields") in one step
- Define \Rightarrow^{*} ("derives") as reflexive transitive closure of \Rightarrow.

Example: counting

- Grammar generating $\left\{w \in\{a, b, c\}^{*} \mid w h a s\right.$ equal numbers of a's, b's, and c's \}
- $G=(\{S, A, B, C\},\{a, b, c\}, R, S)$ where R is
$S \rightarrow \varepsilon$
$S \rightarrow$ ABCS
$\mathrm{AB} \rightarrow \mathrm{BA} \mathrm{AC} \rightarrow \mathrm{CA} \quad \mathrm{BC} \rightarrow \mathrm{CB}$
try generating ccbaba $\mathrm{BA} \rightarrow \mathrm{AB} \mathrm{CA} \rightarrow \mathrm{AC} \quad \mathrm{CB} \rightarrow \mathrm{BC}$ $\mathrm{A} \rightarrow \mathrm{a} \quad \mathrm{B} \rightarrow \mathrm{b} \quad \mathrm{C} \rightarrow \mathrm{c}$

Example: $\left\{a^{2^{n}}, n \geq 0\right\}$

- Here's a set of grammar rules

$$
\text { 1. } S \rightarrow \mathrm{a}
$$

2. $\mathrm{S} \rightarrow \mathrm{ACaB}$
3. $\mathrm{Ca} \rightarrow \mathrm{aaC}$
4. $\mathrm{CB} \rightarrow \mathrm{DB}$
try generating 2^{3} a's
5. $\mathrm{CB} \rightarrow \mathrm{E}$
6. $\mathrm{aD} \rightarrow \mathrm{Da}$
7. $A D \rightarrow A C$
8. $\mathrm{aE} \rightarrow \mathrm{Ea}$
9. $\mathrm{AE} \rightarrow \varepsilon$

(Unrestricted) Grammars and Turing machines have equivalent power

- For any grammar G we can find a TM M such that $L(M)=L(G)$.
- For any TM M, we can find a grammar G such that $L(G)=L(M)$.

From Grammar to TM (1)

- For any grammar G we can find a TM M such that $L(M)=L(G)$.
- Use a non-deterministic 2-tape TM
- First tape holds input.
- Second tape holds a non-deterministically generated string of symbols derivable in G
- Initialize second tape to start symbol S

From Grammar to TM (2)

- Machine M repeatedly does the following:
- Nondeterministically move to some position i in the active part of the second tape.
- Nondeterministically select a rule $\alpha \rightarrow \beta$
- If a matches the tape contents starting at i, rewrite the tape replacing a with β
- If the string on tape 2 matches the input on tape 1 , accept; otherwise loop.
- Easy to see that M accepts exactly the strings derivable in G.

From TM to Grammar

- For any TM M, we can find a grammar G such that $L(G)=L(M)$.
- Key idea: represent each TM configuration C as a string [C] and construct grammar rules such that: C_{1} yields C_{2} in the TM iff [$\left.C_{1}\right]$ yields $\left[C_{2}\right]$ in the grammar.
- As usual, we rely on the fact that only a finite portion of the TM tape is in use at any time.

Simulating machine transitions

- Given $M=\left(Q, \Sigma, \Gamma, \delta, q_{0,\lrcorner}, F\right)$, define $G=(V, \Sigma, R, S)$ as follows:
- $\mathrm{V}=\mathrm{Q} \cup \Gamma \cup\{[]\} \quad$,S doesn't matter
- If $\delta(q, a)=(p, b, R)$ then \mathbf{R} contains $q a \rightarrow b p$
- If $\delta(q, \sqcup)=(p, b, R)$ then \mathbf{R} also contains $q] \rightarrow b p]$
- If $\delta(\mathrm{q}, \mathrm{a})=(\mathrm{p}, \mathrm{b}, \mathrm{L})$ then \mathbf{R} contains $\mathrm{cqa} \rightarrow \mathrm{pcb}(\forall \mathrm{c} \in \Gamma)$ and [qa $\rightarrow\left[p_{\sqcup} b\right.$
- If $\delta(q, \sqcup)=(p, b, L)$ then \mathbf{R} also contains $\mathrm{cq}] \rightarrow \mathrm{pcb}](\forall \mathrm{c} \in \Gamma)$ and $[q] \rightarrow\left[\mathrm{p}_{\sqcup} \mathrm{b}\right]$

Full set of grammar rules (1)

1. From start symbol S , generate a random string $<w>$ where $w \in \Sigma^{*}$ and <,> are variables $\notin \Gamma$

- $S \rightarrow\left\langle S_{1}\right\rangle$
- $S_{1} \rightarrow x S_{1}$ for each $x \in \Sigma$
- $S_{1} \rightarrow \varepsilon$

2. Convert <w> to w[qow]

Full set of grammar rules (2)

3. Simulate computation between [and]

- See previous slides

4. If the string [z] contains a state in F, erase [z] leaving the string w

- $\mathrm{xq}_{\mathrm{a}} \rightarrow \mathrm{q}_{\mathrm{a}}$ and $\mathrm{q}_{\mathrm{a}} \mathrm{x} \rightarrow \mathrm{q}_{\mathrm{a}}$ for each $\mathrm{x} \in \Gamma$ and $\mathrm{q}_{\mathrm{a}} \in \mathrm{F}$
- $\left[q_{a}\right] \rightarrow \varepsilon$ for each q_{a} in F
- Putting all rules together, we get grammar where $S \Rightarrow^{*}$ w iff qow $\Rightarrow^{*} \ldots q_{\mathrm{a}} \ldots$ in TM

Other Notions of Computability

- Many other notions of computability have been proposed, e.g.
- Grammars
- Partial Recursive Functions
- Lambda calculus
- Markov Algorithms
- Post Algorithms
- Post Canonical Systems
- Simple programming language with while loops
- All have been shown equivalent to Turing machines by simulation proofs

Computation using Numerical Functions

- We're used to thinking about computation as something we do with numbers (e.g. on the naturals)
- What kinds of functions from numbers to numbers can we actually compute?
- To study this, we make a very careful selection of building blocks

Primitive Recursive Functions

- The primitive recursive functions from $\mathbb{N} \times \mathbb{N} \times \ldots \times \mathbb{N} \rightarrow \mathbb{N}$ are those built from these primitives:
- zero $(x)=0 \quad \operatorname{succ}(x)=x+1$
- $\Pi_{k, j}\left(x_{1}, x_{2}, \ldots, x_{k}\right)=x_{j}$ for $0<j \leq k$
- using these mechanisms:
- Function composition, and
- Primitive recursion

Function Composition

- Define a new function f in terms of functions h and $g_{1}, g_{2}, \ldots, g_{m}$ as follows:
- $f\left(x_{1}, \ldots x_{n}\right)=h\left(g_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots g_{m}\left(x_{1}, \ldots, x_{n}\right)\right)$
- Example: $f(x)=x+3$ can be expressed using two compositions as $(x)=\operatorname{succ}(\operatorname{succ}(\operatorname{succ}(x)))$

Primitive Recursion

- Primitive recursion defines a new function f in terms of functions h and g as follows:
- $f\left(x_{1}, \ldots, x_{k}, 0\right)=h\left(x_{1}, \ldots, x_{k}\right)$
- $f\left(x_{1}, \ldots, x_{k}, \operatorname{succ}(n)\right)=g\left(x_{1}, \ldots, x_{k}, n, f\left(x_{1}, \ldots, x_{k}, n\right)\right)$
- Many ordinary functions can be defined using primitive recursion, e.g.
- $\operatorname{add}(x, 0)=\pi_{1,1}(x)$
- $\operatorname{add}(x, \operatorname{succ}(y))=\operatorname{succ}\left(\Pi_{3,3}(x, y, \operatorname{add}(x, y))\right)$

More P.R. Functions

- For simplicity, we omit projection functions and write 0 for zero(_) and 1 for succ(0)
- $\operatorname{add}(x, 0)=x \quad \operatorname{add}(x, \operatorname{succ}(y))=\operatorname{succ}(\operatorname{add}(x, y))$
- $\operatorname{mult}(x, 0)=0 \quad \operatorname{mult}(x, \operatorname{succ}(y))=\operatorname{add}(x, \operatorname{mult}(x, y))$
- factorial(0) =1 factorial(succ(n))=
mult(succ(n),factorial(n))
- $\exp (\mathrm{n}, 0)=1 \quad \exp (\mathrm{n}, \operatorname{succ}(\mathrm{n}))=\operatorname{mult}(\mathrm{n}, \exp (\mathrm{n}, \mathrm{m}))$
- $\operatorname{pred}(0)=0 \quad \operatorname{pred}(\operatorname{succ}(n))=n$
- Essentially all practically useful arithmetic functions are primitive recursive, but...

Ackermann's Function is not Primitive Recursive

- A famous example of a function that is clearly well-defined but not primitive recursive
- $A(m, n)=$ if $m=0$ then $n+1$ else if $n=0$ then $A(m-1,1)$ else $A(m-1, \mathrm{~A}(m, n-1))$

- This function grows extremely fast!

Values of $\boldsymbol{A}(m, n)$						
$m \backslash n$	0	1	2	3	4	n
0	1	2	3	4	5	$n+1$
1	2	3	4	5	6	$n+2=2+(n+3)-3$
2	3	5	7	9	11	$2 n+3=2 \cdot(n+3)-3$
3	5	13	29	61	125	$2^{(n+3)}-3$
4	13	65533	$2^{65536}-3$	$2^{2^{65536}}-3$	$A(3, A(4,3))$	$\underbrace{2^{2 \cdot{ }^{2}}}_{n+3 \text { twos }}-3$
5	65533	$\underbrace{2^{22^{2}}}_{65536 \text { twos }}-3$	$A(4, A(5,1))$	$A(4, A(5,2))$	$A(4, A(5,3))$	$A(4, A(5, \mathrm{n}-1))$
6	$A(5,1)$	$A(5, A(6,0))$	$A(5, \mathrm{~A}(6,1))$	$A(5, A(6,2))$	$A(5, A(6,3))$	$A(5, A(6, \mathrm{n}-1))$

A is not primitive recursive

- Ackermann's function grows faster than any primitive recursive function, that is:
- for any primitive recursive function f, there is an n such that

$$
A(n, x)>f x
$$

- So A can't be primitive recursive

Partial Recursive Functions

- A belongs to class of partial recursive functions, a superset of the primitive recursive functions.
- Can be built from primitive recursive operators \& new minimization operator
- Let g be a $(k+1)$-argument function.
- Define $f\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}\right)$ as the smallest m such that $g\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}, \mathrm{m}\right)$ $=0$ (if such an m exists)
- Otherwise, $f\left(x_{1}, \ldots, x_{n}\right)$ is undefined
- We write $f\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}\right)=\mu \mathrm{m} \cdot\left[\mathrm{g}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}, \mathrm{m}\right)=0\right]$
- Example: $\mu \mathrm{m} .[\mathrm{mult}(\mathrm{n}, \mathrm{m})=0]=$ zero(_)

Hierarchy of Numeric Functions

Turing-computable functions

- To formalize the connection between partial recursive functions and Turing machines, we need to describe how to use TM's to compute functions on \mathbb{N}.
- We say a function $f: \mathbb{N} \times \mathbb{N} \times \ldots \times \mathbb{N} \rightarrow \mathbb{N}$ is Turingcomputable if there exists a TM that, when started in configuration $q_{0} 1^{n 1} \sqcup^{n 2} \sqcup \ldots 1^{n k}$, halts with just $1^{f(n 1, n 2, \ldots n k)}$ on the tape.
- Fact: f is Turing-computable iff it is partial recursive.

