
CS311 Computational Structures

NP-completeness

Lecture 18

Andrew P. Black
Andrew Tolmach

1

Thursday, 2 December 2010

Some complexity classes

• P = Decidable in polynomial time on deterministic TM
(“tractable”)

• NP = Decidable in polynomial time on non-
deterministic TM;

= Verifiable in polynomial time on deterministic TM

• PSPACE = Decidable in polynomial space on a TM

• EXPTIME = Decidable in exponential time on a TM

‣ Known to contain “intractable” problems

2

Thursday, 2 December 2010

3

Some important classes
in the “complexity zoo”

Thursday, 2 December 2010

Classifying problems
• Given a problem, weʼd like to locate it as far

down in the hierarchy as possible.

• This is often quite hard to do.

• Establishing an upper bound requires
showing an algorithm
‣ Someone may find a cleverer algorithm tomorrow!

° this will give us a better upper bound

• Establishing a lower bound requires showing
that there cannot be an algorithm.

4

Thursday, 2 December 2010

Example: ACFG

5

Thursday, 2 December 2010

Example: ACFG

• ACFG = { ⟨G, w⟩ ⎮G is a CFG that generates w}

5

Thursday, 2 December 2010

Example: ACFG

• ACFG = { ⟨G, w⟩ ⎮G is a CFG that generates w}

• ACFG is decidable

5

Thursday, 2 December 2010

Example: ACFG

• ACFG = { ⟨G, w⟩ ⎮G is a CFG that generates w}

• ACFG is decidable
‣ what does this mean?

5

Thursday, 2 December 2010

Example: ACFG

• ACFG = { ⟨G, w⟩ ⎮G is a CFG that generates w}

• ACFG is decidable
‣ what does this mean?

‣ is it decidable “quickly”

5

Thursday, 2 December 2010

Example: ACFG

• ACFG = { ⟨G, w⟩ ⎮G is a CFG that generates w}

• ACFG is decidable
‣ what does this mean?

‣ is it decidable “quickly”

• How did we show that ACFG is decidable?

5

Thursday, 2 December 2010

Attempt 1

6

Thursday, 2 December 2010

Attempt 1

• For any CFG G, there is a PDA that
decides whether w is in L(G)

6

Thursday, 2 December 2010

Attempt 1

• For any CFG G, there is a PDA that
decides whether w is in L(G)
‣ What does this mean?

6

Thursday, 2 December 2010

Attempt 1

• For any CFG G, there is a PDA that
decides whether w is in L(G)
‣ What does this mean?

‣ Problem:

6

Thursday, 2 December 2010

Attempt 1

• For any CFG G, there is a PDA that
decides whether w is in L(G)
‣ What does this mean?

‣ Problem:

• But: we can simulate a non-deterministic
TM with a deterministic TM!

6

Thursday, 2 December 2010

Attempt 1

• For any CFG G, there is a PDA that
decides whether w is in L(G)
‣ What does this mean?

‣ Problem:

• But: we can simulate a non-deterministic
TM with a deterministic TM!
‣ Problem:

6

Thursday, 2 December 2010

Attempt 2
• Recall Chomsky Normal Form:
‣ Let G be a context-free grammar in Chomsky Normal Form. For

any non-empty string w ∈ L(G), exactly 2|w| − 1 steps are
required in any derivation of w.

7

d

S→AB
A→CD
B→EF | GF | c
C→a
D→b | x
E→c | f
F→d | ga b c

S

AB

CD

c

Thursday, 2 December 2010

Attempt 2
• Recall Chomsky Normal Form:
‣ Let G be a context-free grammar in Chomsky Normal Form. For

any non-empty string w ∈ L(G), exactly 2|w| − 1 steps are
required in any derivation of w.

7

d

S→AB
A→CD
B→EF | GF | c
C→a
D→b | x
E→c | f
F→d | ga b c

S

AB

CD

c

• deriving a string of length
3 takes 5 steps

Thursday, 2 December 2010

Attempt 2
• Recall Chomsky Normal Form:
‣ Let G be a context-free grammar in Chomsky Normal Form. For

any non-empty string w ∈ L(G), exactly 2|w| − 1 steps are
required in any derivation of w.

7

d

S→AB
A→CD
B→EF | GF | c
C→a
D→b | x
E→c | f
F→d | g

• deriving a string of length
4 takes 7 steps

a b c

S

AB

CD

c

• deriving a string of length
3 takes 5 steps

Thursday, 2 December 2010

Attempt 2
• Recall Chomsky Normal Form:
‣ Let G be a context-free grammar in Chomsky Normal Form. For

any non-empty string w ∈ L(G), exactly 2|w| − 1 steps are
required in any derivation of w.

7

d

S→AB
A→CD
B→EF | GF | c
C→a
D→b | x
E→c | f
F→d | g

• deriving a string of length
4 takes 7 steps

• deriving a string of length
n takes 2n–1 steps

a b c

S

AB

CD

c

• deriving a string of length
3 takes 5 steps

Thursday, 2 December 2010

Attempt 2
• Recall Chomsky Normal Form:
‣ Let G be a context-free grammar in Chomsky Normal Form. For

any non-empty string w ∈ L(G), exactly 2|w| − 1 steps are
required in any derivation of w.

7

d

S→AB
A→CD
B→EF | GF | c
C→a
D→b | x
E→c | f
F→d | g

• deriving a string of length
4 takes 7 steps

• deriving a string of length
n takes 2n–1 steps

a b c

S

AB

CD

c

• deriving a string of length
3 takes 5 steps

• How many trials must a TM make before it “chooses” the right tree?

Thursday, 2 December 2010

Attempt 2
• Recall Chomsky Normal Form:
‣ Let G be a context-free grammar in Chomsky Normal Form. For

any non-empty string w ∈ L(G), exactly 2|w| − 1 steps are
required in any derivation of w.

7

d

S→AB
A→CD
B→EF | GF | c
C→a
D→b | x
E→c | f
F→d | g

• deriving a string of length
4 takes 7 steps

• deriving a string of length
n takes 2n–1 steps

a b c

S

AB

CD

c

• deriving a string of length
3 takes 5 steps

• How many trials must a TM make before it “chooses” the right tree?

‣ if there are p productions, we make ≤p choices; in k steps we make pk
choices, so for a string of length n, we make O(pn) choices.

Thursday, 2 December 2010

Attempt 3
• Dynamic Programming—The CYK Algorithm

‣ Whatʼs Dynamic Programming?
° accumulate information about small(er)

subproblems
° use this to solve progressively larger

subproblems

‣ Key: the subproblems overlap
° We can save work by memoizing the

answers
8

Thursday, 2 December 2010

9

1 2 3 4 … … n–1 n

1

2

3

4

…

…

n–1

n

–

– –

– – –

– – – –

– – – – – –

– – – – – – –

Is w in L(G)?

• Look at all the
substrings of w

• Build a matrix M
where M [i,j]
contains the set of
variables that can
generate w[i..j]=
wiwi+1wi+2…wj

• start on the
diagonal and work
up

Thursday, 2 December 2010

10

1 2 3 4 … … n–1 n

1

2

3

4

…

…

n–1

n

C

– D

– – B,E

– – – F

– – – –

– – – – – – D

– – – – – – – D

• suppose w =
abcdefgxb

• productions that
yield terminals:

B →c
C→a
D→b | x
E→c | f
F→d | g

• Step 1: substrings
of w of length 1

• e.g., w[1..1]=a,
can be generated
from C

a b c d … … x b

Thursday, 2 December 2010

11

1 2 3 4 … … n–1 n

1

2

3

4

…

…

n–1

n

C A

– D ∅

– – B,E B

– – – F

– – – –

– – – – – – D

– – – – – – – D

• Step 2: substrings of
w of length 2

• e.g., w[1..2]=ab
• Split into shorter

substrings in all
possible ways

• Use entries already
in M to compute M
[1..2]

• w[2,3] can only be
derived from DB or
DE, and neither is on
the rhs of a production

• w[3,4] can be derived
from BF or EF; EF can
be derived from B

productions: 	

 S→AB	

	

 A→CD	

 B→EF | GF

a b c d … … x b

Thursday, 2 December 2010

12

1 2 3 4 … … n–1 n

1

2

3

4

…

…

n–1

n

C A

– D ∅

– – B,E B

– – – F

– – – –

– – – – – – D

– – – – – – – D

• Step k: substrings of
w of length k

• e.g., w[1..k]
• Split into 2 shorter

substrings in all k–1
possible ways

• Use entries already
in M to compute M
[1..k]

• Step n: M[1, n] can
be broken into 2
shorter substrings in
n–1 ways

• S ∈ M[1, n] ≡ w ∈ L(G)

productions: 	

 S→AB	

	

 A→CD	

 B→EF | GF

a b c d … … x b

Thursday, 2 December 2010

13

• CYK algorithm is O(n3), where n is the
length of the input.

• So every context-free language is a member
of P

Thanks to Cocke, Younger and Kasami
Hopcroft pp 304–307

Thursday, 2 December 2010

P vs. NP
P = the class of languages for which membership can be

decided quickly

NP = the class of languages for which membership can be
verified quickly

“quickly” means “in polynomial time”

#

We donʼt know for sure which of these diagrams is correct

14

NP

P
P=NPor

Thursday, 2 December 2010

P vs. NP
P = the class of languages for which membership can be

decided quickly

NP = the class of languages for which membership can be
verified quickly

“quickly” means “in polynomial time”

#

We donʼt know for sure which of these diagrams is correct

14

NP

P

Thursday, 2 December 2010

P vs. NP
P = the class of languages for which membership can be

decided quickly

NP = the class of languages for which membership can be
verified quickly

“quickly” means “in polynomial time”

#

We donʼt know for sure which of these diagrams is correct

14

NP

P ←Widely suspected

Thursday, 2 December 2010

• There are many interesting problems that we
can show to be in NP, but that no one has
shown to be in P.

• So is P ≠ NP ? Nobody knows!

• To investigate this question, it makes sense
to look at the hardest problems in NP
‣ these are least likely to be in P

‣ if we can show that one is in P — they all will be

15

P vs. NP

Thursday, 2 December 2010

• A “complete” problem is one that is “as
hard as possible” in its category.

• How can we formalize the idea of one
problem being as hard as any other?

• We use the idea of Reducibility

“Completeness”

Thursday, 2 December 2010

Reducibility, again
• A problem A is polynomial-time reducible

to a problem B if there is a polynomial-time
function f that maps instances of A to
instances of B s.t.
‣ I is a yes-instance of A ≡	 f(I)	 is a yes-instance of B

• Suppose we have an algorithm for B
‣ We can solve an instance of A by first using f to

transform it to an instance of B, and then solving the
B-instance.

‣ If our B-algorithm is polynomial, then so is this one
for A.

17

Thursday, 2 December 2010

18

BA

Polytime
reduction

yes

no

Polytime
decider f

Thursday, 2 December 2010

18

BA

Polytime
reduction

yes

no

Polytime
decider f

Thursday, 2 December 2010

NP-complete problems

• A language L is NP-complete if
‣ L is in NP

‣ Every language in NP is polynomial-time reducible to L.

• If L is NP-complete and L ∈ P, then P = NP
‣ This is unlikely, so proving a problem is NP-complete

strongly suggest that it is intractable

• If A is NP-complete and A is polynomial-time
reducible to B, then B is also NP-complete

19

Thursday, 2 December 2010

Some NP-complete problems
 — see Garey and Johnson
• Hamiltonian circuit: Given a directed graph, is there a path that

visits each vertex once?

• Traveling salesman: Given a set of cities, can they be toured
traveling no more than a specified maximum distance?

• Partition: Given a finite set of positive integers, can they be
partitioned into two subsets that sum to the same value?

• Graph isomorphism: Given two graphs, are they isomorphic?

• Quadratic diophantine equations: Given positive integers a,b,c,
are there positive integers x and y such that ax

2 + by = c ?

• Multiprocessor scheduling: Given a set of tasks with
specified lengths, a number of processors, and a deadline,
can the tasks be scheduled to complete by the deadline?

20

Thursday, 2 December 2010

21

Computers and
Intractability: A
Guide to the
Theory of NP-
Completeness

M. R. Garey & D. S. Johnson

W. H. Freeman

Thursday, 2 December 2010

http://www.amazon.com/s/ref=ntt_athr_dp_sr_1?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=M.%20R.%20Garey
http://www.amazon.com/s/ref=ntt_athr_dp_sr_1?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=M.%20R.%20Garey
http://www.amazon.com/D.-S.-Johnson/e/B000APBIVK/ref=ntt_athr_dp_pel_2
http://www.amazon.com/D.-S.-Johnson/e/B000APBIVK/ref=ntt_athr_dp_pel_2

SAT: Boolean Satisfiability

• Consider formulas over boolean variables and
the operations AND (∧), OR (∨), and NOT (¬).
‣ Ex. ϕ1 = (x ∧ y) ∨ (¬y ∧ z) # ϕ2 = (x ∨ y) ∧ ¬y ∧ ¬x

• A formula is satisfiable if we can assign a
value True (tt) or False (ff) to each variable
such that the formula is True
‣ Ex. x=tt, y=ff, z=tt satisfies ϕ1, but ϕ2 is unsatisfiable

22

Thursday, 2 December 2010

SAT is NP-complete
• SAT = {⟨ϕ⟩⎮ ϕ is a satisfiable Boolean formula }

is the paradigmatic example of an
NP-complete language
‣ Cook-Levin Theorem.

• A closely-related NP-complete language is
3SAT: the satisfiable 3CNF-formulae
‣ CFN = conjunctive normal form: an AND of ORs of

literals (variables or their negations)

23

Thursday, 2 December 2010

Cook-Levin Theorem [1971]

24

Thursday, 2 December 2010

Cook-Levin Theorem [1971]

• SAT is NP-complete

24

Thursday, 2 December 2010

Cook-Levin Theorem [1971]

• SAT is NP-complete

24

Thursday, 2 December 2010

Cook-Levin Theorem [1971]

• SAT is NP-complete

• What does this mean?

24

Thursday, 2 December 2010

Cook-Levin Theorem [1971]

• SAT is NP-complete

• What does this mean?

‣ SAT ∈ NP

24

Thursday, 2 December 2010

Cook-Levin Theorem [1971]

• SAT is NP-complete

• What does this mean?

‣ SAT ∈ NP

‣ every A ∈ NP is poly-time reducible to SAT

24

Thursday, 2 December 2010

Cook-Levin Theorem [1971]

• SAT is NP-complete

• What does this mean?

‣ SAT ∈ NP

‣ every A ∈ NP is poly-time reducible to SAT

24

Thursday, 2 December 2010

Cook-Levin Theorem [1971]

• SAT is NP-complete

• What does this mean?

‣ SAT ∈ NP

‣ every A ∈ NP is poly-time reducible to SAT

• How on earth can we prove such a thing?

24

Thursday, 2 December 2010

Cook-Levin Theorem

• Basic Idea:

‣ Any problem in NP has a NDTM that
solves it in poly-time, say in time nk

‣ Letʼs look at the nk steps that the NDTM
must take in solving it

‣ Represent each of those steps as a
boolean formula

25

Thursday, 2 December 2010

• An accepting NDTM computation on an
input w is described by a finite tableau
where
‣ each row is a machine configuration

‣ the first row is the start configuration with w

‣ each row leads to the next by a legal transition

‣ some row describes an accepting configuration

26

Thursday, 2 December 2010

Format of tableau

27

#

#
#

#

#

#

#

#

⊔⊔ ⊔ ⊔...q0 w1 w2 wn

nk

nk

nk

Thursday, 2 December 2010

Encoding the tableau
• N accepts w iff there exists an accepting

tableau for N on w.

• We define a boolean formula ϕ that is
satisfiable iff such a tableau exists
‣ Each tableau cell[i,j] contains a symbol in

C = Q ∪ Γ ∪ {#}

‣ Represent cell contents using boolean variables xi,j,s
where xi,j,s = 1 iff cell[i,j] = s

‣ Define ϕ = ϕcell ∧ ϕstart ∧ ϕmove ∧ ϕaccept

28

Thursday, 2 December 2010

Details
• ϕcell ensures that exactly one symbol

appears in each cell

29

• ϕstart ensures that the first row of the
tableau is the starting configuration

φstart = x1,1,# ∧ x1,2,� ∧ . . . ∧ x1,nk+1,�∧
x1,nk+2,q0 ∧ x1,nk+3,w1 ∧ x1,nk+4,w2 ∧ . . . ∧ x1,nk+n+2,wn

∧
x1,nk+n+3,� ∧ . . . ∧ x1,2nk+2,� ∧ x1,2nk+3,#

φcell =
�

1 ≤ i ≤ nk

1 ≤ j ≤ 2nk + 3





�
�

s∈C

xi,j,s

�
∧





�

x, t ∈ C
s �= t

(xi,j,s ∨ xi,j,t)







s

Thursday, 2 December 2010

‣ ϕaccept ensures that an accepting configuration
occurs somewhere in the tableau

30

φaccept =
�

1 ≤ i ≤ nk

1 ≤ j ≤ 2nk + 3
qa ∈ F

xi,j,qa

φmove =
�

1 ≤ i < nk

1 ≤ j < 2nk + 3

(legal window at(i, j))

legal window at(i, j) =
�

legal window(a1, . . . , a6)

�
xi,j−1,a1 ∧ xi,j,a2 ∧ xi,j+1,a3∧
xi+1,j−1,a4 ∧ xi+1,j,a5 ∧ xi+1,j+1,a6

�

‣ ϕmove ensures that rows of tableau represent legal
transitions of the machine

Thursday, 2 December 2010

Legal windows

• A 2 ⨉ 3 window is legal if it might appear
when one configuration correctly follows
another in the tableau

• Set of legal windows for machine is
defined by alphabets, states and transition
function

• Straightforward but tedious to define all
legal windows

31

Thursday, 2 December 2010

Example window constructions
• Suppose we have δ(q1,a) = {(q1,b,R)} and
δ(q1,b) = {(q2,c,L),(q2,a,R)}

• Here are some legal windows:

32

a q1 b
q2 a c

a q1 b
a a q2

a a q1

a a b

b a
b a

a b a
a b q2

b b b
c b b

• Here are some illegal windows:
a b a
a a a

a q1 b
q1 a a

b q1 b
q2 b q2

Thursday, 2 December 2010

Checking polynomial time

• It is crucial that ϕ can be constructed in
polynomial time

• This follows from
‣ size of tableau: ~2n2k cells

‣ finite number of symbols: ⃒Q⃒ + ⃒Γ⃒ + 1

‣ hence O(n
2k) variables

‣ ϕ contains fixed-size fragment per cell

33

Thursday, 2 December 2010

Proving a problem is
NP-complete by reduction

34

Thursday, 2 December 2010

3CNF

• a literal is a variable, or a negation of a
variable, e.g.
‣ x1, ¬x2 , x3, ¬x2

• a 3CNF formula is a boolean formula in
conjunctive normal form in which each
conjunction has exactly 3 literals, e.g.
‣ (x1 ∨ ¬x2 ∨ x3) ∧ (x3 ∨ ¬x5 ∨ x6) ∧ (x3 ∨ x6 ∨ ¬x4)

35

Thursday, 2 December 2010

SAT can be poly-time reduced to 3SAT

• Details are in Hopcroft §10.3.2

• Key idea:
(a ∨ b ∨ c ∨ d) ≡ (a ∨ b ∨ x) ∧ (c ∨ d ∨ ¬x)

36

Thursday, 2 December 2010

• The Clique problem is to decide if a graph contains a clique
of a certain size

‣ a clique is a subgraph in which every pair of nodes is
connected by an edge

• CLIQUE = {⟨G, k⟩ | G is an undirected graph with a k-clique}

37

The Clique Problem

Thursday, 2 December 2010

CLIQUE is in NP

• Here is a verifier for CLIQUE:
‣ Input is ⟨G, k ⟩, c

1. Test whether c is a set of k nodes in G: — O(|c |) time

2. Test whether G contains all edges connecting nodes in c:
— O(|c |2) time

3. If both tests pass, accept, otherwise, reject.

• It runs in time polynomial in the length of
the input

38

Thursday, 2 December 2010

Is CLIQUE in P?

• Whatʼs the time complexity of a search for
k-cliques in a graph with n nodes?

• No polynomial time algorithm is known

39

Thursday, 2 December 2010

3SAT is polynomial-time
 reducible to CLIQUE

Idea:

• Convert formulae to graphs in a certain
form.

• Find cliques in the graph
‣ each clique corresponds to a satisfying assignment

in the formula.

40

Thursday, 2 December 2010

• Given a formula φ with k conjuncts we build
a graph G and look for k-cliques.
‣ One node in G for each occurrence of a literal in φ.

Each node is labeled by that literal.

‣ Organize the nodes into groups of 3, called triples.
Each triple corresponds to a conjunct in φ.

‣ Each node in the triple corresponds to a literal in
the clause.

41

Construction

Thursday, 2 December 2010

42

x1

x2

x1

¬x1 ¬x2 ¬x2

¬x1

x2

x2

ϕ = (x1 ∨ x1 ∨ x2) ∧ (¬x1 ∨ ¬x2 ∨ ¬x2) ∧ (¬x1 ∨ x2 ∨ x2)

Example of construction

Thursday, 2 December 2010

Construction (continued):
• Connect all the nodes in G except:

1. Donʼt connect two nodes if they are in the same triple

2. Donʼt connect two nodes if one is labeled x and the
other is labeled ¬x

43

Thursday, 2 December 2010

44

x1

x2

x1

¬x1 ¬x2 ¬x2

¬x1

x2

x2

ϕ = (x1 ∨ x1 ∨ x2) ∧ (¬x1 ∨ ¬x2 ∨ ¬x2) ∧ (¬x1 ∨ x2 ∨ x2)

Example of construction

Thursday, 2 December 2010

Proof

• Suppose that φ has a satisfying
assignment
‣ Then at least one literal is true in every clause

‣ In G, select one node in each triple whose label is
true: those nodes form a k-clique

45

Thursday, 2 December 2010

46

x1

x2

x1

¬x1 ¬x2 ¬x2

¬x1

x2

x2

ϕ = (x1 ∨ x1 ∨ x2) ∧ (¬x1 ∨ ¬x2 ∨ ¬x2) ∧ (¬x1 ∨ x2 ∨ x2)

Example of construction

Thursday, 2 December 2010

Proof

• Suppose that φ has a satisfying
assignment
‣ Then at least one literal is true in every clause

‣ In G, select one node in each triple whose label is
true: those nodes form a k-clique
° There are k of them, because we chose one per clause

° Each pair is joined by an edge, because no two are in the
same triple, and no two are labeled with contradictory
literals

47

Thursday, 2 December 2010

• Suppose that G has a k-clique c
• No two nodes are in the same triple

- because there are no edges joining such nodes

• Each triple contains exactly one node of c
- because there are k triples

• Assign truth values to the literals so that each node
in c is TRUE
- This is always possible, because no edge joins x and ¬x

• This assignment satisfies φ, because one literal in
each of the k-clauses of φ is TRUE

• So CLIQUE is NP-complete
48

Thursday, 2 December 2010

