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Some complexity classes

P = Decidable in polynomial time on deterministic TM
(“tractable”)

* NP = Decidable in polynomial time on non-
deterministic TM;

= Verifiable in polynomial time on deterministic TM
e PSPACE = Decidable in polynomial space on a TM
e EXPTIME = Decidable in exponential time on a TM

> Known to contain “intractable” problems
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ALL
Some important classes

in the “complexity zoo”
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Classifying problems

 (Given a problem, we’d like to locate it as far
down in the hierarchy as possible.

* This is often quite hard to do.

e Establishing an upper bound requires
showing an algorithm
» Someone may find a cleverer algorithm tomorrow!

> this will give us a better upper bound

» Establishing a lower bound requires showing
that there cannot be an algorithm.
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Example: Acra
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Example: Acrc

e Acra={ (G, w> |G is a CFG that generates w}
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Example: Acrc

e Acra={<(G, w> | Gis a CFG that generates w}

e Acrg IS decidable
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> IS it decidable “quickly”
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Example: Acrc

e Acra={<(G, w> | Gis a CFG that generates w}

e Acrg IS decidable
» what does this mean?

> IS it decidable “quickly”

e How did we show that Acrg is decidable?
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Attempt 1
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Attempt 1

e For any CFG G, there is a PDA that
decides whether w is in L(G)
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Attempt 1

e For any CFG G, there is a PDA that
decides whether w is in L(G)

» What does this mean?

> Problem:

e But: we can simulate a non-deterministic
TM with a deterministic TM!
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Attempt 1

e For any CFG G, there is a PDA that
decides whether w is in L(G)

» What does this mean?

> Problem:

e But: we can simulate a non-deterministic
TM with a deterministic TM!

> Problem:
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Attempt 2

e Recall Chomsky Normal Form:

> Let G be a context-free grammar in Chomsky Normal Form. For
any non-empty string w € L(G), exactly 2|w| — 1 steps are
required in any derivation of w.
’ Y S—AB

‘ A—CD
B—EF | GF|
i C—a

/ \ E—c|f

a b ¢ F—=d|g
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Attempt 2

e Recall Chomsky Normal Form:

> Let G be a context-free grammar in Chomsky Normal Form. For
any non-empty string w € L(G), exactly 2|w| — 1 steps are
required in any derivation of w.

S S—AB

e deriving a string of length ‘ A—CD

3 takes 5 steps B—EF ‘ GF ‘ C
e deriving a string of length /AB‘ C—a
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e deriving a string of length \ E—sc|f
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Attempt 2

e Recall Chomsky Normal Form:

> Let G be a context-free grammar in Chomsky Normal Form. For
any non-empty string w € L(G), exactly 2|w| — 1 steps are
required in any derivation of w.

S S—AB

e deriving a string of length ‘ A—CD

3 takes 5 steps B—EF ‘ GF ‘ C
e deriving a string of length /AB‘ C—a

4 takes 7 steps b D—b ‘ X
e deriving a string of length \ E—sc|f

n takes 2n-1 steps / |

a b ¢ F—=d|g

e How many trials must a TM make before it “chooses” the right tree?
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Attempt 2

e Recall Chomsky Normal Form:

> Let G be a context-free grammar in Chomsky Normal Form. For
any non-empty string w € L(G), exactly 2|w| — 1 steps are
required in any derivation of w.

S S—AB

e deriving a string of length ‘ A—CD

3 takes 5 steps B—EF ‘ GF ‘ C
e deriving a string of length /AB‘ C—a

4 takes 7 steps b D—b ‘ X
e deriving a string of length \ E—sc|f

n takes 2n-1 steps / |

a b ¢ F—=d|g

e How many trials must a TM make before it “chooses” the right tree?

» if there are p productions, we make <p choices; in k steps we make pX
choices, so for a string of length n, we make O(p”) choices.
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Attempt 3

 Dynamic Programming—The CYK Algorithm
> What’s Dynamic Programming?

> accumulate information about small(er)
subproblems

° use this to solve progressively larger
subproblems

> Key: the subproblems overlap

> We can save work by memoizing the
answers
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Is win L(G)?

e Look at all the
substrings of w

e Build a matrix M
where M[i,j]
contains the set of
variables that can
generate wli..j]=
WiWi+ iWi+2.. Wj

e start on the
diagonal and work

up
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e Suppose w =
abcdefgxb

e productions that
yield terminals:

B—c
C—a
D—b | x
E—c|f
F—d|g

o Step 1: substrings
of w of length 1
e e.g., wll..1]=a,
can be generated
from C

Portland State

IIIIIIIIII

3 n—1
1
2
3 B,E
4 _
n—1 - D
n _ _
C X

Thursday, 2 December 2010




productions: S—AB A—CD B—EF|GF

« Step 2: substrings of 1121314
w of length 2
¢ e.g., w[l.2]=ab ] | C| A

e Split into shorter
substrings in all

2
possible ways 3| —| —|BE| B
4

. n—1| n

 Use entries already
iIn M to compute M
[1..2]

 w[2,3] can only be oo | — | — | — | —
derived from DB or
DE, and neither is on
the rhs of a production

e w[34] can be derived
from BF or EF; EF can
be derived from B
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productions: S—AB A—CD B—EF|GF

» Step k: substrings of 1121314 n=1l n
w of length &
. e.g., w[l.k] 11 C|A

* Split into 2 shorter
substrings in all k-1

2
possible ways 3| - | - |BE| B
4

» Use entries already
iIn M to compute M
[1..k]

e Step n: M[1,n] can e | T T T T
be broken into 2
shorter substrings Iin
n—1 ways n—l| — | — | — |1 — | =1 = 1D

e SeM[l,n]l=weL(G)
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» CYK algorithm is O(n3), where n is the
length of the input.

» S0 every context-free language is a member
of P

Thanks to Cocke, Younger and Kasami
Hopcroft pp 304-307
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P vs. NP

P = the class of languages for which membership can be
decided quickly

NP = the class of languages for which membership can be
verified quickly

“quickly” means “in polynomial time”

We don’t know for sure which of these diagrams is correct
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‘;Q
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P vs. NP

P = the class of languages for which membership can be
decided quickly

NP = the class of languages for which membership can be
verified quickly

“quickly” means “in polynomial time”

R
Q +— Widely suspected

We don’t know for sure which of these diagrams is correct
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P vs. NP

 There are many interesting problems that we
can show to be in NP, but that no one has
shown to be Iin P.

e Sois P NP ? Nobody knows!

e Jo investigate this question, it makes sense
to look at the hardest problems in NP

> these are least likely to be in P

> if we can show that one is in P — they all will be
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“‘Completeness”

e A“complete” problem is one that is “as
hard as possible” in its category.

e How can we formalize the idea of one
problem being as hard as any other?

e We use the idea of Reducibility

/ NP Problems \

P Problems
NP Complete
Portland State \ J
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Reducibility, again

e A problem Ais polynomial-time reducible
to a problem B if there is a polynomial-time
function f that maps instances of A to
instances of B s.t.

> Tis a yes-instance of A = f(I) is a yes-instance of B

e Suppose we have an algorithm for B

> We can solve an instance of A by first using f to

transform it to an instance of B, and then solving the
B-instance.

> |f our B-algorithm is polynomial, then so is this one
for A.

Portland State 7

IIIIIIIIII

Thursday, 2 December 2010



Polytime
reduction

f

Polytime
decider
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Polytime
decider
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NP-complete problems

 Alanguage L is NP-complete if
» Lisin NP

» Every language in NP is polynomial-time reducible to L.

e If Lis NP-complete andL € P,then P =NP

> This is unlikely, so proving a problem is NP-complete
strongly suggest that it is intractable

 |f Ais NP-complete and A is polynomial-time
reducible to B, then B is also NP-complete
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Some NP-complete problems

— see Garey and Johnson

 Hamiltonian circuit: Given a directed graph, is there a path that
visits each vertex once?

 Traveling salesman: Given a set of cities, can they be toured
traveling no more than a specified maximum distance?

* Partition: Given a finite set of positive integers, can they be
partitioned into two subsets that sum to the same value?

 Graph isomorphism: Given two graphs, are they isomorphic?

 (Quadratic diophantine equations: Given positive integers a,b,c,
are there positive integers x and y such that ax2+ by =c ?

e Multiprocessor scheduling: Given a set of tasks with
specified lengths, a number of processors, and a deadline,
can the tasks be scheduled to complete by the deadline?
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Computers and
Intractabllity: A
Guide to the
Theory of NP-

Completeness

M. R. Garey & D. S. Johnson

W. H. Freeman
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http://www.amazon.com/s/ref=ntt_athr_dp_sr_1?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=M.%20R.%20Garey
http://www.amazon.com/s/ref=ntt_athr_dp_sr_1?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=M.%20R.%20Garey
http://www.amazon.com/D.-S.-Johnson/e/B000APBIVK/ref=ntt_athr_dp_pel_2
http://www.amazon.com/D.-S.-Johnson/e/B000APBIVK/ref=ntt_athr_dp_pel_2

SAT: Boolean Satisfiability

e Consider formulas over boolean variables and
the operations AND (A), OR (v), and NOT (-).

» EX. p1=(XAY)V(YAZ) Pa=(XVY) AAY AKX

e Aformula is satisfiable if we can assign a

value True (tt) or False (ff) to each variable
such that the formula is True

» Ex. x=tt, y=ff, z=tt satisfies 1, but P2 is unsatisfiable
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SAT is NP-complete

o SAT ={(d)| ¢ is a satisfiable Boolean formula }

IS the paradigmatic example of an
NP-complete language

» Cook-Levin Theorem.

e A closely-related NP-complete language is
3SAT: the satisfiable 3SCNF-formulae

» CFN = conjunctive normal form: an AND of ORs of
literals (variables or their negations)
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Cook-Levin Theorem [1971]
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Cook-Levin Theorem [1971]

e SAT is NP-complete

e What does this mean?
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Cook-Levin Theorem [1971]

e SAT is NP-complete

e What does this mean?
» SAT e NP

» every A € NP is poly-time reducible to SAT

* How on earth can we prove such a thing?
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Cook-Levin Theorem

e Basic Idea:

> Any problem in NP has a NDTM that
solves it in poly-time, say in time n*

> Let’s look at the nk steps that the NDTM
must take In solving it

> Represent each of those steps as a
boolean formula

Portland State 25
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 An accepting NDTM computation on an
input w is described by a finite tableau
where

>

>

>

>

each row is a machine configuration
the first row is the start configuration with w
each row leads to the next by a legal transition

some row describes an accepting configuration

Portland State
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Format of tableau

H# | u| U LI ] qo| Wi |[W2]| ... |Wn|L H
H H
H H
nk
H H
v
< nk -> < nk >

Portland State 27
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Encoding the tableau

N accepts w Iiff there exists an accepting
tableau for N on w.

 We define a boolean formula ¢ that is
satisfiable iff such a tableau exists

» Each tableau cell[i,j] contains a symbol in
C=QuT ui{#

> Represent cell contents using boolean variables Xxi j,s
where Xijs = 1 iff cell[i,j] = s
» Define (1) = Cbcell A Cl)start A ¢move A Cbaccept
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Detalls

» ¢een ensures that exactly one symbol
appears in each cell

_ / \ _
Deell = (\/ %’,j,s) A /\ (Tijs VTit)
1 <i<n” seC s, teC
1<j<2nf+3 | \ s#t /.

o dstart €nsures that the first row of the
tableau is the starting configuration

¢stafrt —  XL1,1,# N\ 1.2, VAN ml,nk‘—l—l,u/\
$1,nk_|_2’q0 /\ :U]_,nk_|_3,w1 /\ xl,nk+4’w2 /\ « 0. /\ lel,nk+n+27wn/\
Ty nkynt3,, N NT1opkyo  NT1 onk 324
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> daccept €NSUres that an accepting configuration
occurs somewhere in the tableau

¢accept — \/ L1,5,qa
1 <i<nk
1 <j<2nk4+3
o € F

> ®move €NsUres that rows of tableau represent legal
transitions of the machine

Omove = A\ (legal_window_at (i, §))

1 <i<nk
1<j<2n®+3

legal_window _at (i, j) = \/ Tij—1,a1 N\ Tig,as N Tij+1,a3/
i S Tit1,j—1,as N Titljas N Titl,j+1,a6

legal_window (a1, ..., ag)
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Legal windows

e A2 x 3 window is legal if it might appear

when one configuration correctly follows
another in the tableau

e Set of legal windows for machine is

defined by alphabets, states and transition
function

e Straightforward but tedious to define all
legal windows
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Example window constructions

e Suppose we have d(gi,a) ={(g1,b,R)} and
o(q1,b) ={(92,¢,L),(q2,a,R)}

* Here are some legal windows:

Portland State
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alq|b a |q| b a | q

qQ2la]c ala|q a|b

#|b | a a|b|a b|b|b

# | ba a|b|q c|b|b
* Here are some illegal windows:

a | bl a a |ql b b lql b

alala g lala Q| b |q




Checking polynomial time

e |tis crucial that @ can be constructed in
polynomial time

e This follows from

» size of tableau: ~2n2% cells

» finite number of symbols: |Q| + |T'| + 1

> hence O(n2k) variables

» ¢ contains fixed-size fragment per cell

Portland State
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Proving a problem is
NP-complete by reduction
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3CNF

e a literal is a variable, or a negation of a
variable, e.g.

> X1, X2 , X3, X2

e a 3CNF formula is a boolean formula in
conjunctive normal form in which each
conjunction has exactly 3 literals, e.qg.

» (X1 V2 Vvax3)A X3V x5V Xxe) A(X3V XeV Xg)

Portland State
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SAT can be poly-time reduced to 3SAT

e Details are in Hopcroft §10.3.2
e Key idea:

(avbvecvd)=(avbvx)a(cvdyvx)
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The Cligue Problem

e The Clique problem is to decide if a graph contains a clique
of a certain size

» a clique is a subgraph in which every pair of nodes is
connected by an edge

e CLIQUE ={(G, k | Gis an undirected graph with a k-clique}

Portland State 37
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CLIQUE is in NP

e Here is a verifier for CLIQUE:
> Inputis (G, k», ¢

1. Test whether cis a set of knodes in G: — O(|c|) time

2. Test whether G contains all edges connecting nodes in c:
— O(|c ?) time

3. If both tests pass, accept, otherwise, reject.

* It runs in time polynomial in the length of
the input
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s CLIQUE in P?

e What's the time complexity of a search for
k-cliques in a graph with n nodes?

 No polynomial time algorithm is known
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3SAT is polynomial-time
reducible to CLIQUE

|dea:

e Convert formulae to graphs in a certain
form.

e Find cligues in the graph

> each clique corresponds to a satisfying assignment
in the formula.
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Construction

* Given a formula ¢ with k£ conjuncts we build
a graph G and look for k-cliques.

> One node in G for each occurrence of a literal in ¢.
Each node is labeled by that literal.

» Organize the nodes into groups of 3, called triples.
Each triple corresponds to a conjunct in ¢.

» Each node in the triple corresponds to a literal in
the clause.

Portland State 4l
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Example of construction

SRS
(x0
(x0
(2

CI) = (X1 vV X1V X2) A (—IX1 VvV X2 V —IX2) A (—IX1 vV X2 V X2)

®» & ®

Portland State
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Construction (continued):

e Connect all the nodes in G except:
1. Don’t connect two nodes if they are in the same triple

2. Don’t connect two nodes if one is labeled x and the
other is labeled —x

Portland State
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Example of construction

- X1 -X2 4—-X2
X1 —X1
X1 X2
X2 X2

CI) = (X1 vV X1V X2) A (—IX1 VvV X2 V —IX2) A (—IX1 vV X2 V X2)

Portland State 44
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Proof

e Suppose that ¢ has a satisfying
assignment

> Then at least one literal is true in every clause

> In G, select one node in each triple whose label is
true: those nodes form a k-clique

Portland State 4
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Example of construction

- X1 -X2 4—-X2
X1 - X1
X1 X2
X2 X2

CI) = (X1 vV X1V X2) A (—IX1 VvV X2 V —IX2) A (—IX1 vV X2 V X2)
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Proof

e Suppose that ¢ has a satisfying
assignment

v

Then at least one literal is true in every clause

> In G, select one node in each triple whose label is
true: those nodes form a k-clique

° There are k of them, because we chose one per clause

o Each pair is joined by an edge, because no two are in the
same triple, and no two are labeled with contradictory
literals
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» Suppose that G has a k-clique ¢

» No two nodes are in the same triple
- because there are no edges joining such nodes

» Each triple contains exactly one node of c
- because there are k triples

» Assign truth values to the literals so that each node
IN C IS TRUE

- This is always possible, because no edge joins x and —x

» This assignment satisfies ¢, because one literal in
each of the k-clauses of @ Is TRUE

« So CLIQUE is NP-complete
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