
CS311 Computational Structures

Decidable and
Undecidable Problems

1

Lecture 15

Andrew Black
Andrew Tolmach

Monday, 24 May 2010

Recall:
Recognizable vs. Decidable
• A language L is Turing recognizable if some

Turing machine recognizes it.
‣ Some strings not in L may cause the TM to loop

‣ Turing recognizable = recursively enumerable (RE)

• A language L is Turing decidable if some
Turing machine decides it
‣ To decide is to return a definitive answer; the TM must

halt on all inputs

‣ Turing decidable = decidable = recursive
2

Monday, 24 May 2010

Problems about Languages
• Consider some decision problems about

languages, machines, and grammars:
‣ Ex.: Is there an algorithm that given any DFA M

and any string w, tells whether M accepts w ?

‣ Ex.: Is there an algorithm that given any two
CFGʼs G1 and G2 tells whether L(G1) = L(G2) ?

‣ Ex. Is there an algorithm that given any TM M
tells whether L(M) = ∅ ?

• By Church-Turing thesis: “is there an
algorithm?” = “is there a TM?”

3

Monday, 24 May 2010

Machine encodings
• We can encode machine or grammar

descriptions (and inputs) as strings over a
finite alphabet.
‣ Example: Letʼs encode the DFA M = (Q,Σ,δ,q1,F)

using the alphabet {0,1}
° First, assign a unique integer ≥ 1 to each q∈Q and x∈Σ

° Code each transition δ(qi,xj) = qk as 0i10j10k

° Code F = {qp,...qr} as 0p1...10r

° Code M by concatenating codes for all transitions and
F, separated by 11

‣ We write ⟨M⟩ for the encoding of M and ⟨M,w⟩ for
the encoding of M followed by input w

4

Monday, 24 May 2010

Problems on encodings
• We can specify problems as languages

over the encoding strings.
‣ Ex.: ADFA = {⟨M,w⟩⃒M is a DFA that accepts w}

‣ Ex.: EQCFG = {⟨G,H⟩⃒G and H are CFGʼs and L(G) =
L(H)}

‣ Ex.: ETM = {⟨M⟩⃒M is a TM and L(M) = ∅}

• Now we can ask “is there a TM that
decides this language?” (i.e., is there an
algorithm that solves this problem?)

5

Monday, 24 May 2010

A decidable language
• To show that a language is decidable, we have

to describe an algorithm that decides it
‣ Weʼll allow informal descriptions as long as we are

confident they can in principle be turned into TMs

• Consider ADFA = { ⟨M,w⟩⃒M is a DFA that
accepts w }

• Algorithm: Check that M is a valid encoding; if
not reject. Simulate behavior of M on w. If M
halts in an accepting state, accept; if M halts in
a rejecting state, reject.
‣ We coded essentially this algorithm in DFA.c, although

machine encoding was not read from input
6

Monday, 24 May 2010

Another decidable language
• Consider ACFG = { ⟨G,w⟩ ⃒ G is a CFG that

generates w }

• First attempt: build a TM that enumerates
all possible derivations in G. If it finds w, it
accepts. If it doesnʼt find w, it rejects.

• Problem: there may be an infinite number
of derivations! So TM may never be able
to reject.

• This TM recognizes ACFG, but doesnʼt
decide it.

7

Monday, 24 May 2010

Another try
• Consider AChCFG = { ⟨G,w⟩⃒G is a CFG in

Chomsky normal form that generates w }

• We know that any derivation of w in G requires
2⃒w⃒−1 steps.

• So a TM that enumerates all derivations of this
length can decide AChCFG.

• We also know an algorithm to convert an
arbitrary CFG into CNF.

• Combining these two algorithms into a single TM
gives a machine that decides ACFG.

8

Monday, 24 May 2010

Reduction
• We solved the decision problem for ACFG by

algorithmically transforming the input into the
form needed by another problem for which
we could find a deciding TM.

• This strategy of reducing one problem P to
another (known) problem Q is very common.
‣ If P reduces to Q, and Q is decidable, then P is

decidable.

• Must be certain that reduction process can
be described by a TM !

9

Monday, 24 May 2010

Reductions (Hopcroft §9.3.1)

• Reductions must turn +ve instances of P1 into +ve instances of
P2, -ve instances into -ve

• It's common that only a small part of P2 be the target of the
reduction.

• Reduction is a TM that translates an instance of P1 into an
instance of P2

10

yes

no

yes

no
P1 P2

Monday, 24 May 2010

The Value of Reductions

11

P1 P2
reduce yes

no
decide

If there is a reduction from P1 to P2, then:
1. If P1 is undecidable, so is P2

2. If P1 is non-RE, then so is P2

Monday, 24 May 2010

The Value of Reductions

11

P1 P2
reduce yes

no
decide

Proof by contradiction:
Suppose that P2 is decidable …
then we can use P2 to decide P1

If there is a reduction from P1 to P2, then:
1. If P1 is undecidable, so is P2

2. If P1 is non-RE, then so is P2

Monday, 24 May 2010

The Value of Reductions

12

P1 P2
reduce yes

no
decide

If there is a reduction from P1 to P2, then:
1. If P1 is undecidable, so is P2

2. If P1 is non-RE, then so is P2

Monday, 24 May 2010

The Value of Reductions

12

P1 P2
reduce yes

no
decide

Proof by contradiction:
Suppose that P2 is recognizable …
then we can use P2 to recognize P1

If there is a reduction from P1 to P2, then:
1. If P1 is undecidable, so is P2

2. If P1 is non-RE, then so is P2

Monday, 24 May 2010

Some other decidable problems
• ANFA = {⟨M,w⟩⃒M is an NFA that accepts w}

‣ By direct simulation, or by reduction to ADFA.

• AREX = {⟨R,w⟩⃒R is a regular expression that generates w}

‣ By reduction to ANFA.

• EDFA = {⟨M⟩⃒M is a DFA and L(D) = ∅}
‣ By inspecting the DFAʼs transitions to see if there is any path to a final state.

• EQDFA = {⟨M1,M2⟩⃒M1, M2 are DFAʼs and L(M1) = L(M2) }

‣ By reduction to EDFA.

• ECFG = {⟨G⟩⃒G is a CFG and L(G) = ∅}
‣ By analysis of the CFG productions.

13

Monday, 24 May 2010

The Universal TM
• So far, weʼve fed descriptions of simple

machines to TMʼs. But nothing stops us
from feeding descriptions of TMʼs to TMʼs!
‣ In fact, this is really what weʼve been leading up to

• A universal TM U behaves as follows:
‣ U checks input has form ⟨M,w⟩ where M is an

(encoded) TM and w is a string

‣ U simulates behavior of M on input w.

‣ If M ever enters an accept state, U accepts

‣ If M ever rejects, U rejects
14

Monday, 24 May 2010

Role of Universal TM
• U models a (real-world) stored program

computer.
‣ Capable of doing many different tasks, depending on

program you feed it

• Existence of U shows that the language
ATM = {⟨M,w⟩⃒M is a TM and M accepts w} is
Turing-recognizable

• But it doesnʼt show that ATM is Turing-decidable

‣ If M runs forever on some w, U does too (rather
than rejecting)

15

Monday, 24 May 2010

ATM is undecidable
• Proof is by contradiction.

• Suppose ATM is decidable. Then some TM
H decides it.
‣ That is, for any TM M and input w, if we run H on

⟨M,w⟩ then H accepts if M accepts w and rejects if
M does not accept w.

• Now use H to build a machine D, which
‣ when started on input ⟨M⟩, runs H on ⟨M,⟨M⟩⟩

‣ does the opposite of H: if H rejects, D accepts and
if H accepts, D rejects.

16

Monday, 24 May 2010

H cannot exist
• We have

• But now if we run D with its own
description as input, we get

• This is paradoxical! So D cannot exist.
Therefore H cannot exist either. So ATM is
not decidable.

17

Monday, 24 May 2010

An unrecognizable language
• A language L is decidable ⇔ both L and L

are Turing-recognizable.
‣ Proof: ⇒ is obvious. For ⇐, we have TMʼs M1 and

M2 that recognize L, L respectively. Use them to
build a TM M that runs M1 and M2 in parallel until
one of them accepts (which must happen). If M1
accepts M accepts too; if M2 accepts, M rejects.

• ATM is not Turing-recognizable.
‣ Proof by contradiction. Suppose it is. Then, since

ATM is recognizable, ATM is decidable. But it isnʼt!
18

Monday, 24 May 2010

HALTTM is undecidable
• HALTTM = {⟨M,w⟩⃒M is a TM and M halts

on input w}

• Proof is by reduction from ATM.

• If problem P reduces to problem Q, and P
is undecidable, then Q is undecidable!
‣ Otherwise, we could use Q to decide P.

• So must show how a TM that decides
HALTTM can be used to decide ATM.

19

Monday, 24 May 2010

Acceptance reduces to Halting
• Assume TM R decides HALTTM.

• Then the following TM S decides ATM:
‣ First, S runs R on ⟨M,w⟩.

‣ If R rejects, we know that M does not halt on w.
So M certainly does not accept w. So S rejects.

‣ If R accepts, S simulates M on w until it halts
(which it will!)
° If M is in an accept state, S accepts; if M is in a reject

state, S rejects.

• Since S cannot exist, neither can R.
20

Monday, 24 May 2010

Another undecidable problem
• ETM = {⟨M⟩⃒M is a TM and L(M) = ∅} is

undecidable.

• Proof is again by reduction from ATM: we
suppose TM R decides ETM and use it to
define a TM that decides ATM as follows:
‣ Check that input has form ⟨M,w⟩; if not, reject.

‣ Construct a machine description ⟨M1⟩ such that
L(M1) = L(M) ∩ {w}. (How?)

‣ Run R on ⟨M1⟩. If it accepts, L(M) ∩ {w} = ∅, so w ∉
L(M), so reject. If it rejects, L(M) ∩ {w} ≠ ∅, so w ∈
L(M), so accept.

21

Monday, 24 May 2010

Riceʼs Theorem
• In fact, the approach of this last result can be

generalized to prove Riceʼs Theorem:

• Let P be any non-trivial property of Turing-
recognizable languages
‣ Non-trivial means P is true of some but not all

• Then {⟨M⟩⃒P is true of L(M)} is undecidable

• Examples of undecidable properties of L(M):
‣ L(M) is empty, non-empty, finite, regular, CF, ...

22

Monday, 24 May 2010

Other Undecidable Problems

• Problems about CFGs G,G1, G2
‣ Is G ambiguous? Is L(G1) ⊆ L(G2)? Is L(G) context-free?

• Postʼs Correspondence Problem

• Hilbertʼs 10th Problem
‣ Does a polynomial equation p(x1, x2, ..., xn) = 0 with integer

coefficients have a solution consisting of integers?

• Equivalence Problem
‣ Do two arbitrary Turing-computable functions have the

same output on all arguments?

23

Monday, 24 May 2010

Post's Correspondence Problem

‣ Given a finite sequence of pairs of strings (s1,t1),
(s2,t2),..., (sn,tn), is there a sequence of indices i1,i2,...,ik
(duplications allowed) such that si1si2...sik = ti1ti2...tik ?

‣ Example: (ab, a), (b, bb), (aa, b), (b, aab)

° The sequence 1, 2, 1, 3, 4 gives us
- abbabaab

24

Monday, 24 May 2010

Post's Correspondence Problem

‣ Given a finite sequence of pairs of strings (s1,t1),
(s2,t2),..., (sn,tn), is there a sequence of indices i1,i2,...,ik
(duplications allowed) such that si1si2...sik = ti1ti2...tik ?

‣ Example: (ab, a), (b, bb), (aa, b), (b, aab)

° The sequence 1, 2, 1, 3, 4 gives us
- abbabaab

24

Monday, 24 May 2010

Post's Correspondence Problem

‣ Given a finite sequence of pairs of strings (s1,t1),
(s2,t2),..., (sn,tn), is there a sequence of indices i1,i2,...,ik
(duplications allowed) such that si1si2...sik = ti1ti2...tik ?

‣ Example: (ab, a), (b, bb), (aa, b), (b, aab)

° The sequence 1, 2, 1, 3, 4 gives us
- abbabaab

24

Monday, 24 May 2010

Post's Correspondence Problem

‣ Given a finite sequence of pairs of strings (s1,t1),
(s2,t2),..., (sn,tn), is there a sequence of indices i1,i2,...,ik
(duplications allowed) such that si1si2...sik = ti1ti2...tik ?

‣ Example: (ab, a), (b, bb), (aa, b), (b, aab)

° The sequence 1, 2, 1, 3, 4 gives us
- abbabaab

24

Monday, 24 May 2010

Post's Correspondence Problem

‣ Given a finite sequence of pairs of strings (s1,t1),
(s2,t2),..., (sn,tn), is there a sequence of indices i1,i2,...,ik
(duplications allowed) such that si1si2...sik = ti1ti2...tik ?

‣ Example: (ab, a), (b, bb), (aa, b), (b, aab)

° The sequence 1, 2, 1, 3, 4 gives us
- abbabaab

24

Monday, 24 May 2010

Post's Correspondence Problem

‣ Given a finite sequence of pairs of strings (s1,t1),
(s2,t2),..., (sn,tn), is there a sequence of indices i1,i2,...,ik
(duplications allowed) such that si1si2...sik = ti1ti2...tik ?

‣ Example: (ab, a), (b, bb), (aa, b), (b, aab)

° The sequence 1, 2, 1, 3, 4 gives us
- abbabaab

24

Monday, 24 May 2010

Post's Correspondence Problem

‣ Given a finite sequence of pairs of strings (s1,t1),
(s2,t2),..., (sn,tn), is there a sequence of indices i1,i2,...,ik
(duplications allowed) such that si1si2...sik = ti1ti2...tik ?

‣ Example: (ab, a), (b, bb), (aa, b), (b, aab)

° The sequence 1, 2, 1, 3, 4 gives us
- abbabaab

24

Monday, 24 May 2010

Post's Correspondence Problem

‣ Given a finite sequence of pairs of strings (s1,t1),
(s2,t2),..., (sn,tn), is there a sequence of indices i1,i2,...,ik
(duplications allowed) such that si1si2...sik = ti1ti2...tik ?

‣ Example: (ab, a), (b, bb), (aa, b), (b, aab)

° The sequence 1, 2, 1, 3, 4 gives us
- abbabaab

24

Monday, 24 May 2010

Post's Correspondence Problem

‣ Given a finite sequence of pairs of strings (s1,t1),
(s2,t2),..., (sn,tn), is there a sequence of indices i1,i2,...,ik
(duplications allowed) such that si1si2...sik = ti1ti2...tik ?

‣ Example: (ab, a), (b, bb), (aa, b), (b, aab)

° The sequence 1, 2, 1, 3, 4 gives us
- abbabaab

24

Monday, 24 May 2010

Post's Correspondence Problem

‣ Given a finite sequence of pairs of strings (s1,t1),
(s2,t2),..., (sn,tn), is there a sequence of indices i1,i2,...,ik
(duplications allowed) such that si1si2...sik = ti1ti2...tik ?

‣ Example: (ab, a), (b, bb), (aa, b), (b, aab)

° The sequence 1, 2, 1, 3, 4 gives us
- abbabaab

24

Monday, 24 May 2010

Post's Correspondence Problem

‣ Given a finite sequence of pairs of strings (s1,t1),
(s2,t2),..., (sn,tn), is there a sequence of indices i1,i2,...,ik
(duplications allowed) such that si1si2...sik = ti1ti2...tik ?

‣ Example: (ab, a), (b, bb), (aa, b), (b, aab)

° The sequence 1, 2, 1, 3, 4 gives us
- abbabaab

24

Monday, 24 May 2010

Post's Correspondence Problem

‣ Given a finite sequence of pairs of strings (s1,t1),
(s2,t2),..., (sn,tn), is there a sequence of indices i1,i2,...,ik
(duplications allowed) such that si1si2...sik = ti1ti2...tik ?

‣ Example: (ab, a), (b, bb), (aa, b), (b, aab)

° The sequence 1, 2, 1, 3, 4 gives us
- abbabaab

24

Monday, 24 May 2010

Post's Correspondence Problem

‣ Given a finite sequence of pairs of strings (s1,t1),
(s2,t2),..., (sn,tn), is there a sequence of indices i1,i2,...,ik
(duplications allowed) such that si1si2...sik = ti1ti2...tik ?

‣ Example: (ab, a), (b, ab)

° has no solution

° Why?

Monday, 24 May 2010

Post's Correspondence Problem

‣ Given a finite sequence of pairs of strings (s1,t1),
(s2,t2),..., (sn,tn), is there a sequence of indices i1,i2,...,ik
(duplications allowed) such that si1si2...sik = ti1ti2...tik ?

‣ There is no algorithm that can decide, for an arbitrary
instance of Post's Correspondence problem, whether
there is a solution.

Monday, 24 May 2010

CS311 Computational Structures

The Halting Problem,
and other things uncomputable:

An approach by counting

27

Monday, 24 May 2010

Computability
• Anything computable can be computed by a

Turing machine …
‣ or one of the equivalent models, such as a partial

recursive function or a λ-calculus expression

• But: not everything is computable

• Basic argument:
‣ There are a countably-infinite number of Turing

machines (partial recursive function, λ-calculus
expressions…)

‣ There are an uncountable number of functions ℕ→ℕ

28

Monday, 24 May 2010

Countability of Turing Machines
• To prove that a set is countably infinite, we

need only exhibit a bijection between its
elements and
‣ an injection suffices to show that it is countable

• Thatʼs called an “Effective Enumeration”
‣ you have a way of “counting off” the Turing Machines

• Basic idea: you can encode anything (e.g., a
description of a Turing Machine) in binary
‣ but any string of binary digits can be interpreted as a

(large) integer
29

N

Monday, 24 May 2010

Heinʼs enumeration
• Take a (large) integer n
‣ Write it in base-128 notation

‣ regard each base-128 digit as an ASCII character

‣ ask: is the resulting ascii string a description of a Turing
machine?

• If so, thatʼs the nth Turing machine

• If not, arbitrarily say that the nth Turing
machine is “(0, a, a, S, Halt)”

• If we do this for all n , we will eventually get
all the TMs

30

∈ N

Monday, 24 May 2010

And for λ-calculus?

• All the expressions can also be effectively
enumerated…
‣ and also the primitive recursive functions,

‣ and the Markov algorithms…

• The details are unimportant, so long as you
agree that it makes sense to talk about the
Turing machine (or λ-expression …)
corresponding to a certain number.

31

Monday, 24 May 2010

Functions over the Natural Numbers

• There are an uncountable number of functions
in

• We prove this by a diagnonalization argument
‣ the same kind of argument that you used to prove that

there were more real numbers than integers.

• Assume that there are a countable number of
functions

• establish a contradiction
‣ This is in chapter 2.4 of Hein (p.121) if you need to

refresh your memory!
32

N→ N

Monday, 24 May 2010

• Assume that is countably infinite.

• Then there is a enumeration f0, f1, f2, f3, … of
all of the functions in

• Now consider the function g: defined
as follows:

g n = if fn n = 1 then 2 else 1

• Then g is not one of the fi

‣ it differs from f0 at 0, from f1 at 1, …

• This contradicts the assumption that
is countably infinite.

33

N→ N

N→ N
N→ N

N→ N
⃞

Monday, 24 May 2010

• There are lots of uncomputable functions
‣ in fact: an uncountable number of them!

34

all functions N→ N

computable functions
N→ N

Monday, 24 May 2010

One Uncomputable Function
• Assume that the following function H(x) is

computable
‣ H(x) = if fx halts on input X then loop forever else 0

• Then H must be in our enumeration of
computable functions, say H = fk
‣ So: fk(x) = if fx halts on input x then loop forever else 0

• Now apply fk to its own index:
‣ fk(k) = if fk halts on input k then loop forever else 0
‣ Thus: if fk(k) halts, then fk(k) loops forever, but if fk(k)

loops forever, then fk(k) = 0

• We have a contradiction
35

Monday, 24 May 2010

The Halting Problem
• Is there a Turing Machine that can decide whether

the execution of an arbitrary TM halts on an
arbitrary input?

• Is there a λ-calculus expression that can decide
whether the application of an arbitrary λ-term to a
second λ-term will reach a normal form?

• Is there a simple program that can decide whether
an arbitrary simple program will halt when given
arbitrary initial values for its variables?

36

Monday, 24 May 2010

The Halting Problem
• Is there a Turing Machine that can decide whether

the execution of an arbitrary TM halts on an
arbitrary input?

• Is there a λ-calculus expression that can decide
whether the application of an arbitrary λ-term to a
second λ-term will reach a normal form?

• Is there a simple program that can decide whether
an arbitrary simple program will halt when given
arbitrary initial values for its variables?

36

No

Monday, 24 May 2010

The Halting Problem
• Is there a Turing Machine that can decide whether

the execution of an arbitrary TM halts on an
arbitrary input?

• Is there a λ-calculus expression that can decide
whether the application of an arbitrary λ-term to a
second λ-term will reach a normal form?

• Is there a simple program that can decide whether
an arbitrary simple program will halt when given
arbitrary initial values for its variables?

36

No

No

Monday, 24 May 2010

The Halting Problem
• Is there a Turing Machine that can decide whether

the execution of an arbitrary TM halts on an
arbitrary input?

• Is there a λ-calculus expression that can decide
whether the application of an arbitrary λ-term to a
second λ-term will reach a normal form?

• Is there a simple program that can decide whether
an arbitrary simple program will halt when given
arbitrary initial values for its variables?

36

No

No

No

Monday, 24 May 2010

What this doesnʼt mean

• Nothing about these results says that for some
TM, or some simple program, or for some λ-
expression, applied to some input, we canʼt
decide whether it will halt.

• The unsolvability of the Halting problem just
says that we canʼt always do it

37

Monday, 24 May 2010

Decidability
• A decision problem is a question with a yes or no

answer

• The problem is decidable if there is an algorithm/
function/TM that can input the problem and
always halt with the correct answer

• The problem is semi-decidable (aka partially
decidable, aka partially solvable) if there is an
algorithm that halts and answers yes when the
correct answer is yes, but may run forever if the
answer is no.

38

Monday, 24 May 2010

Examples
• Is there an algorithm to decide if the following

simple programs halt on arbitrary initial state:

39

Monday, 24 May 2010

Examples
• Is there an algorithm to decide if the following

simple programs halt on arbitrary initial state:

39

X := 0

Monday, 24 May 2010

Examples
• Is there an algorithm to decide if the following

simple programs halt on arbitrary initial state:

39

while X ≠ 0
do Y:= succ(X) odX := 0

Monday, 24 May 2010

Examples
• Is there an algorithm to decide if the following

simple programs halt on arbitrary initial state:

39

while X ≠ 0
do Y:= succ(X) odX := 0

• Is there an algorithm to decide if an arbitrary
simple program halts on arbitrary initial state?

Monday, 24 May 2010

Examples
• Is there an algorithm to decide if the following

simple programs halt on arbitrary initial state:

39

while X ≠ 0
do Y:= succ(X) odX := 0

• Is there an algorithm to decide if an arbitrary
simple program halts on arbitrary initial state?

• What about Java programs? ML programs?

Monday, 24 May 2010

More Undecidable Problems

• Is there a Turing Machine that can recognize
any Regular Language?

• Is there a Turing Machine that can recognize
any Context-free language?

• Are all languages Turing-Recognizable?

40

Monday, 24 May 2010

Whatʼs a “Language”?

• A language over an alphabet A is a set of
strings from A*
‣ In other words: each subset of A* is a language

° A language is a member of P(A*)

‣ A* is countably infinite (for any finite A)

‣ So P(A*) is uncountable

• There are an uncountable number of
languages

41

Monday, 24 May 2010

Why is P(A*) Uncountable?

• The set B of infinite binary sequences is
uncountable

• A* can be enumerated, say, in lexicographic
order

• Any particular language, L, over A can be
represented as a bit-mask, that is, as an
element of B

42

Monday, 24 May 2010

Proof

43

Monday, 24 May 2010

Proof
 A = {a, b}
 L1 = { w ∈ A* | w starts with a }

43

Monday, 24 May 2010

Proof
 A = {a, b}
 L1 = { w ∈ A* | w starts with a }

 A* = { Λ, a, b, aa, ab, ba, bb, aaa, aab, … }
 L1 = { a, aa, ab, aaa, aab, … }
X(L1)= { 0, 1, 0, 1, 1, 0, 0, 1, 1, … }

43

Monday, 24 May 2010

Proof
 A = {a, b}
 L1 = { w ∈ A* | w starts with a }

 A* = { Λ, a, b, aa, ab, ba, bb, aaa, aab, … }
 L1 = { a, aa, ab, aaa, aab, … }
X(L1)= { 0, 1, 0, 1, 1, 0, 0, 1, 1, … }

✓ X(L1) is called the characteristic sequence of L1

43

Monday, 24 May 2010

Proof
 A = {a, b}
 L1 = { w ∈ A* | w starts with a }

 A* = { Λ, a, b, aa, ab, ba, bb, aaa, aab, … }
 L1 = { a, aa, ab, aaa, aab, … }
X(L1)= { 0, 1, 0, 1, 1, 0, 0, 1, 1, … }

✓ X(L1) is called the characteristic sequence of L1

✓ X(L1) is a member of B

43

Monday, 24 May 2010

Proof
 A = {a, b}
 L1 = { w ∈ A* | w starts with a }

 A* = { Λ, a, b, aa, ab, ba, bb, aaa, aab, … }
 L1 = { a, aa, ab, aaa, aab, … }
X(L1)= { 0, 1, 0, 1, 1, 0, 0, 1, 1, … }

✓ X(L1) is called the characteristic sequence of L1

✓ X(L1) is a member of B
✓ We have just displayed a bijection between B and the

languages over A

43

Monday, 24 May 2010

Some languages are
not recognizable

• There are an uncountable number of
languages

• There are a countable number of Turing
machines

• Each Turing machine recognizes exactly one
language

44

Monday, 24 May 2010

A Little History

• At the start of the 20th Century, it was
thought that all mathematical problems
were decidable
• if you could formulate the problem precisely,

and if you were smart enough, you could
always come up with an algorithm to solve it.

• 1931: Kurt Gödel showed that this was
impossible

45

Monday, 24 May 2010

Gödelʼs Incompleteness Theorems

1. There are first-order statements about
the natural numbers that can neither be
proved nor disproved from Peanoʼs
axioms

2. Itʼs impossible to prove from Peanoʼs
axioms that Peanoʼs axioms are
consistent.

46

Monday, 24 May 2010

• Two key ideas behind Gödelʼs proof
1. Gödel Numbering

Each formula (or sequence of formulae) can be
encoded as an integer; each integer represents a
formula or a sequence of formulae
So: ω(x, y) asserts that y is (the Gödel number of) a
proof of x.
∀ y . ¬ω(x, y) asserts that x is unprovable.

2. Self reference (diagonalization)
if p is the Gödel number of ∀ y . ¬ω(x, y), then
ζ = ∀ y . ¬ω(p, y) asserts that ζ is unprovable

47

Monday, 24 May 2010

• The same two ideas:
• Encoding: any “computing machine”, or

program, can be represented as data (which
the machine can take as input).

• Self-reference: a machine (or program)
operating on a description of itself as input

48

Turing: applied Gödel to Computability

Monday, 24 May 2010

Halting Problem for Programmers

• Student claims that they have a program
fun halts(program, input): boolean = …

• Note that halts takes an encoding of a program as its
first argument.

• But look:
paradox(program) = if halts(program, program)

 then loopForever

 else true
paradox(paradox) answers what ?

49

Monday, 24 May 2010

paradox(paradox) =
 if halts(paradox, paradox)

 then loopForever

 else true

• If paradox halts when run on itself as input,
then …

• If paradox does not halt when run on itself as
input …

• Either way, we have a contradiction
• Therefore, you canʼt write the program halts

50

Monday, 24 May 2010

