
CS311 Computational Structures

Decidable and 
Undecidable Problems

1

Lecture 15

Andrew Black
Andrew Tolmach

Monday, 24 May 2010



Recall: 
Recognizable vs. Decidable
• A language L is Turing recognizable if some 

Turing machine recognizes it.
‣ Some strings not in L may cause the TM to loop

‣ Turing recognizable = recursively enumerable (RE)

• A language L is Turing decidable if some 
Turing machine decides it
‣ To decide is to return a definitive answer; the TM must 

halt on all inputs

‣ Turing decidable = decidable = recursive
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Problems about Languages
• Consider some decision problems about 

languages, machines, and grammars:
‣ Ex.: Is there an algorithm that given any DFA M 

and any string w, tells whether M accepts w ?

‣ Ex.: Is there an algorithm that given any two 
CFGʼs G1 and G2 tells whether L(G1) = L(G2) ?

‣ Ex. Is there an algorithm that given any TM M  
tells whether L(M) = ∅ ?

• By Church-Turing thesis: “is there an 
algorithm?”  =  “is there a TM?”
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Machine encodings
• We can encode machine or grammar 

descriptions (and inputs) as strings over a 
finite alphabet.
‣ Example: Letʼs encode the DFA M = (Q,Σ,δ,q1,F) 

using the alphabet {0,1}
° First, assign a unique integer ≥ 1 to each q∈Q and x∈Σ

° Code each transition δ(qi,xj) = qk  as 0i10j10k

° Code F = {qp,...qr} as 0p1...10r

° Code M by concatenating codes for all transitions and 
F, separated by 11

‣ We write ⟨M⟩ for the encoding of M and ⟨M,w⟩ for 
the encoding of M followed by input w
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Problems on encodings 
• We can specify problems as languages 

over the encoding strings.
‣ Ex.: ADFA = {⟨M,w⟩⃒M is a DFA that accepts w}

‣ Ex.: EQCFG = {⟨G,H⟩⃒G and H are CFGʼs and L(G) = 
L(H)}

‣ Ex.: ETM = {⟨M⟩⃒M is a TM and L(M) = ∅}

• Now we can ask “is there a TM that 
decides this language?” (i.e., is there an 
algorithm that solves this problem?)
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A decidable language
• To show that a language is decidable, we have 

to describe an algorithm that decides it
‣ Weʼll allow informal descriptions as long as we are 

confident they can in principle be turned into TMs

• Consider ADFA = { ⟨M,w⟩⃒M is a DFA that 
accepts w }

• Algorithm: Check that M is a valid encoding; if 
not reject. Simulate behavior of M on w. If M 
halts in an accepting state, accept; if M halts in 
a rejecting state, reject.
‣ We coded essentially this algorithm in DFA.c, although 

machine encoding was not read from input
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Another decidable language
• Consider ACFG = { ⟨G,w⟩ ⃒ G is a CFG that 

generates w }

• First attempt: build a TM that enumerates 
all possible derivations in G.  If it finds w, it 
accepts. If it doesnʼt find w, it rejects. 

• Problem: there may be an infinite number 
of derivations!   So TM may never be able 
to reject. 

• This TM recognizes ACFG, but doesnʼt 
decide it.
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Another try
• Consider AChCFG = { ⟨G,w⟩⃒G is a CFG in 

Chomsky normal form that generates w }

• We know that any derivation of w in G requires
2⃒w⃒−1 steps. 

• So a TM that enumerates all derivations of this 
length can decide AChCFG.

• We also know an algorithm to convert an 
arbitrary CFG into CNF.

• Combining these two algorithms into a single TM 
gives a machine that decides ACFG.
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Reduction
• We solved the decision problem for ACFG by 

algorithmically transforming the input into the 
form needed by another problem for which 
we could find a deciding TM.

• This strategy of reducing one problem P to 
another (known) problem Q is very common. 
‣ If P reduces to Q, and Q is decidable, then P is 

decidable.

• Must be certain that reduction process can 
be described by a TM !
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Reductions (Hopcroft §9.3.1)

• Reductions must turn +ve instances of P1 into +ve instances of 
P2, -ve instances into -ve

• It's common that only a small part of P2 be the target of the 
reduction.

• Reduction is a TM that translates an instance of P1 into an 
instance of P2
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The Value of Reductions
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P1 P2
reduce yes

no
decide

If there is a reduction from P1 to P2, then:
1. If P1 is undecidable, so is P2

2. If P1 is non-RE, then so is P2
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The Value of Reductions
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P1 P2
reduce yes

no
decide

Proof by contradiction:
Suppose that P2 is decidable … 
then we can use P2 to decide P1

If there is a reduction from P1 to P2, then:
1. If P1 is undecidable, so is P2

2. If P1 is non-RE, then so is P2
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The Value of Reductions

12

P1 P2
reduce yes

no
decide

Proof by contradiction:
Suppose that P2 is recognizable … 
then we can use P2 to recognize P1

If there is a reduction from P1 to P2, then:
1. If P1 is undecidable, so is P2

2. If P1 is non-RE, then so is P2
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Some other decidable problems
• ANFA = {⟨M,w⟩⃒M is an NFA that accepts w}

‣ By direct simulation, or by reduction to ADFA.

• AREX = {⟨R,w⟩⃒R is a regular expression that generates w}

‣ By reduction to ANFA.

• EDFA = {⟨M⟩⃒M is a DFA and L(D) = ∅}
‣ By inspecting the DFAʼs transitions to see if there is any path to a final state.

• EQDFA = {⟨M1,M2⟩⃒M1, M2 are DFAʼs and L(M1) = L(M2) }

‣ By reduction to EDFA.

• ECFG = {⟨G⟩⃒G is a CFG and L(G) = ∅}
‣ By analysis of the CFG productions.
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The Universal TM
• So far, weʼve fed descriptions of simple 

machines to TMʼs.  But nothing stops us 
from feeding descriptions of TMʼs to TMʼs!
‣ In fact, this is really what weʼve been leading up to

• A universal TM U behaves as follows:
‣ U checks input has form ⟨M,w⟩ where M is an 

(encoded) TM and w is a string

‣ U simulates behavior of  M on input w.

‣ If M ever enters an accept state, U accepts

‣ If M ever rejects, U rejects
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Role of Universal TM
• U models a (real-world) stored program 

computer.
‣ Capable of doing many different tasks, depending on 

program you feed it

• Existence of U shows that the language       
ATM  = {⟨M,w⟩⃒M is a TM and M accepts w} is 
Turing-recognizable

• But it doesnʼt show that ATM is Turing-decidable

‣ If M runs forever on some w, U does too (rather 
than rejecting)
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ATM is undecidable
• Proof is by contradiction.

• Suppose ATM is decidable. Then some TM 
H decides it.  
‣ That is, for any TM M and input w, if we run H on 

⟨M,w⟩ then H accepts if M accepts w and rejects if 
M does not accept w.

• Now use H to build a machine D, which
‣ when started on input ⟨M⟩, runs H on ⟨M,⟨M⟩⟩

‣ does the opposite of H: if H rejects, D accepts and 
if H accepts, D rejects.
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H cannot exist
• We have

• But now if we run D with its own 
description as input, we get

• This is paradoxical!  So D cannot exist. 
Therefore H cannot exist either. So ATM is 
not decidable.
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An unrecognizable language
• A language L is decidable ⇔ both L and L 

are Turing-recognizable.
‣ Proof: ⇒ is obvious.  For ⇐, we have TMʼs M1 and 

M2 that recognize L, L respectively. Use them to 
build a TM M that runs M1 and M2  in parallel until 
one of them accepts (which must happen). If M1 
accepts M accepts too; if M2 accepts, M rejects.

• ATM  is not Turing-recognizable.
‣ Proof by contradiction. Suppose it is. Then, since 

ATM is recognizable, ATM  is decidable. But it isnʼt!
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HALTTM is undecidable
• HALTTM = {⟨M,w⟩⃒M is a TM and M halts 

on input w}

• Proof is by reduction from ATM.

• If problem P reduces to problem Q, and P 
is undecidable, then Q is undecidable!
‣ Otherwise, we could use Q to decide P.

• So must show how a TM that decides 
HALTTM can be used to decide ATM.
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Acceptance reduces to Halting
• Assume TM R decides HALTTM.  

• Then the following TM S decides ATM:
‣ First, S runs R on ⟨M,w⟩. 

‣ If R rejects, we know that M does not halt on w. 
So M certainly does not accept w.  So S rejects.

‣ If R accepts, S simulates M on w until it halts 
(which it will!)
° If M is in an accept state, S accepts; if M is in a reject 

state, S rejects. 

• Since S cannot exist, neither can R.
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Another undecidable problem
• ETM = {⟨M⟩⃒M is a TM and L(M) = ∅} is 

undecidable.

• Proof is again by reduction from ATM: we 
suppose TM R decides ETM and use it to 
define a TM that decides ATM as follows:
‣ Check that input has form ⟨M,w⟩; if not, reject.

‣ Construct a machine description ⟨M1⟩ such that 
L(M1) = L(M) ∩ {w}.   (How?) 

‣ Run R on ⟨M1⟩.  If it accepts, L(M) ∩ {w} = ∅, so w ∉ 
L(M), so reject. If it rejects, L(M) ∩ {w} ≠ ∅, so w ∈ 
L(M), so accept.
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Riceʼs Theorem
• In fact, the approach of this last result can be 

generalized to prove Riceʼs Theorem:

• Let P be any non-trivial property of Turing-
recognizable languages
‣ Non-trivial means P is true of some but not all

• Then {⟨M⟩⃒P is true of L(M)} is undecidable

• Examples of undecidable properties of L(M):
‣ L(M) is empty, non-empty, finite, regular, CF, ...
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Other Undecidable Problems

• Problems about CFGs G,G1, G2
‣ Is G ambiguous? Is L(G1) ⊆ L(G2)? Is L(G) context-free?

• Postʼs Correspondence Problem

• Hilbertʼs 10th Problem
‣ Does a polynomial equation p(x1, x2, ..., xn) = 0 with integer 

coefficients have a solution consisting of integers? 

• Equivalence Problem
‣ Do two arbitrary Turing-computable functions have the 

same output on all arguments?
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Post's Correspondence Problem

‣ Given a finite sequence of pairs of strings (s1,t1), 
(s2,t2),..., (sn,tn), is there a sequence of indices i1,i2,...,ik 
(duplications allowed) such that si1si2...sik = ti1ti2...tik ?

‣ Example: (ab, a), (b, bb), (aa, b), (b, aab)

° The sequence 1, 2, 1, 3, 4 gives us
- abbabaab
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Post's Correspondence Problem

‣ Given a finite sequence of pairs of strings (s1,t1), 
(s2,t2),..., (sn,tn), is there a sequence of indices i1,i2,...,ik 
(duplications allowed) such that si1si2...sik = ti1ti2...tik ?

‣ Example: (ab, a), (b, ab)

° has no solution

° Why?
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Post's Correspondence Problem

‣ Given a finite sequence of pairs of strings (s1,t1), 
(s2,t2),..., (sn,tn), is there a sequence of indices i1,i2,...,ik 
(duplications allowed) such that si1si2...sik = ti1ti2...tik ?

‣ There is no algorithm that can decide, for an arbitrary 
instance of Post's Correspondence problem, whether 
there is a solution.
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CS311 Computational Structures

The Halting Problem, 
and other things uncomputable:

An approach by counting
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Computability
• Anything computable can be computed by a 

Turing machine …
‣ or one of the equivalent models, such as a partial 

recursive function or a λ-calculus expression

• But: not everything is computable

• Basic argument:
‣ There are a countably-infinite number of Turing 

machines (partial recursive function, λ-calculus 
expressions…)

‣ There are an uncountable number of functions ℕ→ℕ
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Countability of Turing Machines
• To prove that a set is countably infinite, we 

need only exhibit a bijection between its 
elements and
‣ an injection suffices to show that it is countable

• Thatʼs called an “Effective Enumeration”
‣ you have a way of “counting off” the Turing Machines

• Basic idea: you can encode anything (e.g., a 
description of a Turing Machine) in binary
‣ but any string of binary digits can be interpreted as a 

(large) integer 
29
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Heinʼs enumeration
• Take a (large) integer n
‣ Write it in base-128 notation

‣ regard each base-128 digit as an ASCII character

‣ ask: is the resulting ascii string a description of a Turing 
machine?

• If so, thatʼs the nth Turing machine

• If not, arbitrarily say that the nth Turing 
machine is “(0, a, a, S, Halt)”

• If we do this for all n      , we will eventually get 
all the TMs

30
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And for λ-calculus?

• All the expressions can also be effectively 
enumerated…
‣ and also the primitive recursive functions,

‣ and the Markov algorithms…

• The details are unimportant, so long as you 
agree that it makes sense to talk about the 
Turing machine (or λ-expression …) 
corresponding to a certain number.
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Functions over the Natural Numbers 

• There are an uncountable number of functions 
in  

• We prove this by a diagnonalization argument
‣ the same kind of argument that you used to prove that 

there were more real numbers than integers.

• Assume that there are a countable number of 
functions

• establish a contradiction
‣ This is in chapter 2.4 of Hein (p.121) if you need to 

refresh your memory!
32
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• Assume that             is countably infinite.

• Then there is a enumeration f0, f1, f2, f3, … of 
all of the functions in 

• Now consider the function g:             defined 
as follows:

g n = if fn n = 1 then 2 else 1

• Then g is not one of the fi

‣ it differs from f0 at 0, from f1 at 1, …

• This contradicts the assumption that              
is countably infinite.
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• There are lots of uncomputable functions
‣ in fact: an uncountable number of them!

34

all functions N→ N

computable functions
N→ N
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One Uncomputable Function
• Assume that the following function H(x) is 

computable
‣ H(x) = if fx halts on input X then loop forever else 0

• Then H must be in our enumeration of 
computable functions, say H = fk
‣ So: fk(x) = if fx halts on input x then loop forever else 0

• Now apply fk  to its own index:
‣ fk(k) = if fk halts on input k then loop forever else 0
‣ Thus: if fk(k) halts, then fk(k) loops forever, but if fk(k) 

loops forever, then fk(k) = 0

• We have a contradiction
35
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The Halting Problem
• Is there a Turing Machine that can decide whether 

the execution of an arbitrary TM halts on an 
arbitrary input?

• Is there a λ-calculus expression that can decide 
whether the application of an arbitrary λ-term to a 
second λ-term will reach a normal form?

• Is there a simple program that can decide whether 
an arbitrary simple program will halt when given 
arbitrary initial values for its variables?

36
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What this doesnʼt mean

• Nothing about these results says that for some 
TM, or some simple program, or for some λ-
expression, applied to some input, we canʼt 
decide whether it will halt.

• The unsolvability of the Halting problem just 
says that we canʼt always do it

37
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Decidability
• A decision problem is a question with a yes or no 

answer

• The problem is decidable if there is an algorithm/
function/TM that can input the problem and 
always halt with the correct answer

• The problem is semi-decidable (aka partially 
decidable, aka partially solvable) if there is an 
algorithm that halts and answers yes when the 
correct answer is yes, but may run forever if the 
answer is no.
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Examples
• Is there an algorithm to decide if the following  

simple programs halt on arbitrary initial state:

39
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Examples
• Is there an algorithm to decide if the following  

simple programs halt on arbitrary initial state:

39

X := 0
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Examples
• Is there an algorithm to decide if the following  

simple programs halt on arbitrary initial state:

39

while X ≠ 0 
do Y:= succ(X) odX := 0

• Is there an algorithm to decide if an arbitrary  
simple program halts on arbitrary initial state?

• What about Java programs?  ML programs?
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More Undecidable Problems

• Is there a Turing Machine that can recognize 
any Regular Language?

• Is there a Turing Machine that can recognize 
any Context-free language?

• Are all languages Turing-Recognizable?

40
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Whatʼs a “Language”?

• A language over an alphabet A is a set of 
strings from A*
‣ In other words: each subset of A* is a language

° A language is a member of P(A*)

‣ A* is countably infinite (for any finite A)

‣ So P(A*) is uncountable

• There are an uncountable number of 
languages

41
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Why is P(A*) Uncountable?

• The set B of infinite binary sequences is 
uncountable

• A* can be enumerated, say, in lexicographic 
order

• Any particular language, L, over A can be 
represented as a bit-mask, that is, as an 
element of B

42
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Proof

43
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Proof
 A = {a, b}
 L1  = { w ∈ A* | w starts with a }
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Proof
 A = {a, b}
 L1  = { w ∈ A* | w starts with a }

 A* = { Λ, a, b, aa, ab, ba, bb, aaa, aab, … }
 L1  = {    a,    aa, ab,         aaa, aab, … }
X(L1)= { 0, 1, 0,  1,  1,  0,  0,   1,   1, … }
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 A* = { Λ, a, b, aa, ab, ba, bb, aaa, aab, … }
 L1  = {    a,    aa, ab,         aaa, aab, … }
X(L1)= { 0, 1, 0,  1,  1,  0,  0,   1,   1, … }

✓ X(L1) is called the characteristic sequence of L1
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Proof
 A = {a, b}
 L1  = { w ∈ A* | w starts with a }

 A* = { Λ, a, b, aa, ab, ba, bb, aaa, aab, … }
 L1  = {    a,    aa, ab,         aaa, aab, … }
X(L1)= { 0, 1, 0,  1,  1,  0,  0,   1,   1, … }

✓ X(L1) is called the characteristic sequence of L1

✓ X(L1) is a member of B
✓ We have just displayed a bijection between B and the 

languages over A
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Some languages are
not recognizable

• There are an uncountable number of 
languages

• There are a countable number of Turing 
machines

• Each Turing machine recognizes exactly one 
language
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A Little History

• At the start of the 20th Century, it was 
thought that all mathematical problems 
were decidable
• if you could formulate the problem precisely, 

and if you were smart enough, you could 
always come up with an algorithm to solve it.

• 1931: Kurt Gödel showed that this was 
impossible
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Gödelʼs Incompleteness Theorems

1. There are first-order statements about 
the natural numbers that can neither be 
proved nor disproved from Peanoʼs 
axioms

2. Itʼs impossible to prove from Peanoʼs 
axioms that Peanoʼs axioms are 
consistent.
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• Two key ideas behind Gödelʼs proof
1. Gödel Numbering

Each formula (or sequence of formulae) can be 
encoded as an integer; each integer represents a 
formula or a sequence of formulae
So: ω(x, y) asserts that y is (the Gödel number of) a 
proof of x.
∀ y . ¬ω(x, y) asserts that x is unprovable.

2. Self reference (diagonalization)
if p is the Gödel number of ∀ y . ¬ω(x, y), then 
ζ = ∀ y . ¬ω(p, y) asserts that ζ is unprovable
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• The same two ideas:
• Encoding: any “computing machine”, or 

program, can be represented as data (which 
the machine can take as input).

• Self-reference: a machine (or program) 
operating on a description of itself as input
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Halting Problem for Programmers

• Student claims that they have a program
fun halts(program, input): boolean = …

• Note  that halts takes an encoding of a program as its 
first argument. 

• But look:
paradox(program) = if halts(program, program) 

 
 
 
 
 
 then loopForever

 
 
 
 
 
 else true
paradox(paradox) answers what ?
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paradox(paradox) = 
 if halts(paradox, paradox) 

 
 
 
 
 
 
 then loopForever

 
 
 
 
 
 
 else true

• If paradox halts when run on itself as input, 
then …

• If paradox does not halt when run on itself as 
input …

• Either way, we have a contradiction
• Therefore, you canʼt write the program halts
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