CS311 Computational Structures

Turing Machines

Lecture 11

Andrew P. Black Andrew Tolmach

Alan Mathison Turing

Alan Mathison Turing

- Founder of modern computer science
- Born 1912, London
- Died 1954, Cheshire (suicide)
- Computability (Turing Machines)
- Artificial Intelligence (Turing test)
- Cryptography (breaking Enigma)
- Physical computer design/ applications
- Mathematics, logic, biology, physics,...

Turing personal chronology

- 1912 (23 June): Birth, Paddington, London
- 1926-31: Sherborne School
- 1930: Death of friend Christopher Morcom
- 1931-34: Undergraduate at King's College, Cambridge University
- 1932-35: Quantum mechanics, probability, logic
- 1935: Elected fellow of King's College, Cambridge
- 1936: The Turing machine, computability, universal machine
- 1936-38: Princeton University. Ph.D. Logic, algebra, number theory
- 1938-39: Return to Cambridge. Introduced to German Enigma cipher machine
- 1939-40: The Bombe, machine for Enigma decryption
- 1939-42: Breaking of U-boat Enigma, saving battle of the Atlantic
- 1943-45: Chief Anglo-American crypto consultant. Electronic work.
- 1945: National Physical Laboratory, London
- 1946: Computer and software design leading the world.
- 1947-48: Programming, neural nets, and artificial intelligence
- 1948: Manchester University
- 1949: First serious mathematical use of a computer
- 1950: The Turing Test for machine intelligence
- 1951: Elected FRS. Non-linear theory of biological growth
- 1952: Arrested as a homosexual, loss of security clearance
- 1953-54: Unfinished work in biology and physics
- 1954 (7 June): Death (suicide) by cyanide poisoning, Wilmslow, Cheshire.

Source: Turing web site maintained by Hodges

Turing

Quiz

Turing

Quiz

Hut 6

Sackville Park, Manchester

Sackville Park, Manchester

University of Surrey

Some History

1928: Hilbert proposed the Entscheidungsproblem

 Is there an algorithm for deciding the truth or falsity of any theorem in a mathematical system?

1931: Gödel's Incompleteness Theorems

Gödel numbering

1936: Church defines "effective calculability" based on λ-calculus

1936: Turing defines the Turing machine

1936: Church and Turing (independently) answer the Entscheidungsproblem: *No*

Turing sources

- Biography: Andrew Hodges, Alan Turing: the Enigma, Walker and Company, New York.
- Web site maintained by biographer:
 - http://www.turing.org.uk/turing/

What is a Turing Machine?

- It's a theoretical machine that does the work of a computer
 - When Turing wrote about a "computer" he meant a person!
- Should be able to do anything a computer could possibly do.
 - So if TM can't do a computation, that computation just isn't possible

What constrains a "Computer"?

- Limited "mental state"
 - Computer can only act in a limited number of different modes
- Unlimited scratch space...
 - Computer can record a configuration and return to the computation after taking a break
 - Can always extend the written configuration
- ...but limited field of awareness
 - Can only look at a limited part of the configuration at one time

Turing machine transitions

Turing machine state diagrams have

transitions like this:

meaning:

if machine is in state i, and the symbol under the head is a, then:

the machine can write b, move the head one cell Left, and enter state j.

For simplicity we write a / L for a / a, L

Assumptions/Conventions:

- The input is on the tape before the machine starts
- All other cells on the tape contain the special blank symbol
- The head starts at the left-hand end of the input
- There is a designated start state
- There is a set of designated accept states
- The machine halts when no transition is possible
- We never allow any transitions from the accept states
- Anything else?

A Turing machine can recognize a language

- A Turing machine accepts a string if
 - after starting with the string on the tape,
 - the machine eventually enters an accept state
- How can a TM fail to accept?
 - It can halt in some non-accepting state; OR
 - it can run forever!

Recall: a machine *recognizes* a language if it accepts all and only the strings in that language

n-ary addition as a Language

- Contains strings like:
 - ► 1+11=111
 - 1+1+11+111+1=11111111
- Does not contain strings like:
 - **111**
 - ↑ 1+1=1

Recognizing n-ary addition

- Let $L = \{1^{k_1}+1^{k_2}+...+1^{k_n}=1^{k_1+k_2+...+k_n}\}$ over alphabet $\{1,+,=\}$
- Machine starts at left end of tape and loops:
 - Look at current symbol
 - If it's a 1, change to blank, move to right end
 - if that is a 1, change it to blank, return to left end of input, repeat loop
 - otherwise, reject
 - If it's a +, change to blank, move right one; repeat loop
 - If it's a =, move right: if next symbol is blank, accept; otherwise reject

Machine for *n*-ary addition

Idea for recognizing {anbncn}

- Starting at left-hand of input, if current cell is empty, accept.
- Otherwise, if cell contains an a, change this to an X and move right looking for a corresponding b.
- If b is found, change it to a Y and move right looking for a corresponding c.
- If c is found, change it to a Z and return to left to start over again.
- If there are no more a's, scan to the right making sure that there are no more b's or c's either.

Machine: Recognizing {anbncn}

state 0: looking for an a

state I: looking for matching b

state 2: looking for matching c

state 3: returning to rightmost X

state 4: checking there's no b or c

state 5: accept

Compare to Pushdown Automata

- 1. A Turing machine reads its input and does "scratch work" on the same tape
- 2. The read-write head can move anywhere on the tape at any time

Formal Definition

- A Turing machine M is defined as a 7-tuple: M = (Q,Σ,Γ,δ,q_{0,□},F) where:
 - Q is a set of states
 - Σ is the input alphabet not containing
 □
 - ▶ Γ is the tape alphabet, where \sqcup ∈ Γ and Σ ⊆ Γ
 - ▶ δ : Q × Γ → Q × Γ × {L,R} is the transition function
 - This is a partial function, not necessarily defined on all inputs
 - $q_0 \in Q$ is the start state
 - ▶ ⊔ is the blank symbol
 - F ⊆ Q is the set of accept states

TM Configurations

- The behavior of a TM at each step is governed by its configuration
 - the current state
 - the current tape contents
 - the current tape head location
- We write u q v for the configuration where
 - q is the current state
 - uv is the current tape contents (with blanks to the left and right)
 - the first symbol of v is under the tape head

TM Acceptance, Formally

- Configuration C_i yields configuration C_j if the TM can legally go from C_i to C_j in a single step using δ
- Maccepts w if there is a sequence of configurations C₁,C₂,...,C_n where
 - C₁ is the **start** configuration q₀ w
 - C_i yields C_{i+1} for i = 1,...,n-1.
 - C_n is any configuration with state $\in F$

Recognizable vs. Decidable

- A language L is Turing recognizable if some Turing machine recognizes it.
 - Some strings not in L may cause the TM to loop
 - Turing recognizable = recursively enumerable.
- A language L is Turing decidable if some Turing machine decides it
 - To decide is to return a definitive answer; the TM must halt on all inputs
 - Turing decidable = decidable = recursive.
- We'll see some recognizable but undecidable languages later on.

Decidable Language

$$A_1 = \{0^{2^n} | n \ge 0\}$$

Decidable by M₁:

- 1. Sweep right, crossing off every other 0
- 2. if in (1) there was a single 0, accept
- 3. otherwise, if in (1) there was an odd number of 0s, halt
- 4. return the head to the left, and repeat from (1)

State diagram for M₁

State 0: I'm looking at first input symbol

State 7: I've seen exactly one 0 on this pass

State 1: I've seen an even number of 0s on this pass

State 2: I've seen an odd number of 0s on this pass

State 4: I'm skipping back to the start

In State	Reading	Write	Move	New State
0	#	#	R	0
0	0	0	R	7
1	#	#	L	4
1	0	0	R	2
1	×	×	R	1
2	#	#	R	9
2	0	×	R	1
2	×	×	R	2
4	#	#	R	0
4	0	0	L	4
4	×	×	L	4
7	#	#	L	h
7	0	×	R	1
7	×	×	R	7

JFLAP version: TM for 0[^]s[^]n

TM as Transducer

- Because the TM leaves its tape behind when it halts, it can also be viewed as a transducer that turns input into output
- Example: TM that does unary multiplication, turning 111x11= into 111x11=111111

Unary Multiplication TM

- Does multiplication by repeated addition:
 - copies the 1s from the second number to the end of the tape
 - repeats this for each 1 in the first number

q0: looking at first unused symbol in input

q1: found a 1 in the first factor; skipping to

the x symbol

q2: found x

q4: found a 1 in the second factor; changed it to Y; skipping to the =

q3: used all the 1s in the second factor; convert the Ys back to 1s

q5: skipping to end of tape

q6: skipping back to =

q7: skipping back over second factor

q8: found Y marking previously used 1

from second factor

q9: skip back over 1's in first factor

q12: consumed all of the first factor;

convert xs back to 1s

q11: found ⊔

